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Abstract

The development of the new logic of partitions (= equivalence relations) dual to the usual
Boolean logic of subsets, and its quantitative version as the new logical theory of informa-
tion provide the basic mathematical concepts to describe distinctions/indistinctions, de�nite-
ness/inde�niteness, and distinguishability/indistinguishability. They throw some new light on
the objective inde�niteness or literal interpretation of quantum mechanics (QM) advocated by
Abner Shimony. This paper shows how the mathematics of QM is the math of inde�niteness
and thus, literally and realistically interpreted, it describes an objectively inde�nite reality at
the quantum level. In particular, the mathematics of wave propagation is shown to also be the
math of the evolution of inde�nite states that does not change the degree of indistinctness be-
tween states. This corrects the historical wrong turn of seeing QM as �wave mechanics�rather
than the mechanics of particles with inde�nite/de�nite properties. For example, the so-called
�wave-particle duality�for particles is the juxtaposition of the evolution of a particle having an
inde�nite position (�wave-like" behavior) with a particle having a de�nite position (particle-like
behavior).
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1 Introduction

New developments in mathematical logic and the related logical information theory have helped to
further elucidate what Abner Shimony advocated as the objective inde�niteness or literal interpre-
tation of quantum mechanics (QM).

From these two basic ideas alone � inde�niteness and the superposition principle � it
should be clear already that quantum mechanics con�icts sharply with common sense. If
the quantum state of a system is a complete description of the system, then a quantity
that has an inde�nite value in that quantum state is objectively inde�nite; its value is not
merely unknown by the scientist who seeks to describe the system. Furthermore, since
the outcome of a measurement of an objectively inde�nite quantity is not determined
by the quantum state, and yet the quantum state is the complete bearer of information
about the system, the outcome is strictly a matter of objective chance �not just a matter
of chance in the sense of unpredictability by the scientist. Finally, the probability of each
possible outcome of the measurement is an objective probability. [27, p. 47]
These statements ... may collectively be called �the Literal Interpretation�of quantum

mechanics. This is the interpretation resulting from taking the formalism of quantum
mechanics literally, as giving a representation of physical properties themselves, rather
than of human knowledge of them, and by taking this representation to be complete. [28,
pp. 6-7]

The same theme has been continued by Shimony�s student and colleague, Gregg Jaeger.

The conceptual elements of quantum theory that now underlie our picture of the physical
world include objective chance, quantum interference, and the objective inde�niteness
of dynamical quantities. Quantum interference, which is directly observable, was read-
ily absorbed by the physics community. Objective chance and inde�niteness, being of
more philosophical signi�cance, gained acceptance only after much debate and concep-
tual analysis, when it was recognized that observed phenomena are better understood
through these notions than through older ones or hidden variables. [24, p. vii]

Since the elucidation of this interpretation of QM pivots on the notions of inde�niteness and indis-
tinguishability, it will be called the objective inde�niteness (OI) interpretation.

2 Partition logic and logical information theory

In the past, the most basic form of logic was the Boolean logic of subsets (usually called �propo-
sitional� logic), but from the mathematical point of view, it is only half of logic. The notion of a
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subset has a category-theoretic dual in the notion of a quotient set, equivalence relation, or partition
(three equivalent notions). With some anticipation in the work of Gian-Carlo Rota [21], the logic of
partitions was developed for arbitrary partitions on a set ([11]; [12])�so that, at the mathematical
level, partition logic is equally fundamental as the logic of the dual notion, the usual Boolean logic
of subsets.

A partition � = fB1; :::; Bmg on a set U = fu1; :::; ung is a set of non-empty subsets or blocks
Bj � U that are disjoint and whose union is U .1 A (real-valued) numerical attribute on U is a
function f : U ! R. It has certain numerical values, say fr1; :::; rmg, and its inverse-image is a
partition � =

�
f�1 (rj)

	
j=1;:::;m

on U with blocks Bj = f�1 (rj). Partitions are important for the
objective inde�niteness interpretation of QM because they explicate the notions of indistinction (or
inde�niteness or indistinguishability) and distinction at the logical level. Two elements u; u0 2 Bj =
f�1 (rj) are indistinct in terms of the attribute f or, equivalently, the partition �, and two elements
of U in di¤erent blocks are distinct in terms of f or �.

In view of the parallelism between subset logic and partition logic, each has a quantitative
version for �nite U . The normalized number of elements jSj

jU j of a subset S � U is the (Laplace-
Boole) probability of the event S [5]. A ordered pair (u; u0) of elements that are indistinct in � is
an indistinction or indit of �, and the set of indits of a partition is its indit-set indit (�)�which is
just the equivalence relation indit (�) � U �U associated with the partition �. Similarly an ordered
pair (u; u0) of elements in di¤erent blocks of � is a distinction or dit of �, and the set of dits of a
partition is its dit-set dit (�) = U � U � indit (�) which is called an apartness relation or partition
relation.

The partition logic analogue of the normalized number of elements jSjjU j is the normalized number

of dits jdit(�)j
jU�U j of a partition � which is the logical entropy of the partition � [10]. Thus the dual to

the logical (i.e., �nite discrete) probability theory that arises as the quantitative version of subset
logic is the logical theory of information that arises as the quantitative version of partition logic.2

Logical information theory is the foundational theory of information based on the intuitive idea
of information as distinctions, di¤erences, and distinguishability [14]. All the usual de�nitions of
simple, joint, conditional, and mutual Shannon entropy are obtained by a uniform (dit to bit)
transformation of the corresponding de�nitions for logical entropy. The intuitive idea is that instead
of counting the number of distinctions, the Shannon entropy counts the (average minimum) number
of letters in a binary code (bits) it takes to make the same distinctions (i.e., to uniquely encode the
distinct messages), so the Shannon theory is repositioned as the specialized theory about coding and
communications [25].

Our purpose is to show how these new developments in mathematical logic and information
theory elucidate the objective inde�niteness interpretation of QM. Classically, reality was thought
to be �de�nite all the way down.�But QM gives a di¤erent message�that reality is (objectively)
inde�nite at the quantum level. The problem is that we have little idea how to intuitively imagine such
a reality and hence the problem of building a realistic interpretation of QM that goes beyond the bare
mathematical formalism. Since the development of QM in the �rst quarter of the twentieth century,
interpretations have multiplied rather than converged which indicates the di¢ culty of the problem.
But if quantum reality is objectively inde�nite, then this new mathematics built on the notions of
distinction/indistinction, de�niteness/inde�niteness, and distinguishability/indistinguishability, will
provide some important tools to elucidate that reality.

1Partition logic works with arbitrary sets but, for expository purposes, we restrict ourselves here to �nite sets and
�nite dimensional Hilbert spaces.

2Both logical probability and logical entropy have obvious generalizations when the points of U have probabilties
assigned to them instead of being equiprobable.
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3 What is a superposition state?

3.1 The two classical notions of abstraction

The strategy of elucidation is to consider certain classical concepts, such as a set of elements S � U
which could be a subset S � B of a block in a partition, and then to show how its features are vastly
generalized in the the corresponding quantum concept, such as a superposition state.

To understand the classical version of a superposition state, we need to consider the abstraction
principle which is most clearly understood in mathematics. If � is an equivalence relation on U and
A (u) is �the abstraction from u�, then the abstraction principle turns equivalence into identity:

A (u) = A (u0) i¤ u � u0

for all u; u0 2 U . A well-known example of an abstraction principle is Frege�s �direction principle�
which Stewart Shapiro described as: for any lines l1 and l2 in some domain, the �direction of l1 is iden-
tical to the direction of l2 if and only if l1 is parallel to l2.�[26, p. 107] Abstraction turns equivalence
of being parallel into the identity of direction. But there are two di¤erent ways for this abstraction
principle to be satis�ed. The version often used by the proverbial �working mathematician�will be
called the #1 abstraction, namely, just the equivalence class, e.g., a block in the partition of a set of
lines in a plane where the equivalence is �l1 is parallel to l2�. If [l] is the parallelism equivalence class
of the line l, then the abstraction principle of turning equivalence into identity is clearly satis�ed:
l1 ' l2 i¤ [l1] = [l2] (where ' is the equivalence relation of being parallel).

But there is a second way to interpret abstraction and that is the one relevant to understanding
superposition in QM. It will be referred to as the #2 type of abstraction where the �the direction
of l�is an abstract object that is de�nite on what is common to parallel lines (i.e., their direction)
but abstracts away from where they di¤er, i.e., is inde�nite on how they di¤er.

Within mathematics, the #2 type of abstraction is highlighted by the recent development of
homotopy type theory. There is an equivalence relation A ' B between topological spaces which is
realized by a continuous map f : A! B such that there is an inverse g : B ! A so the fg : B ! B is
homotopic to 1B (i.e., can be continuously deformed in 1B) and gf is homotopic to 1A. According to
the �classical�homotopy theorist, Hans-Joachim Baues, �Homotopy types are the equivalence classes
of spaces�[3] under this equivalence relation. That is the #1 type of abstraction.

But the interpretation o¤ered in homotopy type theory (HoTT) is expanding identity to �coin-
cide with the (unchanged) notion of equivalence�in the words of the Univalent Foundations Program
[31, p. 5] so it would refer to the #2 homotopy type, i.e., �the homotopy type�that is de�nite on
the mathematical properties shared by all spaces in an equivalence class of homotopic spaces (but
is inde�nite on the di¤erences). Expanding identity to coincide with equivalence is another way to
describe the #2 abstracting from the class S of equivalent entities to the abstract entity that is
de�nite on what is common to the elements u 2 S but is inde�nite on where they di¤er.

For instance, �the homotopy type�is not one of the classical topological spaces (with points etc.)
in the #1 equivalence class of homotopic spaces�just as Frege�s #2 abstraction of direction is not
among the lines in the equivalence class of parallel lines with the same direction.

While classical homotopy theory is analytic (spaces and paths are made of points), ho-
motopy type theory is synthetic: points, paths, and paths between paths are basic, indi-
visible, primitive notions. [31, p. 59]

Consider the homotopy example of �the path going once (clockwise) around the hole� in an
annulus A (disk with one hole as in Figure 1), i.e., the abstract entity 1 in the fundamental group
�0 (A) of the annulus: 1 2 �0 (A) �= Z:
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Figure 1: �the path going once (clockwise) around the hole�

Note that �the path going once (clockwise) around the hole�has the de�nite property of �going once
(clockwise) around the hole� but is inde�nite on any of the particular (coordinatized) paths that
constitute the equivalence class of coordinatized once-around paths deformable into one another.

In a similar manner, we can view other common #2 abstractions such as: �the cardinal number 5�
that captures what is common to the isomorphism class of all �ve-element sets; �the integer 1 mod (n)�
that captures what is common within the equivalence class f:::;�2n+ 1;�n+ 1; 1; n+ 1; 2n+ 1; :::g
of integers; �the circle�or �the equilateral triangle��and so forth.3

The notion of an entity that is partly inde�nite and partly de�nite might be intuitively clari�ed
by considering the di¤erence between the two ways that police get a picture of a suspect, a mugbook
and a police artist using a sketchpad. The mugbook is a set of de�nite images akin to the classical
physics notion of reality. But a police sketch artist starts with an inde�nite face on the sketchpad
and then builds up more de�niteness�which is akin to the notion of an inde�nite quantum reality
that is made more de�nite by a series of (compatible) measurements.

3.2 The general notion of #2 abstraction

The type 2 abstraction is usually applied in mathematics to the elements of an equivalence class but
we can apply the idea to any arbitrary (nonempty) subset S � U to arrive at the idea of an abstract
entity uS that is de�nite on what is common to the elements of S and inde�nite on where they di¤er.
In terms of the abstraction principle: uS (u) = uS (u

0) i¤ u; u0 2 S, for all u; u0 2 U . Intuitively, we
might use the crutch of thinking of uS as resulting from blobbing, blurring, or smearing together the
elements of S to obtain uS�so the only de�nite characteristics left in uS are the common properties
and the properties where the elements of S di¤er are blurred out as inde�nite. But we need a more
exact way to specify the di¤erence between S and uS .

The notion of the incidence matrix I (R) of a binary relation R � U � U on U supplies the
right mathematical notion to distinguish S and uS ; it is the n � n matrix with rows and columns
corresponding to the elements u1; :::; un 2 U such that:

I (R)ij =

�
1 if (ui; uj) 2 R
0 otherwise.

Then the set S � U of distinct elements ui 2 S could be represented by the incidence matrix I (�S) of
the binary relation �S = f(ui; ui) : ui 2 Sg whose only non-zero elements are the diagonal elements
of 1 corresponding to the ui 2 S. Then the �blobbed-out� or �blurred� version uS abstracted
from S would be represented by the incidence matrix I (S � S) with the entries I (S � S)ij = 1 if

3Category theory helped to motivate homotopy type theory for good reason. Category theory has no notion of
identity between objects, only isomorphism as �equivalence�between objects. Therefore category theory can be seen
as a theory of abstract #2 objects (i.e., the #2 abstract of an isomorphism class), e.g., abstract sets, groups, spaces,
etc.
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ui; uj 2 S and 0 otherwise. The non-zero o¤-diagonal elements I (S � S)ij = 1 for i 6= j indicated
that ui; uj 2 S are blobbed or blurred together or �cohere�together in the entity uS .

3.3 From incidence to density matrices

If the incidence matrices I (�S) and I (S � S) are normalized by dividing through by their trace
jSj, then we obtain two density matrices denoted:

� (�S) = 1
tr[I(�S)]I (�S) and � (S) =

1
tr[I(S�S)]I (S � S).

If we assign the equal probabilities to the elements of S: Pr (ui) = pi =
1
jSj if ui 2 S and 0 otherwise,

then the diagonal elements of � (�S) and � (S) are the probabilities of drawing the corresponding
element from U .

This incidence matrix approach to density matrices can be generalized by starting with any set
of point probabilities Pr (ui) = pi for ui 2 U . Then the subset S could be represented as a normalized
column vector jSi which ith entry is

q
pi

Pr(S) if ui 2 S and 0 otherwise where Pr (S) =
P
ui2S pi.

Then the density matrix � (S) would be constructed as the (outer) product of the column vector jSi
times its transpose denoted hSj = jSit:

� (S)ij = (jSi hSj)ij = 1
Pr(S)

p
pipj if ui; uj 2 S and 0 otherwise.

Then a density matrix � (�) can be associated with a partition � = fB1; :::; Bmg on U with the point
probabilities p = fp1; :::; png by taking the probability weighted sum of the density matrices for the
blocks Bj of �:

� (�) =
Pm
j=1 Pr (Bj) � (Bj).

Then a non-zero o¤-diagonal entry � (�)ii0 =
p
pipi0 means that ui and ui0 cohere together in some

block Bj and that (ui; ui0) 2 indit (�) is an indistinction of the partition �. Those non-zero o¤-
diagonal entries � (�)ii0 =

p
pipi0 can be thought of as an �amplitude� for ui and ui0 to cohere

together since the square pipi0 is the probability that the ordered pair indit (ui; ui0) will be drawn
(in that order) in two independent draws from the sample space U .

There is zero coherence amplitude in � (�) for elements ui and ui0 in di¤erent blocks of �, i.e.,
for (ui; ui0) 2 dit (�). The most decoherent partition (with no coherence amplitudes) is the discrete
partition 1U = ffuiggi=1;:::;n with all the blocks are singletons so no elements of U are blobbed or
blurred together. Then � (1U ) is diagonal matrix with diagonal entries � (1U )ii = pi.

3.4 Density matrices in quantum mechanics

The transition to QM is rather clear. The elements ui 2 U generalize to the vectors juii in an
orthonormal (ON) basis U = fjuiigi=1;:::;n for an n-dimensional Hilbert space V . A superposition
state j i 2 V can be represented as a superposition of vectors in the ON basis:

j i =
Pn
i=1 huij i juii =

P
i �i juii

where �i = huij i. The �rst classical approximation to a superposition state was the blobbed-out
or blurred version uS of a subset S which was de�nite on the attributes common to the elements
of S and inde�nite concerning the properties that di¤er between the elements of S. This blurred
version uS of S could be represented by the incidence matrix I (S � S) where two elements ui
and uj cohered or were blurred together i¤ they were both in S. The normalized incidence matrix

1
tr[I(S�S)]I (S � S) was a density matrix that could be further re�ned by introducing di¤erent point
probabilities p = fp1; :::; png. Then we have the density matrix � (S) whose non-zero o¤-diagonal
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entries 1
Pr(S)

p
pipi0 give the amplitude for ui to cohere or blur together with ui0 in S. � (S) is our �nal

classical representation of the #2 abstraction from S: from uS to I (S � S) to 1
tr[I(S�S)]I (S � S) to

� (S).
The quantum version of � (S) is � ( ) = j i h j with the entries � ( )ij = �i�

�
j (where �

�
j is

the complex conjugate of �j = huj j i). Then the non-zero o¤-diagonal elements �i��j for i 6= j give
the amplitude for juji to cohere or blur together with juji in the superposition j i�the indistinction
amplitude, and those elements are usually called �coherences�[8, p. 302]. This blurring together of
elements in the classical #2 abstraction is a key characteristic in the quantum case.

[The] o¤-diagonal terms of a density matrix...are often called quantum coherences because
they are responsible for the interference e¤ects typical of quantum mechanics that are
absent in classical dynamics. [2, p. 177]

It might be useful to connect this notion of a superposition state as a partly de�nite and inde�-
nite entity. i.e., that is de�nite only on the properties common to the superposed states and inde�nite
otherwise, to common examples such as the double-slit experiment or the Mach-Zehnder interfer-
ometer. In the double-slit experiment, consider the superposition state j i = 1p

2
(jslit1i+ jslit2i).

This is commonly described as the state of the particle as �going through two slits at the same
time� [1, p. 94]. But that assumes that there is a de�nite particle that is going through each slit.
But the objectively inde�nite interpretation of QM would interpret the superposition j i as the
blurred-together state of being inde�nite as to which slot the particle goes through�and only being
de�nite on going through the slits. Abner Shimony found one of Yogi Berra�s malapropisms to be
quite appropriate: �If you come to a fork in the road, take it.�[28, p. 5] We do not have a �clear and
distinct idea�how to imagine such an inde�nite state�although many �nd the crutch of a de�nite
wave hitting both slits as being helpful (but misleading) imagery.

In the case of the Mach-Zehnder interferometer, the superposition state j�i = 1p
2
(jarm1i+ jarm2i)

(after the �rst beam-splitter) is often described as the photon going through both arms. But on the
OI interpretation, it would be more accurate to say that the photon is in the state of being inde�nite
(i.e., blurred) between the two arms but is de�nitely going through the arms of the apparatus.4

The point might be illustrated using our mugbook-sketchpad analogy. Suppose a witness has
found two di¤erent pictures in the mugbook that she thinks equally depict the suspect. That is
analogous to the description of the particle as de�nitely going through both slits or both arms of
apparatus. But the OI interpretation would take the proper analogy as being a partial sketch of the
suspect that is partly de�nite (e.g., on the characteristics common to the two mugshots) and partly
inde�nite (e.g., on where the two mugshots di¤er). To extend the analogy to the mathematics, such
a partial sketch could be represented as the superposition: j'i = 1p

2
(jmugshot1i+ jmugshot2i).

4 Interpreting the inner product

4.1 The classical case

Classically, we might take the norm of a subset S � U as kSk =
p
jSj, the square root of its

cardinality. The amplitude of the overlap between sets S; T � U is kS \ Tk =
p
jS \ T j so the

square of that overlap amplitude is the cardinality jS \ T j. In terms of our leifmotif of distinction
and indistinction, kS \ Tk measures the amplitude of indistinction between S and T . The maximum
value is when they are fully indistinct, kS \ Tk = kS \ Sk = kT \ Tk, and the minimum indistinction
amplitude kS \ Tk = 0 means they have no overlap and have no indistinctness, i.e., are fully distinct.
If we compare a random drawing from S to a random drawing from T , then we could always
distinguish between the drawings no matter what the outcome i¤ kS \ Tk = 0.

4For more on these and other apparatuses in the context of delayed-choice experiments, see [13]
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Given the set U = fu1; :::; ung, the coe¢ cients kfuig \ Sk represent the amplitude of fuig�s
indistinctness with S, and its square kfuig \ Sk2 = jfuig \ Sj represents the proportion of S that
is fuig. The non-zero proportions kfuig \ Sk2 = jfuig \ Sj add up to equal kSk2 = jSj. Taking
the uniform probability distribution on U , the probability Pr (uijS) of drawing a particular element
ui 2 S is the normalized proportion kfuig\Sk2

kSk2 = jfuig\Sj
jSj = 1

jSj .

4.2 The quantum case

The quantum version of the overlap amplitude between two states j i and j�i in V is their inner
product h�j i which can be interpreted as the amplitude of their indistinctness. They are maximally
indistinct when h�j i = h�j�i = h j i and have no indistinctness, i.e., are fully distinct, when
h�j i = 0. When comparing the measurement of j i to the measurement of j�i (using some ON
measurement basis U = fjuiigi=1;:::;n), they are fully distinguishable regardless of the outcome i¤
h�j i = 0.

Given an ON basis U = fjuiigi=1;:::;n, the coe¢ cients huij i = �i represent the amplitude of

juii�s indistinctness with j i, and its absolute square �i��i = khuij ik
2 represents the proportion of

j i that is juii.5 The non-zero proportions khuij ik2 add up to equal kh j ik2. Taking the uniform
probability distribution on the interval

h
0; kh j ik2

i
, the probability pi of a point falling in a segment

of length khuij ik2 is just that normalized length of the segment pi = khuij ik2
kh j ik2 , which is also the

probability of getting the outcome juii when measuring j i using fjuiigi=1;:::;n as the measurement
basis, i.e., the Born rule.

5 Numerical attributes and measurement

5.1 The classical case

Given a universe set U = fu1; :::; ung with point probabilities p1; :::; pn, a real-value numerical
attribute on U is a function f : U ! R. The numerical values fr1; :::; rmg in the image of f de�ne a
partition f�1 = fB1; :::; Bmg on U by taking Bj = f�1 (rj) for j = 1; :::;m.

The blobbed, blurred, or smeared #2 abstraction version of a nonempty subset S � U is
represented by the density matrix � (S), which might be called a pure density matrix since � (S)2 =

� (S) and thus tr
h
� (S)

2
i
= tr [� (S)] = 1. Intuitively, this �superposition�version of S is de�nite

only on the properties common to all the elements of S and is otherwise inde�nite. But the blurred-
together elements of superposition S might be distinguished by classifying them according to some
numerical attribute f . Since the superposition version of S is represented by the density matrix
� (S), this classi�cation operation might represented by an operation on the density matrix � (S) to
obtain an f -classi�ed density matrix �̂ (S). The non-zero o¤-diagonal elements � (S)ii0 =

1
Pr(S)

p
pipi0

in � (S) give the amplitude for ui to be indistinct with ui0 in the superposition version of S. The
transformation � (S)  �̂ (S) is quite simple; if f distinguishes ui and ui0 , i.e., if (ui; ui0) is a
distinction of the partition f�1, then and only then is the indistinction amplitude set to 0. If ui and
ui0 are not distinguished by f , i.e., ui and ui0 are not only both in S but are both in some block of
f�1 =

�
f�1 (r1) ; :::; f

�1 (rm)
	
, then the indistinction amplitude 1

Pr(S)

p
pipi0 remains the same as

before. And since no element ui can ever be distinguished from itself by any numerical attribute, the
diagonal elements remain the same. These changes determine the f -classi�ed density matrix �̂ (S).
Intuitively, the blurred or superposition version of S represented by � (S) has a de�nite attribute
value only if that value is common to all the ui 2 S, i.e., for some j, S � f�1 (rj) = Bj , and

5We use the notation k�k =
p
��� for the norm of a complex number � to avoid notational con�ict with the

cardinality jSj of a subset S.
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then � (S) = �̂ (S). Otherwise the elements of the set S do not share any f -value so �̂ (S)2 6= �̂ (S),

tr
h
�̂ (S)

2
i
< 1, and �̂ (S) might be called a mixed density matrix.

The transformation of matrices � (S)  �̂ (S) can also be speci�ed entirely using matrix oper-
ations. Let PBj be the diagonal n � n matrix with diagonal element

�
PBj

�
ii
equal to 1 if ui 2 Bj

and 0 otherwise so it is a projection matrix P 2Bj
= PBj . Then pre- and post-multiplying � (S) by

the projections PBj
for Bj 2 f�1 and summing has the e¤ect of zeroing out all the indistinction

amplitudes 1
Pr(S)

p
pipi0 where ui and ui0 are distinguished by f . In anticipation of the quantum case,

this operation on � (S) to obtain the f -classi�ed �̂ (S) will be called the classical Lüders mixture
operation:

�̂ (S) =
Pm
j=1 PBj

� (S)PBj
.

If S = U , the universe set, then � (S) = � (0U ), the density matrix representation of the indiscrete

partition 0U = fUg. The join of two partitions � = fBjgmj=1 and � = fCkgm
0

k=1, is the partition
� _ � whose blocks are all the non-empty intersections Bj \ Ck 6= ;. The join operation combines
all the distinctions made by the two partitions, i.e., dit (� _ �) = dit (�) [ dit (�). The result of
classifying � (0U ) by � = f�1 is the density matrix of the join 0U _ � = �, i.e., �̂ (0U ) = � (�).
Further classi�cations by other partitions on U will add to the join and thus introduce more and
more distinctions until obtaining the maximally distinguished discrete partition 1U = ffuiggni=1. A
set of partitions f�; �; :::g such that �_�_ ::: = 1U might be called a complete set of partitions on U .
The density matrix � (1U ) is the diagonal matrix � (�U) with the probabilities pi�s as the diagonal
entries where all the blurring e¤ects or indistinctions between the elements of the superposition
version of U have been eliminated.

5.2 The quantum case

Given an orthonormal basis U = fjuiigi=1;:::;n for the n-dimensional Hilbert space V , a real-valued
numerical attribute is a function f : U ! R with a set of image values f�1; :::; �mg. Extending the
f -assignment juii 7�! �i juii linearly to the whole space V de�nes a linear operator F : V ! V with
eigenvectors U = fjuiigi=1;:::;n and real eigenvalues �1; :::; �m, so F is a Hermitian operator, i.e., an
observable. Conversely, each Hermitian operator F : V ! V has an ON basis U = fjuiigi=1;:::;n of
eigenvectors with eigenvalues �1; :::; �m so that assigning each eigenvector its eigenvalue gives the
eigenvalue function which is a numerical attribute f : U ! R.

Given a normalized superposition state j i, its resolution in terms of an ON basis U of eigen-
vectors of a Hermitian operator F gives j i =

Pn
i=1 huij i juii =

P
i �i juii. The density matrix

� ( ) = j i h j represented in the U-basis has the elements � ( )ii0 = �i�
�
i0 and is a pure state

density matrix where � ( )2 = � ( ) and tr
h
� ( )

2
i
= 1. Let f : U ! R be the eigenvalue function

assigning to each eigenvector juii its eigenvalue where �1; :::; �m are the eigenvalues of F . The inverse
images f�1 (�j) de�ne a set partition f�1 on the set U where each block Bj = f�1 (�j) generates
the eigenspace [Bj ] � V associated with the eigenvalue �j for j = 1; :::;m.6 The observable F , or
equivalently the eigenvalue function f : U ! R, can be used to distinguish or classify the states juii
that are blurred together in the superposition state j i with the indistinction amplitudes or coher-
ences �i��i0 between the states juii and jui0i. This operation of distinguishing by classifying, usually
called �(projective) measurement�, has the same e¤ect on the density matrix � ( ) (represented in
the measurement basis U) of zeroing out (or decohering) the indistinction amplitudes � ( )ii0 = �i�

�
i0

6The eigenspaces [Bj ] form a direct-sum decomposition of V . A direct-sum decomposition of a vector space can
be considered the vector-space version of a partition on a set. Since a set-partition (or quotient set) is category-
theoretically dual to a subset, a direct-sum decomposition of a vector space is similarly dual to a subspace. And just
as the Boolean logic of subsets has the dual logic of partitions, so the usual notion of the quantum logic of (closed)
subspaces of a Hilbert space [4] will have a dual form in the quantum logic of direct-sum decompositions [17].
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when and only when juii and jui0i are distinguished by f , i.e., have di¤erent eigenvalues. Using the
same projection matrices PBj where Bj = f�1 (�j) as in the classical case, the post-classi�cation or
post-measurement density matrix �̂ ( ) is obtained by the quantum Lüders mixture operation [2, p.
279]:

�̂ ( ) =
Pm
j=1 PBj� ( )PBj .

If G : V ! V is another Hermitian operator on V that commutes with F , then we can take the
ON basis U as a basis of simultaneous eigenvectors of both F and G. If g : U ! R is the eigenvalue
function of G with eigenvalues �1; :::; �m0 , then g�1 gives a set partition on U and the join f�1_g�1
is a more re�ned partition on U where each block f�1 (�j) \ g�1 (�k) can be characterized by the
ordered pair (�j ; �k) of eigenvalues. A set of commuting operators F;G; ::: is called a complete set of
commuting operators (CSCO) if all the blocks in the join f�1 _ g�1 _ ::: are singletons so each basis
simultaneous eigenvector in U can be characterized by the sequence of eigenvalues (�j ; �k; :::). If all
the compatible measurements by the observables in a CSCO have been carried out, then the result
is the completely decohered diagonal density matrix with all the o¤-diagonal coherence amplitudes
eliminated.

De�niteness in QM is achieved when a state such as juii has a speci�c eigenvalue f (juii) = �j .
Intuitively, in a blobbed, blurred, or smeared state such as a superposition j i, it is de�nite only on
the attributes that are common to all the juii �in�j i (in the sense that huij i 6= 0), and inde�nite
otherwise. In more precise terms, a superposition state j i has the de�nite F -observable value of
�j if and only if all the juii in the superposition j i also have that same value �j�in which case
�̂ ( ) = � ( ) and j i 2 [Bj ], i.e., j i is one of the eigenvectors for �j . Otherwise, the juii in j i
have no F -value in common so �̂ ( ) 6= � ( ), tr

h
�̂ ( )

2
i
< 1, and �̂ ( ) is the density matrix of a

mixture.
A more non-trivial example of a partly de�nite and partly inde�nite state is the de�nite cor-

relation obtained in an entangled superposition. Suppose an observable A can have two eigenstates
ja1i and ja2i in a Hilbert state H and an observable B has two eigenstates jb1i and jb2i in another
Hilbert space H 0. Then in the tensor product H 
H 0, we have the de�nite states jsi = ja1i 
 jb1i
and js0i = ja2i 
 jb2i, but the entangled superposition state F = 1p

2
(ja1i 
 jb1i+ ja2i 
 jb2i) is not

de�nitely in either state.

When the composite system is in the state F , however, neither A nor B has a de�nite
value, but there is a de�nite correlation of A and B: A and B are actualized jointly either
as (a1; b1) or as (a2; b2). The composite system has a de�nite property, which can loosely
be called �sameness of the indices of the possible values of A and B,�not inferrable from
the entire speci�cation of s by itself and the entire speci�cation of s0 by itself. [28, p. 7]

6 Logical information theory at the classical and quantum
level

6.1 The classical case

The strategy of elucidating the objective inde�niteness interpretation of QM is to use the notions
distinction and indistinction, distinguishability and indistinguishability, �rst in the classical case,
where they are more easily understood, and then to recapitulate them in the quantum case. The
notion of logical entropy at the classical and quantum level captures quantitatively the creation of
distinctions from indistinctions in classi�cation and measurement.

Given a set partition � = fB1; :::; Bmg on a set U = fu1; :::; ung, the set of distinctions or dits of
� is the set dit (�) � U �U of all ordered pairs (ui; ui0) with ui and ui0 in di¤erent blocks of �. If all
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the points of U are equiprobable, i.e., pi = 1
jU j , then the logical entropy of �, denoted h (�), is the

normalized count of the distinctions of �, i.e., h (�) = jdit(�)j
jU�U j . With Pr (Bj) =

P
fpi : ui 2 Bjg and

the complementary equivalence relation indit (�) = U � U � dit (�) = [mj=1Bj �Bj , we can express
the logical entropy as:

h (�) = jdit(�)j
jU�U j =

jU�U�[jBj�Bj j
jU�U j = 1�

P
j
jBj�Bj j
jU�U j = 1�

P
j

�
jBj j
jU j

�2
= 1�

Pm
j=1 Pr (Bj)

2.

When U has point probabilities p1; :::; pn, then the natural de�nition is: h (�) = 1�
Pm
j=1 Pr (Bj)

2.
The logical entropy of a partition h (�) has the simple interpretation: in two independent draws (i.e.,
with replacement) from U , h (�) is the probability of drawing a distinction of ��and

P
j Pr (Bj)

2 is
the complementary probability of drawing an indistinction of �.

The two extreme partitions are the indiscrete partition (or �blob�) 0U = fUg which makes no
distinctions so h (0U ) = 0, and the discrete partition 1U = ffuiggi=1;:::;n which distinguishes all the
elements of U so h (1U ) = 1 �

Pn
i=1 p

2
i . The maximum logical entropy occurs in the equiprobable

case of pi = 1
jU j =

1
n when h (1U ) = 1 � 1

n which is the two-draw probability of drawing distinct
elements of U .

The de�nitions are easily reformulated in terms of the density matrix representation of the
partition as: � (�) =

Pm
j=1 Pr (Bj) � (Bj). Then the equivalent de�nition of the logical entropy h (�)

of � is:

h (� (�)) = 1� tr
h
� (�)

2
i
.

A pure density matrix � (S) representing the superposition-version of S � U has � (S)2 = � (S)
and all density matrices have trace 1 so the logical entropy of pure density matrices is always

zero: h (� (S)) = 1 � tr
h
� (S)

2
i
= 1 � 1 = 0. We have seen that the classi�cation or distin-

guishing of the blobbed-together elements of S by a partition � transforms the pure density ma-
trix � (S) into the mixed density matrix �̂ (S) obtained by the classical Lüders mixture opera-
tion �̂ (S) =

Pm
j=1 PBj

� (S)PBj
. The classi�cation zeros all the o¤-diagonal indistinction-amplitude

terms 1
Pr(S)

p
pipi0 for ui; ui0 2 S where ui and ui0 are in di¤erent blocks of �. Logical entropy

captures these distinctions made by the classi�cation of � (S) by the partition �. The fundamental
theorem relating logical entropy and classi�cation is:

Theorem 1 The sum of the squares of all indistinction-amplitudes zeroed in the Lüders mixture
operation taking � (S) to �̂ (S) is the logical entropy h (�̂ (S)). [14]

6.2 The quantum case

The quantum case is a straight-forward generalization of the classical case. The quantum logical
entropy of any quantum state given by a density matrix � is de�ned by:

h (�) = 1� tr
�
�2
�
.

Let U = fjuiigi=1;:::;n again be an orthonormal basis of eigenvectors of a Hermitian operator
F : V ! V with eigenvectors f�jgj=1;:::;m. Let j i =

P
i �i juii be a normalized superposition state

with � ( ) = j i h j so that h (� ( )) = 0. The measurement of j i by the observable F transforms the
pure state density operator � ( ) into the mixed state density operator given by the Lüders mixture
operation: �̂ ( ) =

Pm
j=1 Pj� ( )Pj where Pj is the projection to the eigenspace of the eigenvalue

�j . Then the quantum logical entropy h (�̂ ( )) = 1 � tr
h
�̂ ( )

2
i
has the simple interpretation of

the being the probability in two independent F -measurements of j i of getting di¤erent eigenvalues.
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Moreover, the fundamental theorem relating quantum logical entropy to (projective) measurement
gives the detailed connection to the changes in the density matrix � ( ) when represented in the
U -basis.7

Theorem 2 The sum of the absolute squares of all the indistinction-amplitudes or coherences �i��i0
that are zeroed (i.e., decohered) in the Lüders mixture operation taking � ( ) to �̂ ( ) is the quantum
logical entropy h (�̂ ( )). [16]

The notions of classical and quantum logical entropy give the respective measures of information
based on the foundational idea of information-as-distinctions.8

7 Quantum dynamics and measurement

7.1 Von Neumann�s type 2 processes

Von Neumann divided quantum processes into two fundamentally di¤erent types:

1. �the arbitrary changes by measurements,�and

2. �the automatic changes which occur with passage of time.�[32, p. 351]

The OI interpretation needs to �make sense�out of these two di¤erent types of processes in terms
of distinctions and indistinctions. Indeed, the di¤erence is between:

1. processes that make distinctions, and

2. processes that preserve distinctions.

Taking #2 �rst, The degree to which two quantum states are indistinct or distinct is given
by the inner product h�j i, so a quantum process that does not change this amplitude of in-
distinction between states is mathematically described as a unitary transformation (i.e., a lin-
ear transformation that preserves inner products). The unitary evolution of superpositions, e.g.,
j (t)i = U (t; t0) j (t0)i, is a mathematical description of the propagation of waves. The connection
between unitary transformations and the solutions to the Schrödinger �wave�equation is given by
Stone�s Theorem [30]: there is a one-to-one correspondence between strongly continuous 1-parameter
unitary groups fU (t; t0)gt2R and Hermitian operators H on the Hilbert space so that U(t; t0) = eiHt.

In simplest terms, a unitary transformation describes a rotation such as the rotation of a unit
vector in the complex plane.

7Both quantum logical entropy and the Von Neumann entropy S (� ( )) = �� ( ) log (� ( )) usually considered in
QM have the value of 0 for pure states and increase under (projective) measurement. But there seems to be no similar
relation between the Von Neumann entropy and the changes in the density matrix due to a measurement.

8The above classical cases, dealing with sets instead of vectors, could be made even closer to QM by using a
vector space where each vector (represented in a basis set) is a set. That is the case for vector spaces over Z2. The
above machinery from the classical cases formulated over Zn2 gives a pedagogical (or �toy�) model of QM��quantum
mechanics over sets.� [15]
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Figure 2: Rotating vector and addition of vectors

The rotating unit vector traces out the cosine and sine �wave� functions on the two axes, and the
position of the arrow can be compactly described as a function of ' using Euler�s formula:

ei' = cos (') + i sin (').

Such complex exponentials and their superpositions are the �wave functions� of QM. The �wave
functions�describe the evolution of particles in inde�nite states in isolated systems where there are
no distinction-creating interactions to change the degree of indistinctness between states, i.e., the
context where Schrödinger�s equation holds. Classically it has been assumed that the mathematics
of waves must describe physical waves of some sort, and thus the puzzlement about the �wave
functions�of QM having complex amplitudes (in 3N -dimensional space for systems of N particles)
and no corresponding physical waves.

But we have supplied another interpretation; wave mathematics is the mathematics of inde�niteness-
preserving evolution, i.e., superposition represents inde�niteness and unitary evolution represents
the indistinctness-preserving evolution of an isolated system. The same mathematics describes both
types of evolution. Using the wave interpretation instead of the inde�niteness interpretation of the
mathematics has been one of most historic wrong turns in the interpretation of QM�which has con-
tinued long after it was realized that the �wave function�could not describe actual physical waves.
But humans have evolved so they can readily imagine the evolution of common macro-phenomena
such as the propagation of waves, while inde�nite states and their evolution present a much greater
challenge to the imagination.

Richard Feynman�s approach to QM shows how to develop the mathematics of QM without
appeal to waves (although wave imagery may be used as a pedagogical crutch).

I want to emphasize that light comes in this form�particles. It is very important to know
that light behaves like particles, especially for those of you who have gone to school,
where you were probably told something about light behaving like waves. I�m telling you
the way it does behave�like particles. [19, p. 15]

Indeed, Feynman takes note of cases where the wave theory falls short since:

the wave theory cannot explain how the detector makes equally loud clicks as the light
gets dimmer. Quantum electrodynamics �resolves� this wave-particle duality by saying
that light is made of particles (as Newton originally thought), but the price of this great
advancement of science is a retreat by physics to the position of being able to calculate
only the probability that a photon will hit a detector, without o¤ering a good model of
how it actually happens. [19, pp. 36-7]

The OI interpretation argues that what �actually happens�in �wave-like�behavior is the evolution of
a particle that is inde�nite between a number of undistinguished alternatives (a type 2 process), and
thus the OI interpretation could be seen as attempting to give an ontology that underlies Feynman�s
mathematical approach to QM. For instance, in the double slit experiment, instead of saying �the
electron sweeps from source to screen following all possible paths at once� [9, p. 32], it would be
better to say that the electron was in a state of being inde�nite between all the possible paths in
going from source to screen. By developing the inde�niteness interpretation to the superposition of
paths in the Feynman approach, one has a realistic non-wave interpretation of QM.

7.2 Von Neumann�s type 1 processes

The #1 type process is a process that does make distinctions. Richard Feynman has given perhaps
the clearest characterization of the two types of processes in terms of distinctions and indistinctions.

13



If you could, in principle, distinguish the alternative �nal states (even though you do not
bother to do so), the total, �nal probability is obtained by calculating the probability for
each state (not the amplitude) and then adding them together. If you cannot distinguish
the �nal states even in principle, then the probability amplitudes must be summed before
taking the absolute square to �nd the actual probability. [20, p. 3-16]

Feynman gives examples that do not involve any macroscopic measuring apparatus (neutrons scat-
tering in crystals or collisions of alpha-particles) to avoid all the extraneous considerations (e.g.,
environmental dephasing) in the literature on measurement. For instance, Feynman considers the
case where �all neutrons from the source having spin up and all the nuclei of the crystal having spin
down�[20, p. 3-15] If a scattered neutron has spin down, then one of the atoms in the crystal must
have spin up so the di¤erent paths through the crystal are distinguished. That is a type 1 process
which makes distinctions between the paths so the amplitude of each path is (separately) squared
to �nd its probability. If the alternatives cannot in principle be distinguished, then it is a type 2
process of unitary evolution of the inde�nite superposition of the paths, so the path amplitudes are
added before taking the absolute squares to determine the probability�which will then re�ect the
interference between the paths.

One can extract from Feynman�s probability rules the basic distinguishability principle that
separates type 2 unitary evolution from the type 1 state reduction or �measurement.�Consider the
unitary evolution of a particle in an inde�nite state that is a superposition of various de�nite states.
If the particle then undergoes an interaction where the outcomes of the superposed de�nite states
can, in principle be distinguished, then the states are distinguished and the particle emerges from
the interaction in one of the de�nite states with the probability determined by the absolute square
of its amplitude in the superposition (Born rule). In short, if an interaction has to make a di¤erence
between the superposed states in the �nal outcomes, then it does make a di¤erence in that the
inde�nite superposition state is reduced to one of the de�nite states that were superposed.

Hermann Weyl likened a measurement to a particle having to pass through a �sieve or grating�
[33, p. 259]. For an intuitive image, think of a �blob�of dough as the inde�nite superposition of a
set of polygonal shapes. The blob evolves as a blob until it hits a grating with holes corresponding
to the superposed shapes so the blob then has to pass through one of the holes and take on that
de�nite shape. The grating distinguishes the shapes in the inde�nite superposition.

Figure 3: Measurement where a superposition of de�nite shapes has to take on one of the shapes.

Werner Heisenberg is usually presented as an advocate of the Copenhagen interpretation of
QM. But in his mature philosophical re�ections, e.g., [23], he used the imagery of �potentiality�and
�actuality�which, as noted by Shimony, can be interpreted as �inde�niteness� and �de�niteness�
respectively.
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Heisenberg [23, p. 53] used the term �potentiality� to characterize a property which is
objectively inde�nite, whose value when actualized is a matter of objective chance, and
which is assigned a de�nite probability by an algorithm presupposing a de�nite math-
ematical structure of states and properties. Potentiality is a modality that is somehow
intermediate between actuality and mere logical possibility. That properties can have
this modality, and that states of physical systems are characterized partially by the po-
tentialities they determine and not just by the catalogue of properties to which they
assign de�nite values, are profound discoveries about the world, rather than about hu-
man knowledge. It is fair to say, in view of my discussion above of metaphysics, that
these statements about quantum mechanical potentiality are metaphysical propositions
suggested by the formalism of quantum mechanics. These statements, together with the
theses about potentiality, may collectively be called �the Literal Interpretation�of quan-
tum mechanics. [28, p. 6]

Heisenberg�s use of the notion of �potentiality� in contrast to actuality does not seem appropriate
since the �potentialities�have very real e¤ects on actuality (e.g., the quantum interference e¤ects),
so it would seem more appropriate to consider inde�nite and de�nite actualities.

8 Group theory and QM

We have argued that reality at the quantum level is inherently inde�nite which under certain cir-
cumstances becomes partly de�nite. The understanding of quantum reality in terms of indistin-
guishability is already well-known in the area of �identical�particles, e.g., [7], and that will not be
recapitulated here. We have also emphasized the new light thrown on these questions by the new de-
velopments in the logic of partitions (= equivalence relations = quotient sets) and in its quantitative
development as logical information theory. There is another already well-known area of mathematics
dealing the speci�cation of equivalences (or symmetries), namely, group theory�so one would expect
it to be highly applicable to QM. And it is.

An equivalence relation is a transitive, symmetric, and re�exive relation. A group operating on
a set is a natural way to de�ne an equivalence on the set (the partition of orbits) since a group
operation is an associative operation that is closed under composition (transitivity), has inverses
(symmetry), and includes the identity operation (re�exivity) [for more, see [6]].

To brie�y touch on a quantum example, we need to lift or generalize the set case of a group
operating on a set, i.e., a set representation of the group operations, to complex vector space repre-
sentations of a (symmetry) group. As noted above, a set partition generalizes to a direct-sum decom-
position of a vector space. The set partition of orbits generalizes to the direct-sum decomposition
of a complex vector space into irreducible subspaces. A representation restricted to an irreducible
subspace is an irreducible representation. For a certain symmetry group of particle physics, �an
elementary particle �is�an irreducible unitary representation of the group.� [29, p. 149] Thus our
approach from partitions and equivalence relations comports with �the soundness of programs that
ground particle properties in the irreducible representations of symmetry transformations...�[22, p.
171] (for more, see [18]).

9 Concluding remark

One way to succinctly describe the objective inde�niteness interpretation of QM is that the mathe-
matics for the evolution of the quantum �wave function�is also the mathematics for the indistinction-
preserving evolution of inde�nite (superposition) states. The so-called �wave-particle duality�is re-
ally the juxtaposition of a particle evolving with an inde�nite position (�wave-like�behavior) with
a particle having a de�nite position. The objective inde�niteness approach to interpreting QM thus
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provides an explanation for the appearance of the mathematics of waves (which implies interference
as well as the quantized solutions to the �wave� equation that gave QM its name) when, in fact,
there are no actual physical waves involved.
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