Adjoint Functors and Heteromorphisms

This heteromorphic theory of adjoint functors shows that all adjunctions arise from the birepresentations of the heteromorphisms between the objects of different categories.

A Theory of Adjoint Functors

Our focus in this paper is to present a theory of adjoint functors, a theory which shows that all adjunctions arise from the birepresentations of “chimera” morphisms or “heteromorphisms” between objects in different categories.

Category Theory and Concrete Universals

This old paper, published in Erkenntnis, deals with a connection between a relatively recent (1940s and 1950s) field of mathematics, category theory, and a hitherto vague notion of philosophical logic usually associated with Plato, the self-predicative universal or concrete universal.

Concrete Universals in Category Theory

This old essay deals with a connection between a relatively recent (1940s and 1950s) field of mathematics, category theory, and a hitherto vague notion of philosophical logic usually associated with Plato, the self-predicative universal or concrete universal.

The Objective Indefiniteness Interpretation of Quantum Mechanics

The purpose of this blog entry is to briefly describe a new interpretation of quantum mechanics (QM). A long paper introducing this objective indefiniteness interpretation is available at the Quantum Physics ArXiv and (a more recent version) on my website.