Abstraction turns equivalence into identity, but there are two ways to do it. The goal is to use the second notion of abstraction to shed some light on the notion of an inde finite superposition in quantum mechanics.

## 4Open: Special Issue: Intro. to Logical Entropy

4Open is a relatively new open access interdisciplinary journal (voluntary APCs) covering the 4 fields of mathematics, physics, chemistry, and biology-medicine. A special issue on Logical Entropy was sponsored and edited by Giovanni Manfredi, the Research Director of the CNRS Strasbourg. My paper is the introduction to the volume.

## Book draft: Quantum Mechanics over Sets

Quantum mechanics overs sets (QM/ℤ₂ or QM/Sets) is a pedagogical or `toy’ model of finite-dimensional quantum mechanics (QM/ℂ) that reproduces in the simplified setting of vector spaces over ℤ₂ the essentials of projective measurements, the double-slit experiment, the indeterminacy principle, entanglement, Bell’s Theorem, the statistics of indistinguishable particles, and so forth,

## Probability Theory with Superposition Events

In finite probability theory, events are subsets S⊆U of the outcome set. Subsets can be represented by 1-dimensional column vectors. By extending the representation of events to two dimensional matrices, we can introduce “superposition events.”

## New Light on the Objective Indefiniteness or Literal Interpretation of QM

This paper shows how the mathematics of QM is the math of indefiniteness and thus, literally and realistically interpreted, it describes an objectively indefinite reality at the quantum level. In particular, the mathematics of wave propagation is shown to also be the math of the evolution of indefinite states that does not change the degree of indistinctness between states. This corrects the historical wrong turn of seeing QM as “wave mechanics” rather than the mechanics of particles with indefinite/definite properties.

## Talk: Hamming distance in classical and quantum logical information theory

This is a set of slides from a talk on introducing the Hamming distance into classical logical information theory and then developing the quantum logical notion of Hamming distance–which turns out to equal a standard notion of distance in quantum information theory, the Hilbert-Schmidt distance.

## Talk: New Foundations for Quantum Information Theory

These are the slides for a talk given at the 6th International Conference on New Frontiers in Physics on Crete in August 2017.

## Talk: New Foundations for Information Theory

These are the slides for a number of talks on logical information theory as providing new foundations for information theory.

## Logical Entropy: Introduction to Classical and Quantum Logical Information Theory

Logical information theory is the quantitative version of the logic of partitions just as logical probability theory is the quantitative version of the dual Boolean logic of subsets. The resulting notion of information is about distinctions, differences, and distinguishability, and is formalized as the distinctions of a partition (a pair of points distinguished by the partition). This paper is an introduction to the quantum version of logical information theory.

## Quantum Logic of Direct-sum Decompositions

The usual quantum logic, beginning with Birkhoff and Von Neumann, was the logic of closed subspaces of a Hilbert space. This paper develops the more general logic of direct-sum decompositions of a vector space. This allows the treatment of measurement of any self-adjoint operators rather than just the projection operators associated with subspaces.