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Introduction 
 
 
 
Real estate appraisal is more of a practical art than a theoretical science.  Appraisers use a number 
of time-honored formulas without great attention to the theoretical derivation of the formulas.  
While this "cookbook" approach may work as a matter of everyday practice, it leaves much to be 
desired from a pedagogical viewpoint.  When valuation formulas do have a derivation from a 
certain set of assumptions, then it is quite inappropriate—particularly for the technically-oriented 
student—for the formulas to be taught as "recipes" established by some authority and simply to be 
memorized and used. 
 
There are a number of reasonably complex formulas that are used in the income approach to real 
estate appraisal, particularly as developed in the United States.  The necessary assumptions and 
the proofs of these formulas are usually to be found only in a few scarce journal articles in the 
United States or in out-of-print books.  Hence we have attempted to give here, all in one place, 
fresh algebraic derivations of the major formulas to make them available to technically adept 
students and practitioners. 
 
The topic of internal rates of return or IRR's is also covered largely because IRR's are often 
misunderstood and improperly applied in the real estate appraisal profession as well as in other 
areas of business.  The point is that appraisers should rely on net present values, not IRR's, when 
giving advice about the selection of investment projects. 
 
A number of new results are also presented: 
 
(1) a general formula for the valuation of changing income streams defined by linear recurrence 

relations which has all the usual formulas for valuing changing income streams as special 
cases (e.g., straight line changing annuity, constant ratio changing annuity, and Ellwood J 
premise), 

(2) an analysis of the straight line and Hoskold capitalization methods which shows that both 
methods are appropriate for certain declining income streams where the income decline can 
be motivated as the interest losses resulting from a hypothetical capital recovery sinking fund 
using a substandard rate (below the discount rate), and 

(3) a general theorem about amortization tables where the principal reductions can be arbitrarily 
specified and an application of the theorem to give an alternative proof of the main result 
about the Hoskold capitalization method. 
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The Six Functions of One 
 
 
 
The Amount of One at Compound Interest 
 
Throughout our discussion, we will assume that future amounts of money can be discounted back 
to present values or that present amounts can be compounded into future values using a discount 
rate i per period.  The periods could be years, months, or any other fixed time period.  Unless 
otherwise stated, the formulas will always assume that the interest rate (% per period) and the units 
of time are stated using the same period of time.  The discount rate may be taken as including the 
risk-free interest rate and a consideration for risk and illiquidity.  But it does not include any 
"capital recovery requirements" to be considered later. 
 
The first basic formula  
 

n)i1(PVFV +=  
 
states that given the present value of PV, that is equivalent on the market to the future value after 
n periods of FV = PV(1+i)n.  If PV = 1, then we have the amount of one at compound interest 
given in the tables.  The present value is said to be "compounded" into the future value. 
 

... 
0 1 2 n 

PV =  1 

FV = (1+i)n 

 
 
 
The Present Value Reversion of One 
 
For each basic function of one, the inverse or reciprocal is also a function of one.  The inverse of 
the amount of one at compound interest is the present value reversion of one. 
 

n)i1(
FVPV
+

=  
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Given a future amount FV at the end of the nth period, the equivalent present value (at time zero) 
is obtained by dividing by the factor of (1+i)n. 
 

... 
0 1 2 n 

PV =  1/(1+i)
n 

FV = 1

 
 
The future value is said to be "discounted" to the present value. 
 
 
The Present Value of an Ordinary Annuity of 
One 
 
Suppose we want to pay off a loan with a series of equal payments at the times t = 1, 2,...,n (i.e., 
at the end of the first period and the end of each other period up to and including the nth period).  
We consider a series of equal payment of one.  Each payment is discounted back to a present value 
using the present-value-of-one formula (taking care to use the right time period).  Since the results 
are all amounts of money at the same time, they can be meaningfully added together to get the 
total present value of the series of equal payments.  It is called the present value of an ordinary 
annuity of one and will be denoted a(n,i). 
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Given a series of equal payments PMT at t = 1, 2,...,n, their present value is PMT a(n,i).  Those 
payments would pay off a loan at time zero of that principal value of PV = PMT a(n,i).   
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The Installment to Amortize One 
 
If we are given the equal payments PMT, we can use the present value of an annuity of one a(n,i) 
to calculate the corresponding principal value PV = PMT a(n,i).  But if we are given the principal 
PV for a loan, then we can use the reciprocal 1/a(n,i) to calculate the equal installment payments 
PMT = PV/a(n,i) that would pay off the loan.  The equal installment payments are said to 
"amortize" the loan.  If the loan was for PV = 1, then the reciprocal amount PMT = 1/a(n,i) is 
called the installment to amortize one. 
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We can think of the present value PV = 1 as "growing" into the equal series of 1/a(n,i) amounts.  
Suppose the present amount of one is deposited in a bank account being the compound interest 
rate of i per period.  At the end of period 1, the amount 1/a(n,i) can be withdrawn from the account 
leaving the remainder to accumulate interest.  In a similar manner, the amount 1/a(n,i) can be 
withdrawn at the end of period 2 and so forth through period n.  The last withdrawal of 1/a(n,i) at 
time n would reduce the bank account balance to zero. 
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The Accumulation of One per Period 
 
Suppose that instead of considering the present value of a series of equal payments, we consider 
the future value at time n of a series of equal amounts at time 1, 2, ..., n.  This practice of depositing 
equal amounts over a series of time periods and letting them accumulate to a future amount is 
called a "sinking fund."  Each deposit in the fund can be compounded to a future value at time n 
and the future values can be added together to get the total accumulated value of the sinking fund.  
If each deposit is one, then the total future amount is called the accumulation of one per period 
and is denoted s(n,i). 

i
1)i1()i1(1)i1(...)i1()i1()i,n(s
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Since this accumulation of one per period just restates the present value of an annuity of one as a 
future value at time n, we have  

i).a(n,i)(1i)s(n, n+=  
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s(n,i)
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The Sinking Fund Factor 
 
For the inverse function, we know the desired value of the accumulated fund FV at time n and we 
compute the sinking fund deposit (or payment PMT into the fund) at times 1,2,...,n that would 
accumulate to the desired amount FV.  That deposit is called the sinking fund factor and will be 
denoted SFF. 
 

1i)(1
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The sinking fund factor SFF "discounts" the future value of the fund FV back into a series of equal 
amounts.  If you had the promise to receive the future value of one at time n, then it would be 
equivalent for you to receive the series of equal payments SFF = 1/s(n,i) at the times 1,2,...,n. 
 

... 0 1 2 n 

... 

1 

1/s(n,i) 1/s(n,i)

 

 
 
Summary of Six Functions 
 
The six functions can be divided into two groups: three functions and their inverses. 
 

Function Inverse Function 
Amount of One at Compound Interest 

ni)(1+  

Present Value Reversion of One 
ni)(1 −+  

Present Value of an Ordinary Annuity of One 
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Installment to Amortize One 
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Accumulation of One per Period 

i
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Sinking Fund Factor 
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Amortization Tables 
 
Let us now consider a loan with the principal of PV which is to be paid off with equal payments 
PMT = PV/a(n,i) at times 1,2,...,n.  Each payment PMT will pay some interest and pay some 
principal.  The interest payments just service the loan; they do not reduce the principal balance.  
Only the remaining part of PMT can be considered as a principal payment or principal reduction.  
How much of each payment is considered as interest payment and how much as principal payment?  
The conventional way to compute interest and principal portions of loan payments is to assume 
that all the interest due at any time is taken out of the payment, and the remainder of the payment 
is principal reduction.    
 
Let Bal(k) be the principal balance due on the loan after the payment is made at the end of the kth 
period.  The loan begins with Bal(0) = PV.  At the end of the first period, the interest due is iPV = 
iBal(0).  Subtracting from the payment PMT gives the principal portion of the payment PMT-
iBal(0).  The new balance is the old balance reduced by the principal payment: Bal(1) = Bal(0) - 
(PMT - iBal(0)).  In general, the interest due at the end of the kth period is iBal(k-1) so the principal 
reduction by the kth payment is: 
 

PR(k) = PMT - iBal(k-1) = (1+i)PR(k-1). 
 
The new balance at the end of the kth period is: 
 

Bal(k) = Bal(k-1) - PR(k) = Bal(k-1) - (PMT - iBal(k-1)). 
 
The final payment at time n pays off the remaining balance of the loan so PR(n) = Bal(n-1) and 
Bal(n) = 0. 
 
The computation of these interest and principal portions is usually presented in an:  
 

Amortization Table.  
 

Period Beg. Balance Payment Interest Prin. Reduction End Bal. 
1 PV PMT iPV PMT-iPV Bal(1) 
2 Bal(1) PMT iBal(1) PMT-iBal(1) Bal(2) 
... ... ... ... ... ... 

n-1 Bal(n-2) PMT iBal(n-2) PMT-iBal(n-2) Bal(n-1) 
n Bal(n-1) PMT iBal(n-1) PMT-iBal(n-1) 0 

 
 
 
Some Formulas of Financial Mathematics 
 
To derive a formula for Bal(k) the balance due at the end of the kth period for a loan of principal 
PV, we first derive the formula for bal(k), the balance due at time k for a loan of principal 1.  Then 
we will have: Bal(k) = PV bal(k).   
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We know that a(n,i) is the present value of payments of 1 at the end of each period 1,...,n.  This 
sum can be divided into two parts, the present value of the first k payments which is a(k,i), and the 
value of last n-k payments at time k, namely a(n-k,i) discounted backed to time 0 by dividing by 
(1+i)k: 

.ki)(1

i)k,a(ni)a(k,i)a(n,
+

−
+=  

 
Multiplying both sides by (1+i)k/a(n,i) and rearranging yields the formula for bal(k): 
 

.
i)a(n,
i)a(k,1ki)(1
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If the principal of the loan is 1, then each payment is 1/a(n,i).  The balance at time k, bal(k), is the 
present value at that time of the last n-k payments so we have the above formula. 
 
We will later have occasion to use the portion paid P = P(k) of a loan at time k which is simply 
one minus the balance of the loan of one at that time: 
 

.
i)a(n,
i)a(k,1ki)(11

i)a(n,
i)k,a(n1bal(k)1P(k)P 
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We have seen that for the case of PV = 1, the n payments PMT = 1/a(n,i) will pay off the loan.  
That is, the present value of those equal payments is the principal amount 1 of the loan.  But there 
are many other future series of payments--unequal payments--which would also have that present 
value.  For instance, we could pay the same interest on one of i at the end of each period and pay 
no principal until the end of the nth period when we pay all the principal in one "balloon payment" 
of one.   
 

... 
0 1 2 n 

... 

1 

i 
i 

i 
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That unequal series of payments has the present value of one.  But how will we make the balloon 
payment?  Suppose we make a sinking fund deposit of SFF = 1/s(n,i) at times 1,2,...,n.  Those 
deposits will accumulate to 1 at time n to give precisely the balloon payment.  But that means that 
the equal payments at times 1,2,...,n of the interest i plus the sinking fund factor will also have the 
present value of one (since that pays off that loan). 
 

... 
0 1 2 n 

... i i 
1/s(n,i) 1/s(n,i)

 

 
But we have another series of equal payments at t = 1,2,...,n with the present value of one, namely 
the installments of amortize one 1/a(n,i).  Hence the two payments must be equal, and we have the 
important formula: 
 

i
i)s(n,

1
i)a(n,

1
+=  

 
In words, the installment to amortize one is the sum of sinking fund factor plus the discount rate. 
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Direct Capitalization Formulas 
 
 
 
The IRV Formula 
 
Another useful formula can be derived by considering an infinite series of equal payments called 
a "perpetuity."  We know that the present value of a finite series of n payments PMT at t = 1,2,...,n 
is 

.
i

ni)(1

11

PMTPV +
−

=  

 
If the series of payments goes on to infinity then we simply take n→∞ in the formula with takes 
the present value of one 1/(1+i)n to zero.  Thus we have the 
 

.
i

PMTPV =  

Perpetuity Capitalization Formula 
 
This is a very simple and convenient formula which can be presented in a "pie diagram." 
 

PMT 

i PV
 

 
For a perpetuity payment of PMT per period, one can cover up a symbol in the pie diagram to find 
the formula for that amount.  Cover up PV, and you see the PV = PMT/i.  Cover up PMT, and you 
see that the perpetual payment with the present value PV is PMT = iPV. 
 
Because of the simplicity of this type of formula, many practitioners would like to put the more 
complicated formulas encountered before into the same format.  That is usually possible, and the 
results are called "direct capitalization formulas." 
 
Consider, for example, the finite series of payments PMT at t = 1,2,...,n with the present value PV 
= PMTa(n,i).  We can rewrite a(n,i) as the reciprocal of its reciprocal so that the formula is: 
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PV PMTa(n,i) PMT
1

a(n,i)
.= =  

 
Thus we see that 1/a(n,i) can be thought of as rate used to transform or "capitalize" the amount of 
the equal payments PMT into the present value PV.  It is then called a "capitalization rate" to 
distinguish it from the discount rate i. 
 

PMT 

1/a(n,i) PV
 

 
In the real estate valuation literature, the amount PMT is the income I (e.g., the net operating 
income NOI of an income-producing property), the capitalization rate is denoted as R, and the 
present value is just called the value V.  Thus we have the famous I=RV formula. 
 

I 

R V 

 
I=RV Formula 

 
We previously saw that the capitalization rate R = 1/a(n,i) could be expressed as the sum of the 
sinking fund factor and the discount rate so we have:   
 

)i,n(s
1

i)a(n,
1 i

IIV
+

== . 

 
Cross-multiplying shows that each income I is the sum of the amount V/s(n,i) and iV.  The latter 
is simply the interest on the value V and it is called the "return ON investment."  Since the amount 
V/s(n,i) is the sinking fund deposit which would accumulate to V at time n, it is called the "capital 
recovery" part of the income or the "return OF investment."   

I = iV + V/s(n,i) = Return on investment + Return of investment. 
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The Cap-Rate Style of Reasoning 
 
There are various ways to express the formulas of financial mathematics.  The income approach 
to real estate appraisal, particularly in the USA, has developed a strong tendency to express 
formulas in a certain way which, in turn, promotes a certain "style" of reasoning.  In making the 
following remarks about this "cap-rate style" our purpose is not to criticize it but only to point out 
that it is a free choice and that other choices would also be quite possible. Let us begin with the 
basic formula to capitalize a perpetual income stream of one dollar payments or incomes: 
 

.
i
1V =  

 
How should the formula be changed to value a truncated income stream stopping at time n?  The 
"cap-rate style" is to change the formula by modifying the capitalization rate to account for the 
truncation of the income stream at t = n to obtain: 
 

.
i

1i)a(n,
)i,n(s

1+
=  

 
The new formula is explained using the reasoning about "return on investment" and "return of 
investment."  Since the income stream terminates, the underlying asset has wasted away so the 
capitalization rate must be "loaded" with the sinking fund factor SFF(n,i) = 1/s(n,i) to account for 
the return of investment. 
 
There is, however, another perfectly equivalent way to modify the perpetuity formula to account 
for the truncation of the income stream.  Instead of changing the denominator (the capitalization 
rate), change the numerator (the income).  Instead of loading the cap rate, we can make a deduction 
from the income (1 per year) to turn it into a perpetual income stream which can then be capitalized 
by the same denominator of i.  What is the deduction to perpetualize the income--to replace the 
truncated stream with a perpetual stream with the same value?  From the first income of 1 at time 
1, set aside 1/(1+i)n which is equivalent to another 1 at time n+1 (i.e., which would accumulate to 
1 at time n+1 in a sinking fund).  From the second income of 1 at t = 2, set aside another 1/(1+i)n 
which accumulates to 1 at time n+2, and so forth.  By making the 1/(1+i)n deduction from each of 
the 1's in the truncated income stream, one generates another stream of 1's at the times n+1, n+2, 
..., n+n.  The same deductions are made from those 1's, and so forth.  Thus the perpetual version 
of the truncated income stream of n 1's at times 1, 2,..., n is 1–1/(1+i)n which can then be capitalized 
by dividing by the interest rate: 
 

( ) .
i

i1
11

i)a(n,
n+

−

=  

 
This formula is also in the IRV format but it reflects the opposite "income style" of reasoning, i.e., 
modify the income instead of modifying the capitalization rate.  Instead of using cap rate reasoning 
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about loading the cap rate to account for the return of investment, we can use the familiar reasoning 
about charging depreciation against income so that an asset can be replaced when it wastes away.  
The amount 1/(1+i)n is the depreciation charge against each "1" so that it can be replaced n years 
later to perpetuate the income stream. 
 
We will see again and again that formulas are developed in real estate mathematics so that the 
changes are made to the cap rates, not the incomes.  That in turn determines the style of reasoning 
and explanation, e.g., loading cap rates to recover capital instead of charging depreciation against 
income to replace capital.  It is not a question of right or wrong.  Both the formulas for a(n,i) are 
correct and equivalent.  Some formulas might be more elegantly expressed by modifying cap rates, 
while other formulas will find simpler forms by changing the income terms.  The mathematics of 
real estate valuation has chosen the cap-rate road, not the income road.  With the increasing use of 
electronic computers to value uneven cash flows, the form of the formulas will become less 
important but the cap-rate style of reasoning will probably have a longer lasting influence. 
 
 
Adjusting Capitalization Rates for 
Appreciation and Depreciation 
 
We are considering a series of payments or income I that terminates at t = n.  There is no further 
value after that time so this corresponds in real estate valuation to an asset or property that wastes 
completely away at t = n.  Clearly there are other possibilities so we should see how the formulas 
in the capitalization rate format could be adjusted. 
 
For instance, if the asset had the same value V at time n as at time 0, then it would be equivalent 
to the perpetuity of incomes I and the value would be V = I/i.  Thus when the asset does not 
depreciate or appreciate, the sinking fund factor disappears. 
 
What is the general formula in the capitalization rate format when we have a series of equal 
incomes I at t = 1,2,...,n and then a future value FV at t = n?  The total present value would be the 
usual sum of all the discounted values. 
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The sinking fund deposits at t = 1,2,...,n which accumulate to FV at t = n are FV/s(n,i) and the 
present value at t = 0 of those deposits is 

.
i)a(n,

1
i)s(n,

VF

ni)(1

VF
=

+
 

Substituting in the previous formula yields 
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Cross-multiplying and solving for I yields 
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where the modified capitalization rate 
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reflects the future value FV at t = n.  When FV = V, the capitalization rate reduces to the discount 
rate i.  When FV = 0, we have the previous formula R = 1/s(n,i) + i where the asset has wasted 
away at t = n.   
 
It is convenient to restate the modified capitalization rate in terms of an appreciation ratio ∆o so 
that 100∆o is the percentage of appreciation (and where depreciation would be treated as a negative 
percent).  The future value is FV = (1+∆o)V.  Then the capitalization rate can be expressed as 

i).SFF(n,i
i)s(n,

i

i
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In the real estate literature, the subtraction of the appreciation term to find the capitalization rate 
R* is called "unloading" for the appreciation and "loading" for the depreciation (negative 
appreciation).   
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Direct Capitalization Formula with Appreciation or Depreciation 

 
For no appreciation or depreciation, ∆o = 0, and for the fully depreciated asset, ∆o = -1. 
 
 
Band of Investment Formulas 
 
We have an income property which yields the net operating income NOI at the end of each year.  
A portion M of the value V is financed by a mortgage at the interest rate i (M is also called "loan 
to value ratio") so MV is the principal of the mortgage.  After subtracting the debt service from 
the NOI, the remainder is the cash return to the equity holder which is to be discounted at the 
equity yield rate of Y. 
 
A "band of investment" formula is a way to derive a direct capitalization rate R so that the value 
V is obtained by capitalizing the NOI, i.e., V = NOI/R.  We will derive the formulas for R under 
a range of assumptions. 
 
In all cases, the value of the property V is the sum of the value of the equity interest in the property 
plus the face value of the mortgage: 

Value = Equity + Mortgage Value. 
 
 
Interest-only Loan, No Change in Asset 
Value, and No Sale of Asset 
 
It is assumed that the asset yields an infinite stream of annual net operating incomes NOI and that 
the mortgage is an interest-only loan so the debt service is MVi.  Thus the equity stream capitalizes 
to the value [NOI - MVi]/Y and the mortgage value is MV so the total value equation is: 

[ ]V
Y

MV.=
−

+
NOI MVi

 

Collecting the V-terms to the left side we have: 
 

V 1 Mi
Y

M NOI
Y

+ −





=  

so dividing and rearranging yields: 
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[ ]
V NOI

Y 1 Mi
Y

M

NOI
Mi (1 M)Y

.=
+ −





=
+ −

 

 
Thus the value V could be obtained by capitalizing the NOI at the direct capitalization rate R where 

R Mi (1 M)Y= + −  
 
is the weighted average of the interest rate i and the equity yield rate Y with the weights being the 
mortgage and equity portions of the value. 
 
 
Interest-only Loan, No Change in Asset 
Value, and Resale of Asset after H Years. 
 
The conditions are as above except that the asset is sold for the value V (no change in asset value) 
after the holding period of H years.  Then the value of the equity is the present value of equity cash 
return over the holding period plus the present value of the sales proceeds net of paying off the 
mortgage: 

[ ] ( ) [ ]Equity a(H,Y) NOI MVi 1 Y V MV .H= − + + −−  
 
Adding in the mortgage face value yields the value equation: 
 

[ ] [ ]V a(H,Y) NOI MVi (1 Y) V MV MV.H= − + + − +−  
 
Collecting the V-terms to the left yields: 
 

[ ]V 1 a(H,Y)Mi (1 Y) [1 M] M a(H,Y) NOI.H+ − + − − =−  
 
Solving for V and rearranging yields: 
 

[ ]
V NOI

(1 M)
a(H,Y)

Mi
(1 Y) 1 M

a(H,Y)

H
=

−
+ −

+ −









−
 

 
where the denominator can be written as: 
 

[ ]R Mi
(1 M) 1 (1 Y)

a(H,Y)
.

H

= +
− − + −

 

 
But a(H,Y) = [1 - (1+Y)-H]/Y so we have the previous formula: 

R Mi (1 M)Y.= + −  
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Mortgage Amortization over Holding Period, 
Asset Depreciation Equal to Mortgage, and 
Asset Resale after H Years 
 
Assume that the mortgage with an annual interest rate of i is amortized over the holding period of 
H years in 12H monthly payments.  The monthly payment for a loan of 1 is 1/a(12H,i/12) so the 
annual debt service or mortgage constant Rm is 12 times the monthly payment for a loan of 1.  We 
furthermore assume that the asset value depreciates exactly as the mortgage is paid off so the resale 
value at the end of the holding period is V-MV (and there is no remaining mortgage to pay off).  
Hence the value equation is: 

[ ] [ ] .MVMVVY)(1MVRNOIY)a(H,V H
m +−++−= −  

 
By comparing this value equation with the previous one, we see that the only difference is that i is 
replaced by Rm so the direct capitalization rate will be: 
 

R MR (1 M)Y.m= + −  
 
 
Ellwood and Akerson Formulas with 
Constant Income 
 
We now consider a more general case where the mortgage is amortized over a period longer than 
the holding period.  With monthly payments, the mortgage constant Rm is 12 times the monthly 
payment and the balance due on the mortgage at the end of the holding period is MVbal(12H).  
We further assume that the asset appreciates by the proportion ∆o over the holding period so the 
resale value is (1+∆o)V.  These assumptions yield the value equation: 

[ ] [ ] .MVH)MVbal(12V)(1Y)(1MVRNOIY)a(H,V o
H

m +−∆+++−= −  
 
Collecting the V terms to the left yields: 

.NOIY)a(H,M
Y)(1

H)Mbal(12
Y)(1

1MRY)a(H,1V HH
o

m =











−

+
+

+

∆+
−+  

Dividing through and rearranging terms gives: 

.

Y)a(H,
M

Y)Y)(1a(H,
H)Mbal(12

Y)Y)(1a(H,
1MR

Y)a(H,
1

NOIV

HH
o

m











−

+
+

+

∆+
−+

=  
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The denominator is the direct capitalization rate R.  We can then use the previous equations 

HY)Y)(1a(H,Y)s(H, +=
  
and

 
 

Y)s(H,
1Y

Y)a(H,
1

+=  

to simplify the rate R to 
 

.
Y)s(H,

MMY
Y)s(H,

H)Mbal(12
Y)s(H,Y)s(H,

1MR
Y)s(H,

1YR o
m −−+

∆
−−++=  

 
Canceling terms and using the equations SFF(H,Y) = 1/s(H,Y) and P = P(12H) = 1-bal (12H) we 
can simply the expression to: 

[ ] Y).SFF(H,RY)SFF(H,PYMYR om ∆−−+−=  
 
The expression in the square brackets is called the Ellwood C factor so the direct capitalization 
rate can be written in the Ellwood form as: 
 

Y)SFF(H,MCYR o∆−−=  

Ellwood Formula 
where C = Y + P SFF(H,Y) - Rm. 
 
If we regroup the terms in another way reminiscent of the band of investment formula than we 
have the: 
 

Y)SFF(H,Y)SFF(H,PMYM)(1MRR om ∆−−−+=  

Akerson Formula. 
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The Valuation of Changing Income Streams 
 
 
 
Introduction 
 
There is, of course, a general formula for the value V of any income stream I1, I2, ..., In: 

∑
= +

=
n

1k
k

k
i)(1

IV  

 
but it is in fact the definition of the present value of the income stream.  We will consider changing 
income streams where the Ik's are defined in a regular manner by some relationship, and then we 
will seek a concise formula for the above defined value V (that is not just the defining summation 
of the present values).  These concise formulas are of more theoretical than practical importance 
in the sense that an appraiser equipped with an electronic spreadsheet can now directly use the 
definition to arrive at a numerical value for the present value of a projected numerical income 
stream. 
 
We will present a formula for the valuation of changing income streams defined by linear 
recurrence relations (linear difference equations) which seems to be new and to have all the usual 
formulas for valuing regular income streams as special cases (e.g., straight line changing annuity, 
exponential or constant ratio changing annuity, and streams changing according to the Ellwood J 
premise).   
 
As a special application, we show that the straight line and Hoskold methods of capitalizing income 
streams can be seen as the discounted present value of declining streams where the decline in 
income can be conceptualized as interest losses.  These losses result, as it were, from a make-
believe reinvestment of a capital recovery portion of the income in a hypothetical sinking fund 
with an interest rate below the discount rate (0 in the straight line case and some "safe" rate is in 
the Hoskold case).  The declining income stream of the straight line case can be evaluated using a 
known formula for the straight line changing annuity.  The more general formula given here is 
needed for the declining income stream of the Hoskold case. 
 
 
Valuing Income Streams Defined by Linear 
Recurrence Relations 
 
Consider the general linear recurrence relation defined by 

y0 = c  and yk = myk-1 + b for some constants m, b, and c. 
 
The general solution has the form 

bmbbmcmy 1nn
n ++++= −   
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which can be expressed by the formula 
[ ]













=+

≠
−

−
+

=
1.mfornbc

1mfor
1m

1mbcm

y

n
n

n  

Taking the kth year's income as yk for k = 1,...,n, the present value of the income stream is 

( )
.

i1
yV

n

1k
k

k
n ∑

= +
=  

 
It will be useful to notice the recurrence relation for the Vk's: 

[ ] i).ba(k,cV
i1

mV 1kk ++
+

= −  

 
In Appendix 1, we derive the formula for Vn in the following four cases where we use the notation 
an = a(n,i).  Since the yk's are defined by general linear recurrence relations, we will call the 
formula the general linear recurrence valuation formula. 
 
 

Case 1 for m ≠ 1, 1+i:   n

n

n a
1m

b
mi1

i1
m1m

c
1m

bV
−

−
−+




















+
−





 +

−
=   

Case 2 for m = 1+i ≠1:  [ ]
i
anbncV n

n
−

+=  

Case 3 for m = 1, i ≠ 0:  [ ] [ ]
i
anbab1)(ncV n

nn
−

−++=    

Case 4 for m = 1, i = 0:  
2

1)bn(nncVn
+

+=  . 

General Linear Recurrence Valuation Formula 
 
 
Real estate appraisal often considers an income stream of the special form  

d, d-y1h, d-y2h,..., d-yn-1h  
 
for constants d and h.  The stream has the present value 

( ) ( ) ( )
.V

i1
hda

i1
hyd

i1
hyd

i1
d*V 1nnn

1n
2

1
1 −

−
+

−=
+

−
++

+

−
+

+
=   

Using the recurrence relation for the Vk's, we have: 
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m
i1

i1
mcbaV

i1
hda*V nnn

+






+
−−

+
−=  

 
which simplifies to the formula for V* in terms of Vn which, in turn, can be evaluated in the 
previous four cases: 

i1
hc

m
hVa

m
bhd*V n

n +
+−



 +=  . 

 
 
Application 1: The Straight Line Changing 
Annuity Formula 
 
The formula for valuing the linear changing annuity stream d, d-h, d-2h, ..., d-(n-1)h can be 
obtained by taking m = b = 1 and c = 0 so that yk = k.  Using the previous formula of V* and Vn 
in case 3 when m = 1 ≠ 1+i, we have: 
 

( )
[ ]

[ ] [ ]

[ ] [ ]
i

anhanhd

i
anha1)h(nahd

hVahd
i1

h1)(kd*V

n
n

n
nn

nn
n

1k
k

−
+−=

−
++−+=

−+=
+

−−
= ∑

=

. 

 
which was the previously known formula for valuing the straight line (constant amount) changing 
income stream. 
 
 
Application 2: The Constant Ratio Changing 
Annuity Formula 
 
Suppose an income stream starts with 1 at the end of year one and then grows at a rate of g for n 
years.  To apply the general formula, take b = 0 and m = 1+g.  In order to start with y1 = 1, we 
must take y0 = c = 1/(1+g) so that yk = (1+g)k-1.  Using the general formula in case 1, we have 

gi

i1
g11

gi

i1
g11g)(1

g1
1V

n

n

n

−




















+
+

−

=

−




















+
+

−+









+

=
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which is the usual formula for evaluating the constant ratio changing annuity. 
 
Application 3: The Ellwood J Factor and 
Ellwood R Formulas 
 
Recall that  

( )
i)SFF(n,

1ai)(1
i

1i1

1i)(1...i)(1i)(1i)s(n,s

n
n

n

12n1n
n

=+=
−+

=

+++++++== −−

 

is the accumulation of one per period.  It is useful to first use the general formula to derive the 
value of the stream of incomes s1, s2, ..., sn at the end of years 1, 2, ..., n.  In this case, m = 1+i, b 
= 1, and c = 0.  Then the formula yields in case 2: 
 

[ ]
i
ana

i)(1
s n

n

1k
k

n

1k
k

k −
==

+
∑∑
==

. 

The Ellwood J premise is that the income stream will change by an amount ∆I over n years after 
starting with a (hypothetical) value at time 0 of I (where ∆ is the relative change in I).  The change, 
however, occurs in a particular way.  At the end of the kth year the income is I+skh for some fixed 
h.  Since we must have the income at the end of the nth year as I+snh = I+∆I we can quickly solve 
for h as h = ∆I/sn.  The actual income stream starts at the end of year 1 so its value is: 

∑∑
== +

+=
+

+
=

n

1k
k

k
n

n

1k
k

k
i)(1

shIa
i)(1

hsI*V  

Using the previous formula for the present value of sk's income steam and the definition of h, we 
have 

[ ]

[ ]







 −∆
+=

−∆
+=

i
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s
aI

i
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s
IIa*V

n

n
n

n

n
n

 

so the reciprocal of the term in the square brackets is the capitalization rate R that would yield the 
value as V* = I/R.  The cap rate R can then be simplified as follows. 
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Thus the capitalization rate R can be simplified to: 
 

J1
s1iR n

∆+
+

=    where  










−

+−
=
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1

i)(11
n

s
1J nn

 

 
is the Ellwood J factor.  We have only been considering income streams defined by certain 
formulas.  Thus we have not considered any extra term at the end of year n for the terminal value 
of some underlying asset.  In other words we are assuming that any underlying asset wastes away 
to value zero at the end of year n.  Otherwise, the "1" in the numerator of the expression for R 
would be replaced by the relative drop ∆o in the overall value of the asset (∆o = 1 in our case). 
 
Our previous presentation of the Ellwood mortgage analysis with a constant income stream can 
now be easily modified to accommodate an income stream changing according to the Ellwood J 
premise used above.  Carrying over the relevant notation from our previous mortgage analysis, the 
value equation is: 
 

( )[ ] MVH)(12MVbalV1Y)(1
Y)(1

MVRhsIV o
H

H

1k
k

mk +−∆+++
+

−+
= −

=
∑  

 
where sk = s(k,Y) and h = I∆/sH.  Using the previous result 
 

Y
aH

Y)(1
s H

H

1k
k

k −
=

+
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=

 

 
where aH = a(H,Y), the value equation can be simplified to: 
 

[ ] ( )[ ] .MVH)MVbal(12V1Y)(1
Ys
aHIMVaRIaV o

H

H

H
HmH +−∆+++

−∆
+−= −  

 



___  24  ___ 

Collecting the V terms on the left-hand side yields 
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Then we can skip some algebra since the square brackets on the left-hand side are developed 
exactly as in the previous treatment of the Ellwood mortgage analysis and the square brackets on 
the right-hand side are developed like the treatment of Ellwood J factor above.  Thus we can 
quickly arrive at the V = I/R formula with 
 

J1
SFFMCYR o

∆+
∆−−

=  

Ellwood's R with Changes in Income and Asset Value 
 
where Ellwood's C = Y + P SFF - Rm as before and SFF = SFF(H,Y) = 1/sH. 
 
 
The Straight Line and Hoskold Capitalization 
Rates 
 
There is some controversy in the field of real estate appraisal over the status of the so-called 
"straight line" method (also called "Ring" method) and the Hoskold method of determining direct 
capitalization rates.   
 

Method to Determine 
Capitalization Rate 

 
Return of Investment 

 
+ Return on Investment 

 
= Capitalization Rate R 

Straight Line Method SFF(n,0) i i + 1/n 
Hoskold Method @ is SFF(n,is) i i + SFF(n,is) 

Annuity Method @ i SFF(n,i) i 1/a(n,i) 
 
We will show that the straight line and Hoskold capitalization rates will, when divided into the 
first year's income, give the correct present value only for certain declining income streams.   
 
 
The Straight Line Capitalization Formula 
 
We will show that the straight line formula (as well as the Hoskold formula) applies to certain 
declining income streams from an income property (without any reference to a sinking fund).  
Sinking funds are relevant as a heuristic device because one can "motivate" the declining income 
stream as the combined income stream yielded by the composite investment of an income property 
giving a level income stream plus a sinking fund with a sub-standard interest rate.  The decline in 
the total or composite income stream is precisely equal to the interest rate losses due to the 
reinvestment at a substandard interest rate.  This sinking fund would usually be a hypothetical or 
"as if" device.  The decline in the income stream is "as if" part of the proceeds of a level stream 
were reinvested at a "safe" rate below the prevailing interest rate. 
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Consider a declining income stream with d as the first year's income which then declines by the 
amount h each year for n years.  The present value of the income stream at the discount rate i is: 
 

( ) ( ) ( ) ( )
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h1)(nd
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h2d
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The straight line changing annuity formula for this sum was previously derived. 
 

[ ] [ ].
i

i)a(n,nhi)a(n,nhdV −
+−=  

 
The formula can, of course, be applied as well to straight line rising income streams by considering 
h as being negative. 
 
The straight line capitalization formula can be obtained as a special case.  We consider the 
hypothetical composite investment consisting of an income property with level income I and 
reinvest of the capital recovery portion of income in a mattress sinking fund.  Suppose that the 
income only from a property is constant amount I for n years.  At the end of each year part of the 
proceeds are reinvested in a sinking fund at the ultra-safe or "mattress" interest rate of zero.  The 
value of the composite investment, property plus sinking fund, is V.  At the end of each year, 
SFF(n,0)V = V/n is invested in the zero-interest sinking fund.  Thus at the end of second year, 
there is an interest loss of h = iV/n.  At the end of each subsequent year, there is an additional loss 
of h = iV/n.  Thus the combined income stream is precisely of the straight line changing annuity 
kind with d = I and h = iV/n.  Applying the valuation formula, we have: 
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Solving for V yields the straight line formula: 
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Straight Line Capitalization Formula 
 
Thus the specific declining income stream appropriate for the straight line formula can be 
motivated as the composite result of a constant income stream plus reinvestment of part of the 
proceeds each year in a mattress sinking fund.  It is unlikely that an appraiser will be asked to 
appraise the composite investment of a level income property plus a mattress sinking fund.  Thus 
it is easy to see that the sinking fund in this case is only a heuristic or hypothetical device to 
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motivate the decline in the income stream "as if" they were the interest losses from a mattress 
sinking fund.  The sinking fund is just as hypothetical in the Hoskold case which follows. 
 
 
The Hoskold Formula 
 
We must use case 1 in our more general valuation formula to evaluate the declining income stream 
that underlies the Hoskold formula.  We will show that the Hoskold formula works for a certain 
declining income stream 
 

I, I-y1h, I-y2h,..., I-yn-1h 
 
where m = 1+is, b = 1 and c = 0, and where is is a "safe" interest rate intermediate between i and 
0.  Then using the previous formula for V* with d = I, we have 
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so substituting in the formula for Vn (case 1 of m ≠1, 1+i) yields after some algebra: 
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V* Formula in Hoskold Case 
 
To arrive at the specific declining income stream for the Hoskold case, we must fix h as the interest 
loss resulting from investing in the sub-standard sinking fund at the safe rate is.  The declining 
stream is then motivated as the composite result of a constant income stream at the level d minus 
the interest losses in the safe sinking fund.  The term subtracted from d in year k+1 for k = 1,...,k-
1 is ykh.  Remembering that m = 1+is, b = 1, and c = 0 in this Hoskold case, the yk term is: 

( ) ( ) ( )
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==+++++= −   

 
where the sinking fund factor SFF(k,is) is the amount invested at the end of each year for k years 
to accumulate to 1 at the end of year k at the interest rate is.  In our safe sinking fund, we must 
invest at the end of each year for n years the amount that will accumulate to V*, and that amount 
is V*SFF(n,is).  After that amount is invested at the end of year 1, the interest rate loss at the end 
of year 2 from investing in the substandard sinking fund is (i-is)V*SFF(n,is) which should equal 
y1h.  At the end of year 3, there is the same loss on the amount invested at the end of year 2 but 
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there is also the loss of what would have been the sinking fund accumulation on the previous loss.  
Thus the loss at the end of year 3 is 

( )[ ]( ) ( ) ( ) ( ) hy)is(2,in,SFFV*iiin,SFFV*ii1i1 2ssssss =−=−++ . 
 
By similar reasoning we see that the loss at the end of year k+1 is 
 

( ) ( ) hy)is(k,in,SFFV*ii ksss =− . 
 
Since we know that yk = s(k,is), we see that 
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in the formula for V* in the Hoskold case. 
 
Substituting h into the V* formula for the Hoskold case yields 
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which simplifies to 
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Collecting all the V* terms on the left side yields 

( )

( ) nsnn
s

nn
sn

s
Ia)iSFF(n,V*a

1i1
i1

1
i1
i11i1

V* =+





















−+









+
+








+
+

−−+
 

where the term in the square brackets simplifies to: 
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Therefore we have V*[i + SFF(n,is)]an = Ian so we can cancel an and solve for the value V* of the 
declining income stream I, I-y1h,...,I-yn-1h (with m = 1+is, b = 1, and c = 0 in the definition of yk) 
as: 

( )sin,SFFi
I*V

+
=  . 

The Hoskold Formula 
 
 
Generalized Amortization Tables: The Main 
Theorem 
 
We have relied mostly on the language of algebra.  Since not all appraisers are fluent in that 
language, it might be useful to restate some of the results using amortization tables.  We begin 
with a general result about amortization tables where the principal reductions P1, P2, ..., Pn are 
arbitrarily given along with the interest or discount rate i.  The value V is the sum of the principal 
reductions.  The incomes (or payments) per period are determined from this data.  The Main 
Theorem is that the discounted present value of the incomes determined in this manner from the 
given Pk's is the value V which is the sum of the Pk's.  For the results about the Ring and Hoskold 
methods, we consider amortization tables where the principal reductions or capital recovery entries 
are generated by a sinking fund at a rate r not necessarily the same as the discount rate i.  When r 
= 0, we will have an amortization table for the straight line or Ring method which shows the 
declining income for that case.  When r = is between 0 and i, we have a Hoskold amortization table 
that shows the declining income for that case.  When r = i, we have usual amortization table with 
level income or amortization payments.  If r > i, we have an amortization table with involves 
capital recovery at a supra-standard rate r and which thus generates a rising income stream. 
 
The principal or capital to be recovered is defined as the sum of those given principal reductions.  
Certain relationships hold between the columns in an amortization table.  The interest in each year 
is the rate i times the balance or unrecovered capital from the previous year.  The entry in the 
payment or income column is the sum of the interest and principal reduction (or capital recovery) 
columns.  The entry in the balance (or unrecovered capital) column is the previous entry in the 
column minus the principal reduction (or capital recovery).  The last entry in the balance or 
unrecovered capital column is zero. 
 
Let P1, P2, ..., Pn be the given principal reductions, let V = P1+P2+...+Pn be the sum, and let i be 
the discount rate.  That is the only data given for the following general theorem about amortization 
tables. 
 

General Amortization Table 
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Year Income =  Interest  + Principal Reduction Balance 
1 I1 = P1+i(P1+...+Pn) iV P1 V-P1 
2 I2 = P2+i(P2+...+Pn) i(V-P1) P2 V-P1-P2 
... ... ... ... ... 
k Ik = Pk+i(Pk+...+Pn) i(V-P1-...-Pk-1) Pk V-P1-...-Pk 
... ... ... ... ... 
n In = Pn + iPn i(V-P1-...-Pn-1) Pn V-ΣPk = 0 
   ΣPk = V  

 
The other columns are all defined in terms of the given Pi's in the manner indicated.  The incomes 
Ik's are determined as the sum of the Interest and Principal Reduction columns, and the general 
formula is 

Ik = Pk + i(Pk +...+ Pn). 

The Main Theorem is that the discounted present value of these incomes is the value V, the sum 
of the arbitrarily given Pk's. 
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Main Theorem on Amortization Tables 
 
The proof in given in Appendix 2. 
 
 
Amortization Tables with Sinking Fund 
Capital Recovery 
 
Let V be the value of the investment (or loan) and n the number of years to recover the capital (or 
pay off the loan).  Let i be the interest rate and r be the rate for the capital recovery sinking fund.  
The value of the first year's income (or payment) is I.  The value V is related to the first year's 
income by the direct capitalization formula: 
 

V I
i SFF(n, r)

=
+

. 

 
The new deposit in the sinking fund each year to recover the capital is SFF(n,r)V which is 
abbreviated SFFV.  After the deposit at the end of the kth year, the amount in the sinking fund is 
SFFVs(k,r) which abbreviated SFFVsk   Therefore the capital recovery during the kth year due to 
both the new deposit and the new interest is SFFVsk – SFFVsk-1 = SFFV(1+r)k-1 and that is the 
entry in the kth row of the capital recovery (or principal reduction) column.  Each year's income Ik 
beginning with I1 = I is the sum of the interest (or return on unrecovered capital) and the capital 
recovered (return of capital) for that year. 
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Amortization Table with Sinking Fund Capital Recovery 
 

Year Income =  Interest  + Capital Recovered Balance 
1 I iV SFFV V(1-SFF) 
2 I2 iV(1-SFF) SFFV(1+r) V(1-SFFs2) 
3 I3 iV(1-SFFs2) SFFV(1+r)2 V(1-SFFs3) 
... ... ... ... ... 
n In iV(1-SFFsn-1) SFFV(1+r)n-1 V(1-SFFsn) 

 
 
Since SFF = 1/sn the last entry in the Balance or Unrecovered Capital column is 0.  The sum of the 
Capital Recovered column is 
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as desired.  The incomes Ik are obtained as the sum of the Interest and Capital Recovered columns.  
It is useful to compute the first few incomes. 
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The income for the 2nd year is I minus (i–r)SFFV which is the interest loss on the sinking fund 
deposit of SFFV. 
 
The third year's income is calculated as follows. 
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Thus we see that each year's income Ik is I minus the interest losses on the sinking fund (assuming 
r < i) where the latter can be calculated as (i–r)SFFVsk, the accumulation sk on the interest losses 
(i – r) on the sinking fund deposits SFFV: 
 

Ik = I – (i – r)SFFVsk. 
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Since these incomes Ik are the same as those obtained in our previous analysis of the Hoskold case, 
the Main Theorem on Amortization Tables now gives us another proof that the present value of 
these incomes is the value V = I/[i+SFF(n,r)] when r = is. 
 
In the straight line or Ring case of r = 0, SFF = 1/n and sk = k so the declining income is given by 
Ik = I – i(V/n)k.  The income stream declines by a constant amount iV/n each year independent of 
k.  In the Hoskold case, the drop in the income stream from Ik to Ik+1 is (i–r)SFFV(sk+1 – sk) = (i–
r)SFFV(1+r)k which depends on k.  Thus the Hoskold requires the formula more general than the 
constant amount changing annuity formula.  The drop in the income stream in each period is (1+r) 
times the previous drop.  This is illustrated in the following table based on the Hoskold situation 
where 0 < r < i.  The change in income accelerates at the sinking fund rate of r (as we see in the 
right-most column of the spreadsheet). 
 

Amortization Table with Sinking Fund Capital Recovery: Hoskold Case
1st Income = 100.00 n = 5

i = 10% V = 355.90
r = 5% % Change in

Year Income Interest Capital Recovery Balance ∆Ι ∆Ι
1 100.00 35.59 64.41 291.49
2 96.78 29.15 67.63 223.86 3.2205
3 93.40 22.39 71.01 152.85 3.3815 5.00%
4 89.85 15.29 74.56 78.29 3.5506 5.00%
5 86.12 7.83 78.29 0.00 3.7281 5.00%

Sum = 355.90

= Discount Rate
= Sinking Fund Rate

 
 
 

In the straight line or Ring case, we set the sinking fund rate to 0. 
 
 
Amortization Table with Sinking Fund Capital Recovery: Straight Line Case
1st Income = 100.00 n = 5

i = 10% V = 333.33
r = 0% % Change in

Year Income Interest Capital Recovery Balance ∆Ι ∆Ι
1 100.00 33.33 66.67 266.67
2 93.33 26.67 66.67 200.00 6.6667
3 86.67 20.00 66.67 133.33 6.6667 0.00%
4 80.00 13.33 66.67 66.67 6.6667 0.00%
5 73.33 6.67 66.67 0.00 6.6667 0.00%

Sum = 333.33

= Discount Rate
= Sinking Fund Rate
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When r = i, we have an ordinary amortization table where i – r = 0 so the interest loss is 0 and the 
income is constant. 
 
 

Amortization Table with Sinking Fund Capital Recovery: Ordinary Case r = i
1st Income = 100.00 n = 5

i = 10% V = 379.08
r = 10%

Year Income Interest Capital Recovery Balance ∆Ι
1 100.00 37.91 62.09 316.99
2 100.00 31.70 68.30 248.69 0.0000
3 100.00 24.87 75.13 173.55 0.0000
4 100.00 17.36 82.64 90.91 0.0000
5 100.00 9.09 90.91 0.00 0.0000

Sum = 379.08

= Discount Rate
= Sinking Fund Rate
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The Internal Rate of Return 
 
 
 
The Many Flaws and Few Benefits of IRR's 
 
What is the criteria to use to measure the benefits of an investment project?  It is the net present 
value or NPV of the project computed using a discount rate appropriate for the riskiness of the 
project.  There is an old real estate saying that there are three things which determine the value of 
real estate for retail purposes: location, location, and location.  In a similar manner, we can say 
there are three investment measuring devices: NPV, NPV, and NPV.  The internal rate of return 
or IRR is not one of them. 
 
Why analyze IRR at all?  The IRR is important because it is widely used by practitioners and 
textbook writers.  However, many of those who recommend the IRR concept seem to be unaware 
or only vaguely aware of the many problems with IRR's.  Hence it is necessary to reiterate the 
many fallacies in the use of IRR's and to show the limited domain where IRR's can be correctly 
applied.   
 
 
Definition of IRR 
 
An investment project is defined by a series of cash flows C0, C1, C2, ..., Cn, ... where Ct is the 
cashflow at the end of time t (time periods are taken as years).  A negative cashflow Ct is an 
investment into the project and a positive cashflow Ct is a payout from the project.  Given the 
discount rate i (the opportunity cost of capital to be invested in projects of similar riskiness), the 
net present value NPV of a project C0, C1, C2, ..., Cn is: 
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where we might write NPV(i) to make explicit the use of i as the discount rate in the definition of 
NPV.  An internal rate of return IRR of the project can be defined as a rate which sets the net 
present value to zero: 
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While we may speak of "the" IRR of a project, there are some projects which have multiple IRR's. 
 
If we graph NPV on the vertical axis and the discount rate i on the horizontal axis, then the IRR is 
the discount rate at which the NPV curve cuts the horizontal axis. 
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NPV 
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IRR 

NPV of  project 

 
 

 
Examples of IRR's 
 
There is no simple formula for finding an IRR.  Except in a few simple cases, IRR's (as the roots 
of a polynomial) are best computed through an iterative procedure of ever closer approximation.  
Fortunately, such numerical computational procedures are now built into most hand-held financial 
calculators so finding IRR's is no longer a practical problem. 
 
To construct an example with an IRR = .20 or 20%, choose any initial investment of say $1000 
(so that C0 = –1000), and then take the cashflows as the interest $200 until the final time period 
when the principal is return as well. 
 

Project C0 C1 C2 C3 IRR NPV @  10% NPV @ 12% 
A –1000 200 200 1200 20% $248.69 $192.15 
B –1000 500 500 500 23.38% $243.43 $200.92 
C –1000 120 120 1120 12% $49.74 $0 

 
 
Pitfall 1 in Using IRR's: The Negative of a 
Project has the same IRR 
 
One of the simplest "rules" you will find in the literature is that an investment project is profitable 
(that is, has positive NPV) if its IRR is greater than the interest rate i.  But this cannot be true 
without additional assumptions since the negative of a project has the same IRR.  Reversing all 
the cashflows reverses the role of the lender and borrower.  For instance consider the negative of 
project A. 
 

Project C0 C1 C2 C3 IRR NPV @  10% NPV @ 12% 
–A 1000 –200 –200 –1200 20% $–248.69 $–192.15 

 
If the discount rate were, say, 10% or 15% then the project –A has a greater IRR of 20% but a 
negative NPV at those discount rates.  In order for i < IRR to imply 0 < NPV, it is sufficient to 
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assume that NPV declines as the discount rate increases, i.e., that the NPV curve slopes downward 
from left to right.  Thus we have the rule: 

If the NPV of a project declines as the discount rate i increases then 
i < IRR implies 0 < NPV. 

 
Pitfall 2 in Using IRR's: "Choose the Project 
with the Highest IRR" 
 
When considering the choice of projects one must be explicit about the interrelationships between 
the projects.  Is it a situation where one can choose several projects out of a set of projects (i.e., 
choose all projects with positive NPV) or is one restricted to choosing only one project out of the 
set (i.e., choose the project with highest NPV).  The alleged rule "Choose the project with the 
highest IRR" is usually applied in the situation where one can only choose one project out of the 
set of alternatives (e.g., build only one building on a site). 
 
It is easy to see the fallacy if the projects are of quite different scale.  Suppose one project turns 
$100 into $200 in one year for an IRR of 100% while another project turns $1000 into $1500 in a 
year for an IRR of only 50%.  If one must choose one project or the other (and cannot repeat the 
first project ten times), then clearly the second project is more profitable (assuming a discount rate 
less than 50%) even though it has the lower IRR. 
 
To be taken seriously, the "Highest IRR" rule should be amended to read: "Among projects with 
the same required investment capital, choose the project with the highest IRR."  This amended rule 
is also wrong as can be seen by comparing projects A and B in the previous table.  Both have the 
same invested capital of $1000 and project B has the higher IRR (23.38% versus 20%).  But at the 
discount rate of 10% (or lower rates), project A has the higher NPV so it is the best project at 
certain discount rates. 
 
Perhaps the "Highest IRR" rule seems attractive because many practitioners incorrectly extrapolate 
the rule from the case of one-year projects (only one cash payout) to multi-year projects.  The 
Highest IRR rule works for projects with the same initial capital investment and only one cash 
payout at the end of the period.  Then it is, of course, true that the project with the highest cash 
payout is the best project (although both projects might have negative NPV at high discount rates).   
 
If there is a multi-year payout, then projects begin to differ in more subtle ways.  Some projects 
pay out early while others pay out later but in greater amounts.  To know which is best, one must 
know how heavily to discount the future payouts--which means one must use the discount rate to 
compute the NPV.  Thus it is easy to see that the multi-year highest IRR rule could not possibly 
be valid since it makes no mention of the discount rate.   
 
One can only ignore the discount rate when all the cash payouts from one project exceed the 
payouts at the same times from the other equal-investment project (which is why one could use 
the highest IRR rule for one-period projects). 
 
Pitfall 3 in Using IRR's: Multiple IRR's 
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It is unfortunately possible for a project to have two or more IRR's.  However, this can only happen 
if the cashflows changes signs more than once (e.g., go from negative to positive and then back to 
negative).  Then the NPV curve could cross the horizontal axis twice giving two IRR's. 
 

Project C0 C1 C2 C3 IRR1 IRR2 NPV @ 30% 
D –1000 1450 1500 –2200 28.52% 39.34% $1.59 

 
Project D starts out with an investment of $1000, has two positive cash payouts, and then has a 
large negative closing cost of $2200 (e.g., cleaning up the environment after a project is finished).   
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The project has two IRR's at about 28.52% and 39.34%.  In between, the project has a small 
positive NPV. 
 
It might be noted that a project might have no IRR instead of multiple IRR's.  For instance, if we 
lower the payout C2 in project D from 1500 to 1450, then the NPV curve shifts down enough that 
it does not cross the horizontal axis at all so it has no IRR. 
 
 
Criterion for Pair-wise Choice Between 
Projects 
 
We have placed most of the emphasis on the fallacies and pitfalls in using IRRs.  When can IRR's 
be used to make choices between investment projects?  Under certain assumptions, the IRR 
concept can be used to make a choice between two mutually exclusive projects.  We will assume 
that for both projects, the NPV's decline as the discount rate increases. 
 
Suppose we are given a choice between two projects such as projects A and B previously 
considered.   
 

Project C0 C1 C2 C3 IRR NPV @  10% NPV @ 12% 
A –1000 200 200 1200 20% $248.69 $192.15 
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B –1000 500 500 500 23.38% $243.43 $200.92 
A–B 0 –300 –300 700 10.73% $5.26 $–8.77 

 
We have already noted that the decision will depend on the discount rates.  At 10%, A is the best 
project--while at 12%, B is the best project.  What is the cutoff interest rate at which one project 
is replaced by the other as the best project?  The cutoff interest rate is found by considering the 
IRR of the "difference project" A–B.  The IRR of A–B is about 10.73% which means that for 
interest rates below that (such as 10%), project A is best, while for interest above that rate (such 
as 12%), project B is best. 
 
One might ask, why choose A–B as the difference project?  Why not B–A?  The answer is that the 
difference project should also satisfy our rule that the NPV declines as the discount rate increases.  
A–B satisfies the rule while B–A does not.  This can be seen from the pattern of the signs in the 
cashflows.  If the cashflows go from negative to positive as time increases, and do not reverse later 
on, then the NPV curve will slope downward.  Since the difference project A–B has that property, 
we say the "A is later than B" in the sense that A's payouts are unambiguously later than the payouts 
from B. 
 

NPV 

i 
A 
B 

20% 

23.38%

10.73%

AB 

 
 
Since A is later than B, it can be intuitively understood why A is better before--and B after, the 
cutoff point of 10.73%.  As the discount rate increases above 10.73%, both projects lose NPV but 
A loses NPV faster since its payouts are later and will thus be hit harder by the higher discount 
rate.  The reverse happens as the discount rate decreases below the cutoff point. 
 
It is also possible to understand the pair-wise choice rule in terms of our previous result that a 
project (with downward sloping NPV) is profitable if its IRR exceeds the discount rate.  The 
difference project A–B can be thought of as the project of converting from B to A.  If the discount 
rate is below the cutoff point of 10.73%, which is the IRR of the difference project (with downward 
sloping NPV), then it is profitable to convert from B to A, i.e., A is better than B.  If the discount 
rate exceeds the cutoff point, then it is unprofitable to convert from B to A, i.e., B is better than A. 
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Appendix 1: Proof of the General Linear Recurrence Formula 
 
Consider the general linear recurrence relation defined by 

y0 = c  and yk = myk-1 + b for some constants m, b, and c. 

The general solution has the form 
bmbbmcmy 1nn

n ++++= −   

which can be expressed by the formula 
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Taking the kth year's income as yk for k = 1,...,n, the present value of the income stream is 
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A formula for this summation will be derived for each of the four cases where m equals or does 
not equal 1 and 1+i. 
 
Case 1: m ≠ 1, 1+i 
 
Expanding the summation yields: 
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Since m ≠ 1+i, the summation in the last term can be simplified. 
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Case 1 Formula 
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Case 2: m = 1+i ≠ 1 
 
In this case we can easily evaluate the summation 
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and m-1 = i, so the last step of the Case 1 derivation can be easily modified to yield the desired 
formula. 
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Case 2 Formula 
 
There is some other useful information that can be extracted in this case and that will be useful 
later.  Since m = 1+i, we have that yk = (1+i)kc + s(k,i)b = (1+i)kc + skb so the value Vn can be 
expressed as follows: 
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From the case 2 formula we can thus derive the following: 
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There is an interesting direct and intuitive proof of this formula using the perpetuity capitalization 
formula.  If there is the constant amount n-a(n,i) at the end of each year in perpetuity, then the 
present value is the right-hand side term: [n-a(n,i)]/i.   
 
The picture below illustrates this proof for the case of n = 4.  There is an array of four 1's at t = 1, 
2, ... in perpetuity.  Consider the column of four 1's at t = 1 and the top box of four 1's that begins 
at t = 2.  The value of that box of 1's at t = 1 is a4 = a(4,i) and the value of the four 1's in the column 
at t = 1 is, of course, 4.  Thus the value of those 1's minus the box is 4-a4 at t = 1.  Then consider 
the next column of four 1's at t =2 and the second box of 1's that begins in the second row at t = 3.  
The value of those 1's minus that box at t = 2 is again 4-a4. 
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We continue in a similar way with the process cycling at t = 5.  The four 1's in the column at t = 5 
are coupled with the second box in the top row starting at t = 6.  The value of those 1's minus that 
box is 4-a4 at t = 5.  Since this pattern repeats itself forever, the present value is [4 - a4]/i.  But all 
the 1's in boxes occurred both positively (in their column) and negatively (in their box) so they 
cancel out.  Thus only the 1's not in any box contribute to the total value, and their present value 
is clearly a1+a2+a3+a4.  Thus we have shown that 
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Although illustrated for the n = 4 case, the pattern of the proof clearly works for any n. 
 
 
Case 3: m = 1, m ≠ 1+i 
 
In this case, yk = c + nb so the summation for Vn yields: 
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In the summation of the terms k/(1+i)k each such term is the present value of a 1 in a column of 
the following triangular array (n rows and n columns). 
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Summing the present values by rows, we have 
 

t = 1 2 3 4 5 6 7 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 

... 
... 

... 

... 
... 
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Adding and subtracting n/i allows us to simplify the sum to 
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There is another way to arrive at this result.  Suppose we complete the triangular array used above 
by continuing 1's down each column to form an n × n array and then add one more row of 1's at 
the bottom to form an (n+1) × n array.   

    

t = 1 2 n 

1 1 1 

1 1 

1 

1 1 1 

1 

1 1 1 

Added   
1's 

...

...

...
.
..

.
..

.
...

..
...  

 
There are then n+1 rows each with the present value an.  But we must subtract the added 1's which 
have the present value a1+a2+...+an = [n-an]/i.  Thus the original triangular array has the value of 
the difference: 
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Substituting back into the formula for Vn and rearranging finishes case 3. 
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Case 3 Formula 
 

 
Case 4: m = 1 = 1+i 
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Since m = 1 and i = 0, the original summation can be quickly simplified. 
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The summation 1+2+...+n is easily evaluated by adding it to itself written backwards: 
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so the original sum is one-half that amount.  Hence we arrive at the formula for the last case. 
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Case 4 Formula 
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Appendix 2: Proof of the Main Theorem on Amortization Tables 
 
 
To prove the result,  
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where Ik = Pk + i(Pk+...+Pn) =  (1+i)Pk + i(Pk+1+...+Pn) we need to evaluate the sum 
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To rearrange the sum, we consider the following table of the terms to be discounted at t=1,2,...,n.  
Each row gives the income for that time period, the sum of the table entries across the row times 
the Pj's at the head of the columns.   
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We can now easily rewrite the sum as the discounted present value of the entries in the columns 
to obtain: 
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which completes the proof of the Main Theorem on Amortization Tables. 
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