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ABSTRACT 

The paper mathematically develops the heuristic idea that the first-order necessary 
conditions for a classical constrained optimization problem are equivalent to a market 
being arbitrage-free - with the Lagrange multipliers being the arbitrage-free market prices. 
The arbitrage notions start with the multiplicative Kirchhoffs Voltage Law and then 
generalize to matrix algebra. The basic result shows the normalized arbitrage-free <<market 
prices)) (the Lagrange multipliers) resulting from a classical constrained optimizaton 
problem can always be obtained as a ratio of cofactors. The machinery also gives an 
economic interpretation of Cramer’s Rule as a competitive equilibrium condition. 

I .  INTRODUCTION: FINDING MARKETS IN THE MATH 

The purpose of this paper is to provide some of the mathematics 
behind the old intuitive idea that the first-order necessary conditions 
for a constrained classical optimization problem (equality constraints) 
are, in some sense, equivalent to a market being arbitrage-free - with 
the Lagrange multipliers corresponding to the arbitrage-free market 
prices. 

The basic mathematical result shows that the normalized arbitrage-free 
((market prices)), i.e., the Lagrange multipliers, can always be obtained 
as the ratio of cofactors drawn from the matrix of first partial derivatives 
of the constraint and of the objective function. An amusing by-product is 
an economic interpretation of Cramer’s Rule as a competitive equilib- 
rium condition. 

The traditional notion of market equilibrium as the equating of 
supply and demand is replaced with the notion of equilibrium as freedom 
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from profitable arbitrage (e.g., as in input-output theory). The mathe- 
matics is initially developed in a graph-theoretic framework where the 
arbitrage-free condition is the multiplicative version of Kirchhofk Vol- 
tage Law. Then the arbitrage notions are generalized to matrix algebra 
using incidence matrices as the bridge. Thus we ((find markets in the 
math)) of matrix algebra and develop an economic interpretation of 
cofactors, determinants, inverse matrices, and Cramer's Rule. 

Arbitrage-related concepts have been applied successfully in financial 
economics. Merton H. Miller and Franco Modigliani used impressive 
arbitrage arguments in proving their famous irrelevance theorem (1 958). 
Stephen A. Ross (Ross, 1975a, 1976b) and his colleagues have developed 
Arbitrage Pricing Theory so that it is now recognized as a fundamental 
principle in finance theory (Varian, 1987). Our purpose here is not to 
use arbitrage concepts to study financial markets but to ccfind the 
markets in the math)) of all classical constrained optimization problems. 

2. ARBITRAGE IN GRAPH THEORY 

A directed graph G = (Go, G , ,  t ,  h) is given by a set Go of nodes 
(numbered 0, 1, ..., m), a set G ,  of arcs (numbered 1, 2, ..., h),  and 
head and tail functions h, t : G ,  + Go which indicate that arc j is directed 
from its tail, the r ( j )  node, to its head, the h ( j )  node. 

It is assumed that there are no loops at  a node, i.e., h ( j )  # t ( j )  for 
all arcs j .  A path from node i to node i' is given by a sequence of 
arcs connected at their heads or tails that reach from node i to node 
i'. A graph is connected if there is a path between any two nodes. It 
is assumed that the graph G is connected. A closed circular path where 
no arc occurs more than once is a cycle [for more graph theory, see 
any text such as Berge and Ghouila-Houri, 19651. 

Let T be any group (not necessarily commutative) written multipli- 
catively (i.e., a set with a binary product operation defined on it, with 
an identity element 1 and with every element having a multiplicative 
inverse or reciprocal). For most of our purposes, T can be taken as 
R*, the multiplicative group of non-zero reals. In the motivating 
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economic interpretation, a different commodity is associated with each 
node, and the arcs represent channels of exchange or transformation 
between the commodities at the nodes. A function r : G 1 +  T is a rate 
system giving exchange or transformation rates. Given an arc j ,  one 
unit of the t ( j )  commodity can be transformed into r j  = r j  units of 
the h ( j )  commodity. 

Rate rj 

Arc j 

Trunsformuiion Rure ri on Arc i 

A graph ( G ,  r )  with a rate system r represents a market so it will be 
called a market graph. These group-labelled graphs are also called 
((voltage graphs)) (Gross, 1974) or ((group graphs)) (Harary et al., 1982). 

All transformations are reversible. If arc j is traversed against the 
arrow, the transformation rate is the reciprocal l / r j .  Given a path 
c from node i to i', the composite rate r [ c ]  is the product of the rates 
along the path using the reciprocal rate for any arc traversed against 
the direction of the arrow. A function P :  Go+ T labelling the nodes 
is a price system (or absolute price system). A rate system Q (P) : G ,  -+ T 
can be derived from a price system by taking the price ratios 

Derived rate systems have certain special properties: 
I )  for any path c from i to i', Q ( P ) [ c ]  = P(i ' ) - 'P( i ) ,  
2) for any two paths c and c' from i to i', Q (P) [c] = Q (P) [c'], and 
3) for any cycle c, Q ( P ) [ c ]  = 1.  

Given a market graph (G, r),  the rate system r is said to be path- 
independent if for any two paths c and c' between the same nodes, 
r [ c ]  = r [c']. The rate system is said to be arhitrage,free if for any 
cycle c, r [c] = 1 (((arbitrage-free)) = ((balanced)) in much of the 
graph-theoretic literature following Harray, 1953). 

In an idealized international currency exchange market with no 
transaction costs, if the product of the exchange rates around a circle 
is greater than one, profitable arbitrage is possible. If the product is 
less than one, then exchange around the circle in the opposite direction 



262 David P.  Ellerman 

would be profitable arbitrage. Hence the market is arbitrage-free if the 
product of exchange rates around the circle is one. 

A rate system derived from a price system has both the properties 
of being path-independent and arbitrage-free, and, in fact, the three 
properties are equivalent. That equivalence theorem is the finite multi- 
plicative version of the calculus theorem about the equivalence of the 
conditions: 

1) a vector field is the gradient of a potential function, 
2) a line integral of the vector field between two points is path- 

3) a line integral of the vector field around any closed path is zero. 
independent, and 

Cournot-Kirchhoff Arbitrage Theorem: Let (G, r )  be a market graph with 
r :  G, -+ T taking values in any group T. The following conditions are 
equivalent: 

1) there exists a price system P such that Q ( P )  = r, 
2) the rate system r is path-independent, and 
3) the rate system r is arbitrage-free. 

For a proof of this straightforward non-commutative generalization 
of Kirchhoffs Voltage Law (1847) and Cournot’s earlier (1838) arbi- 
trage- free condition (see 1897), see Ellerman (1984). 

r -  p = 12 

The value group T will now be specialized to R*, the multiplicative 
group of non-zero real numbers. But price system P will now be extended 
by allowing zero values in the reals R, i.e., 

P : Go-+ R. 
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An extended price system P and a rate system r are associated if for 
any arc j ,  

P ( h ( j ) ) r j  - P ( t ( j ) )  = 0. 

If the price system has all non-zero values, this is the same as the rate 
system being derived from the price system. 

The zero price system (all zero prices) is trivially associated with any 
rate system. If a rate system is not arbitrage-free, then the zero price 
system is the only associated price system. With that fixed rate system, 
profitable arbitrage means ((getting something for nothing)), so all 
commodities become free goods and have zero prices. 

It is useful to reformulate some of the graph-theoretic notions using 
incidence matrices. Given (C, r), the node-arc incidence matrix S = [Sij ]  
is the ( m  + I )  x h matrix where: 

Arc j + r j  if-( Node i )  

Arc j 
- 1 if-(Node i )  

(-0 Otherwise. 

The j t h  column of S has a - 1 and an r j  which are the results of 
transforming one unit of the t ( j )  good into r j  units of the h ( j )  good. 
Any linear combination of the columns would represent a possible 
market exchange vector using the rate system r.  The negative components 
represent the goods given up in exchange for the goods represented by 
the positive components. Thus the vector space of all linear combinations 
of columns of S, the column space Col(S), will be called the exchange 
space of the market graph (C, r ) .  

Let So, called the reduced incidence matrix, be the m x h matrix 
obtained from S by deleting the top row, the row corresponding to 
node 0. If G is a connected graph (a path between any two nodes), 
then the reduced incidence matrix So has linearly independent rows, 
i.e., So has full row rank. For let P* = ( P I ,  ..., P,) be a row vector 
such that P*So = 0. Some node i was connected to the ((deleted)) node 
0 by some arc j .  In order for P* to zero the j t h  column of So, Pi  
must be zero. If arc j is from node i to i' both in the node set i, ..., 
m ) ,  then P*So = 0 implies Pi.rj - Pi = 0 so Pi .  and Pi are both zero 

{ 
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or both non-zero. Thus each node connected to node i must have 
a zero price. Since G is connected, all prices must be zero, i.e., P* = 0, 
so the rows of So are linearly independent. 

Adding back the top row, the row rank of S is either m or m + I ,  
so the column rank, i.e., the dimension of Col(S), is also either m or 
m + I .  A subspace of R m f l  of dimension m (one less than the dimension 
of the full space) is a hyperplane through the origin. Thus the exchange 
space is either a hyperplane in Rm+' or is the full space. 

The left nullspace LeftNull(S) of any matrix S is the space of vectors 
P such that P S  = 0. If S is the incidence matrix of a market graph 
(G, r )  and P = (Po, P,, ..., P,) is in LeftNull(S), i.e., P S  = 0, then 
for all arcs j 

so P is a price system associated with the rate system r .  Hence 
LeftNull ( S )  is called the price space associated with the exchange space 
Col(S) and the elements P are called price vectors. The exchange space 
Col ( S )  and the price space LeftNull ( S )  are orthogonaf complements of 
one another, i.e., 

a)  X is an exchange if and only if for any price vector P, PX = 0, 
and 

h) P is a price vector if and only if for any exchange X ,  PX = 0. 
Since they are orthogonal complements, dim [Col (S)] + dim [Left- 

Null(S)] = m + 1. Since the exchange space is of dimension m or m + I 
(G is assumed connected), the dimension of the price space is either 
one or zero. A price vector with any non-zero components must have 
all non-zero components. Any two non-zero price vectors must be scalar 
multiples on one another. The two cases of a one or zero dimensional ~ 

price space correspond to the cases of (G, r )  being arbitrage-free or 
allowing profitable arbitrage. If profitable arbitrage is possible, then the 
fixed non-zero exchange rates r would allow one to generate any 
quantities of the goods so all commodities are free goods, i.e., P = 0 
is the only price vector. These results and some easy consequences are 
collected together in the following theorem. 

Arbitrage Theorem for Market Graphs: Let (C, r )  be a market graph 
where G is connected and r : G 1 + R * .  The following conditions are 
equivalent: 

I )  there exists a price system P: Go+ R* such that Q ( P )  = r, 
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2) the rate system r is path-independent, 
3) the rate system r is arbitrage-free, 
4) the price space LeftNull ( S )  is one-dimensional, 
5) the exchange space Col(S) is a hyperplane (with a non-zero 

price vector as a normal vector), 
6 )  the top row of S, so, can be expressed as a linear combination 

of the bottom m rows So of S, i.e., there exist p = (pl, ..., p2) such 
that so + pSo = 0,  and 

7) if an exchange vector h = Sx has h ,  = ... = h, = 0, then h, = 0. 
The incidence matrix treatment of market graphs suggests a gener- 

alization of the economic interpretation to a more general matrix context. 
The rows represent commodities. The columns specify exchange or 
production possibilities. Negative entries represent goods given up in 
exchange or inputs to production, while positive components stand for 
goods received or the outputs. Any scalar multiple, positive or negative, 
of a column also represents a possible exchange or transformation so 
the column space is the space of possible exchanges or transformations. 
The orthogonally complementary left nullspace is the set of price vectors 
such that all the exchanges can be obtained as trades at those prices 
[for more linear algebra, see any text such as Strang, 19801. 

3. AN ECONOMIC INTERPRETATION OF COFACTORS, DETERMINANTS, 
A N D  CRAMER’S RULE 

Let A be a square (m + I )  x (m + 1)  matrix of reals, and let A(k) 
be the (m + I )  x m matrix obtained by deleting column k for k = 0, 
I ,  ..., m. The column space Col ( A  (k ) )  is the space of exchanges spanned 
by the remaining m columns. Let 

be the cofactors of the deleted column k.  By the property of ((expansion 
by alien cofactors)), P ( k ) A ( k )  = 0 so P ( k )  is a ((price vector)) in 
LeftNull(A(k)). The cofactors in P ( k )  will be called the k-prices. The 
cofactors of any column of A are prices so that the exchanges defined 
by the remaining columns can be obtained at those market prices. 

Now introduce the exchange (or productive) possibilities given by 
the deleted column k into the market. Its value at the reigning prices 
P ( k )  is the determinant 1 A 1 obtained by the cofactor expansion of 
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column k. If IA I # 0 then any vector b can be obtained as an exchange 
vector Ax = b. As in a market which allows profitable arbitrage at  
fixed exchange rates, any exchange is allowed and the only price vector 
is the zero vector. 

It is therefore desirable to temporarily alter the interpretation of the 
columns of A .  Previously the columns represented exchange or produc- 
tion possibilities with all commodities involved as inputs or outputs 
listed as components. We now interpret each column as representing 
the (reversible!) input-output vector of a machine operating at unit level. 
But the machine's services are not represented in the input-output vector 
so the value of the vector can now be interpreted as the competitive 
rent imputed to a unit of the machine services. 

The vector of cofactor k-prices P(k) = (Po(k) ,  P I  (k), ..., P,(k)) can 
now be interpreted as a set of commodity prices which impute zero 
rents to all the other m machines (excluding the kth machine). The 
determinant I A I is the competitive rent (or subsidy, if negative) imputed 
to the unit services of machine k at those k-prices. Dividing by the 
determinants-as-rent, the normalized k-prices 

are the k-prices expressed in terms of the units of machine k services 
as numeraire. At the normalized k-prices P*(k), all machines have zero 
imputed rent-save machine k which has an imputed rent of unity. This 
yields an economic interpretation of the inverse matrix A - '  as the 
normalized price matrix 

p* = 

obtained as the column of row vectors P*(k) for k = 0, 1, ..., m. 
Suppose the machines are operated at  the level x = (xo,  xl, ..., x,) T 

so the net product vector is A x  = b. In competitive equilibrium, the 
competitive rents due on the machines must equal the value of the net 
product vector leaving no pure profits for arbitrageurs. Given a com- 
modity price vector P = ( P o ,  PI,  ..., P,), the unit machine rents 
R = (Ro,  R , ,  ..., R,) must be such that the total rent Rx equals the 
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value Ph of any net product b = Ax, i.e., 

Rx = Pb = PAX for any x .  

Thus competitive equilibrium requires the competitive rents R = P A  in 
terms of P. 

Now consider the specific price vector P*(k). The competitive rents 
R = P * ( k ) A  impute a rent only to machine k ,  and that rent is unity. 
Hence the total rent Rx = xk = P*(k)Ax  = P*(k)b  is the level of 
operation xk of machine k so we have derived 

~~ ~ ~ 

Cramer’s Rule as a Competitive Equilibrium Condition 
Competitive Machine Rent = xk = P*(k) b = Value of Net Product. 

4. ARBITRAGE-FREE MARKET MATRICES 

We now return to the ((full-disclosure)) interpretation of the columns 
of A. All commodities and services involved in the exchange or 
productive transformation are exposed as components of the column 
vectors. 

When is a matrix like a market? One answer is when it is like the 
node-arc incidence matrix of a market graph. Let A be a rectangular 
(m + I )  x n matrix with m + 1 5 n. Any matrix or its transpose has 
that form. Such a matrix A is a market matrix if rank(A) 2 m. A market 
matrix has a rank of m or m + 1. A market matrix A is said to be 
arbitrage-free if rank ( A )  = m. The node-arc incidence matrix of a con- 
nected market graph is a market matrix. The market graph is arbitra- 
ge-free (as a graph) if and only if its incidence matrix is arbitrage-free 
(as a matrix). 

A market matrix has m linearly rows which, for notational conveni- 
ence, we may take to be the bottom m rows numbered i = I ,  ..., m (the 
top row is row 0). Every set of m columns from the (m + 1) x n matrix 
A determine a ( m  + I )  x m submatrix A* (taking the columns in the 
same order as in A).  As a visual aid, we can consider a ( m  f 1) x 1 
((dummy)) column vector [?, ?, ..., ?IT  appended to the left of A* to 
form a m + 1 square matrix. The cofactors Po, P I ,  ..., P,,, of the dummy 
column are the local cofactor prices determined by the m columns of 
A *. The binomial coefficient 

C(n,  m )  = n!/(m! (n - m)!) 
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gives the number of ways of choosing m columns from among n col- 
umns, so there are C(n ,  m) vectors of local cofactor prices (not 
necessarily all distinct). 

At least one vector of local cofactor prices is non-zero since 
rank(A) 5 m. The rows have been arranged so the bottom in rows are 
linearly independent. Let A* be a submatrix of m linearly independent 
columns so it has a vector of local cofactor prices P* = (PX, PT, ..., 
P:) such that Pg # 0. These cofactor prices may be normalized by 
taking commodity 0 as the numeraire to obtain the relative prices: 

To complete the development of a ((market)) in the market matrix 
A ,  we need to define transformation rates between commodities. The 
important rates are the transformation rates ri of good i into good 
0 for i = I ,  ..., m which can be defined using any in linearly independent 
columns A * .  The rn activities are to be run at levels so that exactly 
one unit of good i is used-up and zero units of good j are produced 
or used-up for j # i, 0. Then the number of units of good 0 produced 
gives the transformation rate ri so that the 1 unit of good i used-up 
is transformed into ri units of good 0. 

In matrix notation, let A,* be the bottom in rows of a (in + 1) x m 
matrix A* of m linearly independent columns of A so that 

I A , * l =  P$ # O .  

Let a$ be the top row of A* .  The activity vector x which uses-up 
exactly one unit of good i is the x such that 

A $ x  = (0,  ...) 0,  - I ,  0,  ..., O ) T  = - ri 

where Zi is the ith column of the in x m identity matrix I so x = 

= (A,*)- '  Ii. Let 

so the vector r = ( r I ,  ..., r,) of the transformation rates defined by A* is 

r = - a , * ( A g ) - l .  
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Cofactor Price Theorem: Given any (rn + 1) x m submatrix A* of linearly 
independent columns, the transformation rates r determined by A* are 
equal to the normalized cofactor prices: 

Proof: For notational simplicity, we take the m columns of A* to be 
the first m columns of A .  The transformation rates r solve the linear 
equations: 

... a,, 

... a,, 

( r l ,  .... r n ) [ i l  . . . . . .  - 

- 

The local cofactor prices determined by A* are the cofactors of the 
dummy column in the matrix: 

Using the row form of Cramer’s Rule to solve for rl  yields: 

To compute ri, the right-hand side constants -a,* are substituted for 
the ith row of AX (in the numerator of the row form of Cramer’s 
Rule). Then i - 1 row swaps are required to bring the - a :  row up 
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to the top. Factoring out the - 1 leaves a (- 1)' sign on the minor 

a01 4 . .  @om 

a11 ... Q 1 m  

... ... ... 
... a i P l m  

ai+ll  * * *  ai+lm 

... ... ... 
a m 1  ... amm 

but PT is (- l ) ( '+l)+l  - -( - 1)' times the same minor so ii = P,*/Pz. I 
The next theorem states a number of conditions equivalent to the 

market matrix A being arbirtrage-free. An arbitrage-free market has 
unique relative prices so the C(n,  m) local cofactor prices must mesh 
or fit together in the sense of being scalar multiples of the non-zero 
price vector P* which was normalized to (1, pl, ..., pm). The space 
spanned by the C(n,  m) cofactor price vectors is the one-dimensional 
space LeftNull (A) .  In the application to classical optimization, the pf's 
are the Lagrange multipliers of m constraints, which are thus interpreted 
as the unique prices of m resources in terms of the maximand as 
numeraire. 

Arbitrage Theorem for Market Matrices: Let A be any (m + 1) x n 
market matrix where we assume the rows 1 through m are linearly 
independent. Let a,  be the top row, and let A ,  be the bottom m rows 
of A .  The following conditions are equivalent: 

1 )  A is arbitrage-free, 
2 )  the price space LefNull ( A )  is one-dimensional, 
3) the exchange space Col(A) is a hyperplane (with a cofactor 

4) there exists p = (pl, ..., p,) such that a, + p A ,  = 0, 
5) if an exchange vector b = A x  has b,  = ... = b, = 0, then 6 ,  = 0, 

price vector as a normal vector), 

and 

Proof: 
I )  o 2 )  e 3) is straightforward since 

dim (LeftNull ( A ) )  + dim (Col ( A ) )  = m + 1. 

As noted in the paragraphs preceding the theorem, there is a 
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(m + 1) x m submatrix A* and a row of cofactors price P* =(P:, PT, ..., Pz) 
such that P*A* = 0 with Po* # 0. When A is arbitrage-free7 the rows 
of A are linearly dependent so there is a price vector P' = (Pb, P i ,  ..., 
P'J such that P ' A  = 0 and thus P'A* = 0. But the cofactors P* and 
the vector P' can differ only by a scalar multiple, else 

[P' - (Pb/PZ) P*] A* = 0 

implying the bottom m rows of A* are linearly dependent. Hence the 
cofactors P* also form a price vector in LeftNull(A) which is normal 
to the hyperplane Col (A). 
l), ... 3 ) 0 4 ) .  Use pi = PI/PX for i = 1, ..., m. 
l), ..., 3) o 5). The dimensions of the orthogonal complements Row ( A )  
and RightNull(A) sum to n, and similarly for Row(A,) and Right- 
Null (A,). Then 
1) o Rank ( A )  = Rank (A,) 

o d i m  (Row ( A ) )  = dim (Row (A)) 
o dim (RightNull ( A ) )  = dim (RightNull (A,)) 
o RightNull (A) = RightNull (A,) [RightNull ( A )  is a subspace of Ri- 
ghtNull (A,)] 
- 5 ) .  I 

5. FIRST-ORDER NECESSARY CONDITIONS 
AS ARBITRAGE-FREE CONDITIONS 

The intuitive arbitrage reasoning as well as the formal results for 
arbitrage-free market matrices can be applied to yield the first-order 
necessary conditions for regular constrained optimization problems with 
equality constraints. 

Consider the one-constraint problem: 

Maximize y =f(x,, ..., x,) 
Subject to: g(x,, ..., x,,) = b 

where all functions are continuously twice differentiable. There are two 
commodities, the resource b and the maximand y .  There are n ccinstru- 
merits)) with the levels of operation xl, ..., x,. At the levels xl, ..., x,, 
the amount of the resource used-up is g(x,, ..., x,,), and f ( x , ,  ..., x,) 
is the amount of the maximand produced. 
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Let xo = (xy,  ..., x:) be levels of the instruments which use-up all 
of the available resource, i.e., g ( x y ,  ..., x:) = b. Moreover, we assume 
that xo  is ((regular)) in the sense that not all the partials dg(xo)/dxi = gi 
are zero. We consider an intuitive ((marginal market)) defined by the 
possible marginal transformations of b into y .  In an international 
currency market (without transaction costs), there might be n banks or 
exchange houses which to prevent arbitrage would have to offer the 
same rate of exchange between any two currencies. In our market, the 
n instrument variables offer 
the maximand y .  A marginal 
produces fiAxi units of y so 

A 

n ways to transform the resource b into 
variation Axi uses-up giAxi units of b and 
the rate of transformation is 

n 

The market is arbitrage-free if and only if the n transformation rates 
fi/gi provided by the n instruments are equal: 

f n  

gi g2 gn 
- - - - - - - - P  ... - f i  f 2  - -  

where the common rate of transformation is the Lagrange multiplier p. 

Arbitrage diagram for  the marginal market 

Thus the first-order necessary conditions for xo to be a constrained 
maximum are equivalnet to the intuitive market being arbitrage-free. 
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To use the machinery of market matrices, let 

where - g i  is used instead of + g,  since g ( x , ,  ..., x,) represents the 
amount of the resource used-up. Consider any column of this market 
matrix coupled with the dummy column to form a square matrix: 

The cofactors of the dummy column are the local prices P, = - gi  and 
Pa = -fi so (assuming gi  # 0) the price of b in terms of the numeraire 
y is the transformation rate 

defined by the marginal variations in the instrument xi .  Since m = 1, 
there are C(n,  1) = n sets of cofactor prices. The market matrix is 
arbitrage-free if and only if the n cofactor price vectors define the same 
price of b in terms of y .  

Consider a problem with m = 2 constraints: 

Maximize y = f ( x , ,  ..., x,) 

Subject to: g ' ( x , ,  ..., x,) = b,  
g 2  ( X I ,  ... 7 x,) = b2 

where n > m = 2. Let G be the matrix of partials of the constraints 
evaluated at xo: 

The candidate point xo  is assumed to be regular in the sense that G is 
of full row rank. 
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There are three commodities in the intuitive market for the problem: 
the maximand y and the two resources b, and b,. To define a trans- 
formation rate from b, into y, one cannot just vary one instrument x1 
because that may also vary b,. One must consider variations in (m) 
two variables xi and x j  which leave b, constant and yield variations 
- db, and dy to define a transformation rate rl = dy/db, from b, into 
y. Similarly the rate for transforming b, into y can be defined. Using 
the cofactor price theorem, these rates can be obtained as ratios of 
local cofactor prices. 

Since G is of full row rank, there are m = 2 instruments xi and xj 
such that 

is non-singular. Given the matrix (with the unknown dummy column) 

the cofactors of the dummy column yield the prices: 

P ,  = g; g2 - g; g? 
1 

p b ,  = f i g :  --fjgf. 

p b ,  = h g ;  --fig: 

where P, # 0 by the choice of i and j .  By the cofactor price theorem, 
the cofactor price ratios yield the transformation rates from the resources 
into the maximand. For instance, if xi and xj are varied to hold 4, 
constant, the relative cofactor price of 6, in terms of y ,  Pbl/P,  = p l ,  
gives the rate of transformation of b, into y defined by the variation 
in xi and xj. 

For the intuitive market to be arbitrage-free, all the local cofactor 
prices (P; ,  Pb,, Pb2) defined by any set of m = 2 instruments must be 
scalar multiples of the non-zero price vector (P,, Pb, ,  PbJ .  In formal 
terms, the market matrix defined by the problem is 
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The first order necessary conditions for the candidate point to be 
a constrained maximum are then expressed by the market matrix A being 
arbitrage-free and by the other equivalent conditions given in the 
Arbitrage Theorem for Market Matrices. 

All these results for m = 2 extend to the general problem with 
rn constraints and n variables (n > m): 

Maximize y = f ( x , ,  ..., x,) 
Subject to: g ' (x , ,  ..., x,) = b,  

... 
grn(x l ,  ...) x,) = b,. 

The candidate point xo satisfies the constraints and is regular in the 
sense that the m x n matrix G = [&I is of full row rank. Thus there 
are m columns forming a non-singular submatrix G*. Iff* is the vector 
of the corresponding rn partials off ,  then consider the (rn + 1) x (m + 1) 
matrix: 

The cofactors of the dummy column form the local cofactor prices P,, 
Pb, ,  ..., Pbm determined by the m chosen instruments. The intuitive 
market is arbitrage-free if all the C(m, n)  vectors of local cofactor 
prices are scalar multiples of this non-zero vector. In formal terms, the 
first order necessary condition for the candidate point xo to be 
a constrained maximum is equivalent to the condition that the market 
matrix of the problem 

is arbitrage-free which, 
stated in the Arbitrage 
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