In finite probability theory, events are subsets S⊆U of the outcome set. Subsets can be represented by 1-dimensional column vectors. By extending the representation of events to two dimensional matrices, we can introduce “superposition events.”

## From Abstraction in Math to Superposition in QM

This is a draft paper that makes a perhaps surprising connection between the old Platonic notion of a paradigm-universal like ‘the white thing’ and an indefinite superposition state in quantum mechanics.

## Gian-Carlo Rota’s Probability Course: The Guidi Notes

This is a copy of the Guidi Notes for Gian-Carlo Rota’s Probability course at MIT the last time Rota gave the course. A copy of the Rota-Baclawski text used as course material can also be downloaded here.

## Gian-Carlo Rota’s Introduction to Probability and Random Processes

This is a scanned copy of Gian-Carlo Rota’s and Kenneth Baclawski’s Introduction to Probability and Random Processes manuscript in its 1979 version.

## From Partition Logic to Information Theory

A new logic of partitions has been developed that is dual to ordinary logic when the latter is interpreted as the logic of subsets rather than the logic of propositions. For a finite universe, the logic of subsets gave rise to finite probability theory by assigning to each subset its relative cardinality as a Laplacian probability. The analogous development for the dual logic of partitions gives rise to a notion of logical entropy that is related in a precise manner to Claude Shannon’s entropy.