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Abstract

Given a property S() on the elements of a set U , there are two notions of abstraction. The
#1 notion of abstraction is to the set S of elements with the property (like an equivalence class
of parallel lines); the #2 notion is an abstract entity uS that is definite on what is common to
the elements of S but is otherwise indefinite on the differences between those elements (like the
abstract “direction”of the lines). The paper shows how both the #2 notion of a ‘paradigm’and
the #1 notion of a set may be differently modeled using incidence matrices in Boolean logic
and using density matrices in probability theory. This is then used to illuminate and interpret
the very similar density matrix treatment of the indefinite superposition states in quantum
mechanics.
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1 Introduction

The purpose of this paper is to draw out some intriguing and possibly illuminating analogies between
abstraction in the philosophy of mathematics and the notion of indefiniteness in the interpretation
of quantum mechanics (QM). A well-known example of an abstraction principle is Frege’s “direction
principle”which Stewart Shapiro described as: for any lines l1 and l2 in some domain, the “direction
of l1 is identical to the direction of l2 if and only if l1 is parallel to l2.” [19, p. 107] Abstraction
turns equivalence into identity. But there are two different ways for this abstraction principle to be
satisfied. The version often used by the proverbial ‘working mathematician’will be called the #1
abstraction, namely, just the equivalence class. If [l] is the parallelism equivalence class of the line
l, then the direction principle is clearly satisfied: [l1] = [l2] iff l1 ' l2 (where ' is the equivalence
relation of being parallel). But there is also what we may refer to as the #2 type of abstraction
where the “direction of l”is an abstract object that captures what is common to parallel lines and
abstracts away from where they differ.

The purpose of this paper is:

• to give a way to mathematically differentiate the #1 and #2 abstracts in a simple setting,

• to show that finite probability theory can be reformulated with the #2 abstracts replacing the
#1 abstracts (i.e., the subsets as events), and then

• to show that the mathematical treatment of the #2 abstracts is essentially the same as is found
in a rather different setting to describe superposition states in quantum mechanics—where the
#2 abstracts-version of probability becomes quantum probability.

While this may add a little ‘reality’to discussions of abstraction in the philosophy of mathematics,
the main point is to build the bridge to QM and thus to better understand ‘by analogy’the key
superposition principle in QM.

2 Two Versions of Abstraction

One general form of an abstraction principle is given by Shapiro [19, p. 107]:

(∀a) (∀b) (Σ (a) = Σ (b) ≡ E (a, b)).

1. the #1 version of the abstraction operation takes equivalent entities E (a, b) to the equivalence
class Σ (a) = [a] = [b] = Σ (b), and;

2. the #2 version of the abstraction operation takes all the equivalent entities a, b such that
E (a, b) to the abstract entity that is definite on what is common in the equivalence class but
is indefinite on how they differ (e.g., on all the other properties that distinguish them).

In Frege’s well-known example from the Grundlagen [10, pp. 110-111], an equivalence class
of parallel lines is a #1 type of abstraction out of some delimited class of lines, while the act of
abstracting away from the differences between parallel lines (i.e., going from equivalence to identity)
yields the #2 abstraction of direction.

W. T. Tutte provides a good example of the attitude of a working mathematician.

Pure graph theory is concerned with those properties of graphs that are invariant under
isomorphism, for example the number of vertices, the number of loops, the number of
links, and the number of vertices of a given valency. It is therefore natural for a graph
theorist to identify two graphs that are isomorphic. For example, all link-graphs are
isomorphic, and therefore he speaks of the ‘link-graph’as though there were only one.
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Similarly one hears of ‘the null graph’, ‘the vertex graph’, and ‘the graph of the cube’.
When this language is used, it is really an isomorphism class (also called an abstract
graph) that is under discussion. ([22, p. 6 (original emphasis)]; quoted in: [15, p. 390])

Tutte seems to be referring to both types of abstraction. For instance, a proof about a property of
“the graph of the cube” is not a property of an isomorphism class of graphs but a property of the
graphs in that class or of the “abstract graph”that abstracts away from the different instances in the
isomorphism class. Often proofs that could be seen as using the #2 abstract graph are formulated
using systematic ambiguity, i.e., assuming an arbitrary graph in the isomorphism class and then
using only the properties common to all members of the class—which are precisely the properties in
the #2 abstract graph.

Our purpose is to give clearly distinct models for these two types of abstracts, but first we
might consider the two abstracts in a broader setting (without assuming an equivalence relation).
This broader setting allows us to give a #2 abstract interpretation to “events”in finite probability
theory—which, in turn, will facilitate the bridge over to QM.

Given any property S (u) defined on the elements of U , two abstract objects can be defined as
in Figure 1:

Figure 1: A property determines two types of abstract objects
(the ‘blob-sum’� is defined below).

In the spirit of the working mathematician, the #1 abstract uses the naive comprehension
scheme from what Paul Halmos called “naive set theory” [11] while the #2 abstract object uS is
‘the S-entity’which is definite on the S (u) property and indefinite on the differences between all
the u ∈ U such that S (u).

We have a naming problem for these #2 abstracts like the problem of describing a glass as
being half-full or half-empty. We could describe the #2 abstract uS according to the properties that
remain definite so it is a type of paradigm S-entity (the ‘half-full’description), or we could describe
the #2 abstract uS as the indefinite S-entity that remains after all the properties that differentiate
distinct S-entities are removed (the ‘half-empty’description). For instance, in a logical context, the
paradigm description might seem most appropriate while in the eventual application to quantum
mechanics, it is the indefiniteness aspect of superposition states that is paramount.

3 An Example Starting with Properties

Consider three predicates (binary attributes) P (x), Q (x), and R (x) which could distinguish at
most 23 = 8 definite-particular entities: u1, ..., u8 called eigen-elements and which can be presented
in Table 1 like a truth table:
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P (x) Q (x) R (x) u

1 1 1 u1

1 1 0 u2

1 0 1 u3

1 0 0 u4

0 1 1 u5

0 1 0 u6

0 0 1 u7

0 0 0 u8

Table 1: Eight entities distinguished by 3 properties.

The general rule is if f, g, h : U → R are numerical attributes with the number of distinct values
as nf , ng, and nh respectively, then those attributes could distinguish or classify nf×ng×nh distinct
subsets of U . If the join of the inverse-image partitions is the discrete partition (all singletons),
i.e.,
{
f−1

}
∨
{
g−1

}
∨
{
h−1

}
= 1U as in Ellerman [6], then {f, g, h} is a complete set of attributes

since they can uniquely distinguish or classify the eigen-elements of U . Then we can distinguish the
elements of U by their triple of values, i.e., |f (uj) , g (uj) , h (uj)〉 uniquely determines uj ∈ U .

In the example, any subset S ⊆ U = {u1, ..., u8} is characterized by a property S (x), the
disjunctive normal form property, common to all and only the elements of S. If S = {u1, u4, u7},
then the DNF property is:

S (x) = [P (x) ∧Q (x) ∧R (x)] ∨ [P (x) ∧ ¬Q (x) ∧ ¬R (x)] ∨ [¬P (x) ∧ ¬Q (x) ∧R (x)].

But what are the #1 and #2 abstract entities?

1. The #1 abstract entity is just the set

S = {ui ∈ U |S (ui)} = {u1, u4, u7}

of all the distinct S (x)-entities; and

2. The #2 abstract entity is S (x)-entity symbolized

uS = u1 � u4 � u7 = � {ui ∈ U |S (ui)}
The ‘superposition’or ‘blob-sum’of u1, u4, and u7.

that is definite on the DNF property S (x) but indefinite on what distinguishes the different S (x)-
entities.

4 Some Philosophical Concerns

It is best to think of S as the set of definite particular S (x)-entities in some universe U , while
uS is the indefinite paradigm-universal S (x)-entity that is the ‘superposition’or blob-sum uS =
�{ui ∈ U |S (ui)}. In general, the #2 abstract uS is “One over the Many.”Only when S = {uj} is
a singleton does the definite description ‘the S-entity’refer to an element of U , i.e., u{uj} = uj . As
in postulating #1 abstracts (sets) for properties S (x), a working mathematician has to be careful
about the properties allowed for #2 abstracts—as in the last section where only combinations of
P (x), Q (x), and R (x) were allowed.

Making the “One”uS = �{ui ∈ U |S (ui)} “over the Many,”i.e., more abstract than the ui ∈ U
(for |S| > 1) avoids the paradoxes just as the iterative notion of set does in ordinary set theory, i.e.,
for #1 type of abstractions. Otherwise, if we ignore the given set U , then we can recreate Russell’s
Paradox for #2 abstracts. Let R (uS) ≡ ¬S (uS) so:
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uR = � {uS |¬S (uS)} and thus R (uR) implies ¬R (uR), and ¬R (uR) implies R (uR).

But if we define uR = � {uS ∈ U |¬S (uS)}, then assuming uR ∈ U just leads to the contradiction
so uR /∈ U .

The paradigm-universal uS should not be thought of as universal ‘S-ness’. Intuitively, if S (x) is
having the color white, then uwhite = ‘the white thing‘, not ‘whiteness’. According the William and
Martha Kneale, this distinction (or confusion) goes back to Plato:

But Plato also used language which suggests not only that the Forms exist separately
(χωριστα) from all the particulars, but also that each Form is a peculiarly accurate or
good particular of its own kind, i.e., the standard particular of the kind in question or
the model (παραδειγµα) to which other particulars approximate. [13, p. 19]

Some have considered interpreting the Form as paradeigma as an error.

For general characters are not characterized by themselves: humanity is not human. The
mistake is encouraged by the fact that in Greek the same phrase may signify both the
concrete and the abstract, e.g. λευκoν (literally “the white”) both “the white thing”and
“whiteness”, so that it is doubtful whether αυτo τo λευκoν (literally “the white itself”)
means “the superlatively white thing”or “whiteness in abstraction”. [13, pp. 19-20]

5 Relations Between #1 and #2 Universals

In the version of finite probability theory developed below, the #2 paradigm-universals uS will
replace the #1 universals or events S ⊆ U . The set of events is the power-set ℘ (U), and it is replaced
by the set of paradigm entities {uS |S ∈ ℘ (U)}. Hence we first show how to translate between the
two versions of universals.

For properties S() defined on U , there is a 1-1 correspondence between the#1 and#2 universals:

∪{{uj} |uj ∈ U&S (uj)} = S ←→ uS = �
{
u{uj}|uj ∈ U&S (uj)

}
.

If T () another property defined on U implies S() in the sense that (∀u ∈ U) [T (u)⇒ S (u)],
then in terms of #1 abstracts, this is the familiar T ⊆ S.

But what is the #2 universals equivalent of T ⊆ S? Intuitively uS is ‘the S-thing’that is definite
on the S-property but is otherwise indefinite on the differences between the members of S. Those
differences have been abstracted away from, blurred or ‘blobbed’out, or rendered indefinite. If we
make more properties definite, then in terms of subsets, that will in general cut down to a subset
T ⊆ S, so uT would be a more definite version of uS . This “process” of changing from uS to a
more definite universal uT , i.e., uS  uT for T ⊆ S, might be called projection or sharpening (as in
making a camera focus sharper or more definite) and symbolized:

uS B uT (or uT C uS)
uS can be “sharpened”to uT by adding some definiteness.

These relations between #1 and #2 abstracts are summarized in Table 2.

S() defined on U #1 abstraction #2 abstraction

Universals for S() S = ∪{{uj} |uj ∈ U&S (uj)} uS = �
{
u{uj}|uj ∈ U&S (uj)

}
T () implies S() T ⊆ S uS B uT

Table 2: Equivalents between #1 and #2 universals

In the language of Plato, the projection relation C is the relation of “participation” (µεθεξις
or methexis) or entailment between universals. As Plato would say, ‘the T -thing’participates in or
‘brings-on’(επιφεπει or epipherei as in Vlastos [24, p. 102]) ‘the S-thing,’as in ‘the rocking chair’
brings on ‘the chair,’i.e., uT C uS , since ‘the chair’can be sharpened to ‘the rocking chair.’1

1These non-mathematical everyday examples are used for the purpose of illustration and, perhaps, amusement.
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Thus we have described two types of abstract objects:

1. Axiomatic set theory is the formal theory of #1 abstract objects, the sets S, where taking ∈
as the participation relation, sets are never self-participating, i.e., S /∈ S;

2. There could be a second theory about the #2 abstract entities (described here “naively”), the
paradigms uS , which are always self-participating, i.e., uS CuS (i.e., uS is the null-sharpening
of uS).

Like the #1 abstracts S, the #2 abstract entities uS , the paradigm-universals, are also used in
mathematics.

6 Examples of Abstract Paradigms in Mathematics

There is an equivalence relation A ' B between topological spaces which is realized by a continuous
map f : A → B such that there is an inverse g : B → A so the fg : B → B is homotopic to 1B
(i.e., can be continuously deformed in 1B) and gf is homotopic to 1A. According to the ‘classical’
homotopy theorist, Hans-Joachim Baues, “Homotopy types are the equivalence classes of spaces”[2]
under this equivalence relation. That is the #1 type of abstraction.

But the interpretation offered in homotopy type theory (HoTT) is expanding identity to “coin-
cide with the (unchanged) notion of equivalence”in the words of the Univalent Foundations Program
[23, p. 5] so it would refer to the #2 homotopy type, i.e., ‘the homotopy type’that captures the
mathematical properties shared by all spaces in an equivalence class of homotopic spaces (wiping
out the differences). Expanding identity to coincide with equivalence is another way to describe the
#2 abstracting from the class S of equivalent entities to the abstract paradigm-universal entity uS
which is not the same as the particular entities u in the equivalence class S.

For instance, ‘the homotopy type’is not one of the classical topological spaces (with points etc.)
in the #1 equivalence class of homotopic spaces—just as Frege’s #2 abstraction of direction is not
among the lines in the equivalence class of parallel lines with the same direction.

While classical homotopy theory is analytic (spaces and paths are made of points), ho-
motopy type theory is synthetic: points, paths, and paths between paths are basic, indi-
visible, primitive notions. [23, p. 59]

Homotopy type theory systematically develops a theory of the #2 type of abstractions that grows
out of homotopy theory and type theory into a new foundational theory.2

From the logical point of view, however, it is a radically new idea: it says that isomorphic
things can be identified! Mathematicians are of course used to identifying isomorphic
structures in practice, but they generally do so by “abuse of notation”, or some other
informal device, knowing that the objects involved are not “really”identical. But in this
new foundational scheme, such structures can be formally identified, in the logical sense
that every property or construction involving one also applies to the other. [23, p. 5]

In our terminology, “isomorphic things can be identified” is ‘blobbing together’of all the elements
in an isomorphism class to create a single #2 abstract that is definite on what is common to all the
isomorphs but is indefinite on where they differ.

2Here we only develop #2 abstracts informally in the same sense that the #1 abstracts, sets, are used in naive set
theory [11]. But homotopy type theory can be seen as one way to have a formal theory of these #2 abstractions in
mathematics—although the interpretation of HoTT is subect to controversy, e.g., Ladyman and Presnell’s [14]. Our
naive and speculative development of #2 abstracts is not intended to illuminate the already-rigorously developed
HoTT, but to build a conceptual bridge to QM.
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Consider the homotopy example of ‘the path going once (clockwise) around the hole’ in an
annulus A (disk with one hole as in Figure 2), i.e., the abstract entity 1 in the fundamental group
π0 (A) of the annulus: 1 ∈ π0 (A) ∼= Z:

Figure 2: ‘the path going once (clockwise) around the hole’

Note that ‘the path going once (clockwise) around the hole’has the paradigmatic property of “go-
ing once (clockwise) around the hole” but is not one of the particular (coordinatized) paths that
constitute the equivalence class of coordinatized once-around paths deformable into one another.

In a similar manner, we can view other common #2 abstractions such as: ‘the cardinal number 5’
that captures what is common to the isomorphism class of all five-element sets; ‘the integer 1 mod (n)’
that captures what is common within the equivalence class {...,−2n+ 1,−n+ 1, 1, n+ 1, 2n+ 1, ...}
of integers; ‘the circle’or ‘the equilateral triangle’—and so forth.

Category theory helped to motivate homotopy type theory for good reason. Category theory has
no notion of identity between objects, only isomorphism as ‘equivalence’between objects. There-
fore category theory can be seen as a theory of abstract #2 objects (i.e., the #2 abstract of an
isomorphism class), e.g., abstract sets, groups, spaces, etc.

Our purpose is to model the theory of paradigm-universals uS and their projections or sharp-
enings uT—that is analogous to working with sets and subsets, e.g., in a Boolean algebra of subsets.
That is all we will need to show that probability theory can be developed using paradigm entities
uS instead of subset-events S, and then finally to cross the bridge to quantum mechanics.

7 The Connection to Interpreting Symmetry Operations

In the usual case of abstraction where S is an equivalence or isomorphism class, the #2 universal uS
by definition abstracts away for the differences between the elements in the equivalence class. Hence
if we consider any operation that takes one element u of an equivalence class [u] to another element
u′ in the same class, then the induced operation on the #1 abstracts, [u] [u′], is the identity, and
the same holds for the #2 abstract uS since the two abstracts represent two different ways to get
abstracts that in different ways disregard the differences between the elements in the equivalence
class.

This can be visually illustrated in a simple example of the symmetry operation (defining an
equivalence relation) of reflection on the aA-axis for a fully definite isosceles triangles as in Figure
3.

7



Figure 3: Reflection on vertical axis symmetry operation.

Thus the equivalence class of reflective-symmetric figures in the #1 or classical interpretation is the
set in Figure 4.

Figure 4: The #1 abstraction of equivalence class.

The set remains invariant under reflection applied to its elements, which is another way to say that
the induced operation on the equivalence classes (or orbits) is the identity.

Under the #2 indefiniteness-abstraction interpretation, the equivalence abstracts to the figure
that is definite as to what is the same, and indefinite as to what is different between the definite
figures in the equivalence class:

Figure 5: The #2 abstraction of an indefinite entity.

And the symmetry operation induced on the indefinite figure is also the identity as illustrated in
Figure 5. As noted in the discussion of homotopy type theory, the movement from one space to
a homotopic space leaves the “homotopy type” the same regardless of whether we think of the
homotopy type as an equivalence class or as the #2 type of abstract considered in homotopy type
theory.

The notion of “indiscernibility”is deliberately avoided here since it can be something of a philo-
sophical weasel-word. For instance, in the philosophical discussions about abstraction, identity, and
ante rem structuralism (e.g., John Burgess [3]; Jukka Keränen [12]; Fraser MacBride and the authors
in [16]; Roy Cook and the authors in [5]; Hannes Leibgeb and James Ladyman [15]; and Stewart
Shapiro [18], [19]), “indiscernibility” is a function of what constants, predicates, and relations we
allow in the descriptive language. In one standard example, +1 and −1 are structurally indiscernible
in the additive group (Z,+, 0) but not if we allow the constant 2 in the language since x + x = 2
distinguishes +1 and −1. Authors discuss automorphisms distinguished from the identity but on
indistinguishable elements, so clearly there are different notions of “indiscernibility” or “indistin-
guishability”in play. An automorphism α : U → U can only be distinguished from the identity 1U
if there are at least two “indistinguishable” elements u and α (u) that can be distinguished. Since
we are later going to relate the #2 abstract entities to the indefinite states of quantum mechan-
ics, the differentiation of classical statistics from quantum statistics should not be based on our
language-dependent notions of classical and quantum “indiscernibility”or “indistinguishability.”

One example is the derivation of the Maxwell-Boltzmann distribution and the Bose-Einstein
distribution as in Feller [9, pp. 20-1] or Ellerman [7]. This treatment is illuminated by the classical
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and quantum version of a symmetry operation. Suppose we have two particles of the same type
which are classically indistinguishable so, following Weyl, we artificially distinguish them using Mike
and Ike labels. If each of the two particles could be in states A, B, or C, then the set of possible
states is the set of nine ordered pairs {A,B,C} × {A,B,C}. Applying the symmetry operation of
permuting Mike and Ike, we have six equivalence classes (orbits) as in Table 3.

Equivalence classes under permutation M-B

{(A,B) , (B,A)} 2/9
{(A,C) , (C,A)} 2/9
{(B,C) , (C,B)} 2/9
{(A,A)} 1/9
{(B,B)} 1/9
{(C,C)} 1/9

Table 3: Maxwell-Boltzmann distribution.

The symmetry operation on the equivalence classes is the identity, but in Nature the primitive
data are, as it were, the ordered pairs (the possible states), not the equivalence classes. When we
assign the equal probabilities of 1

9 to each ordered pair (i.e., to each distinct state), that results in
the Maxwell-Boltzmann distribution on the equivalence classes. Nature counts states; we classically
measure equivalence classes and find the M-B distribution.

But in the quantum case, the operation of going to the #2 abstract u{(A,B),(B,A)} seems
to be physically realized in an indefinite superposition state, i.e., the analogy: u{(A,B),(B,A)} ≈
1√
2

[|A,B〉+ |B,A〉], where the symmetry operation is the identity. Since there are then only six
states, we assign the equal probabilities of 1

6 to each state and obtain the Bose-Einstein distribution
in Table 4. Nature again counts states, but the superposition states (seen as physically realizing a
type of #2 abstract from the equivalence classes) reduces the number of states to six.

Six indefinite states B-E

u{(A,B),(B,A)} ≈ 1√
2

[|A,B〉+ |B,A〉] 1/6

u{(A,C),(C,A)} ≈ 1√
2

[|A,C〉+ |C,A〉] 1/6

u{(B,C),(C,B)} ≈ 1√
2

[|B,C〉+ |C,B〉] 1/6

u{(A,A)} ≈ |A,A〉 1/6
u{(B,B)} ≈ |B,B〉 1/6
u{(C,C)} ≈ |C,C〉 1/6

Table 4: Bose-Einstein distribution.

8 Modelling #1 and #2 Abstracts to get Paradigms Proba-
bility Theory

But it will surely be asked:

What is this crazy talk and loose analogy between forming an indefinite abstract in
mathematics and a superposition state in QM?

It is a fine question, and surely one way to approach the question is to give ‘clear and distinct’
mathematical models of the two abstracts in a simple illustrative setting. We distinguish the #1 and
#2 interpretations for a finite U as in Figure 6.
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Figure 6: Universe U of figures

The polygons in Figure 6 can be characterized using two attributes, the number n of equal sides
and being solid s or hollow h. Hence the universe U has the elements U = {u1, u2, u3, u4} =
{3h, 4s, 5s, 6s}. Ordinarily the subset of solid figures S = {4s, 5s, 6s} ⊆ {3h, 4s, 5s, 6s} = U would

be represented by a one-dimensional column vector |S〉 =


0
1
1
1


3h
4s
5s
6s

(with the given ordering). But by

moving up one dimension to a two-dimensional matrix, we can represent or mathematically model
the two #1 and #2 versions of S as two types of incidence matrices. For U = {u1, ..., un}, the
incidence matrix In (R) of a binary relation R ⊆ U × U is the n × n matrix with (In (R))jk = 1 if
(uj , uk) ∈ R and 0 otherwise.

1. The #1 (classical) representation of S (i.e., set of S-things or set of solid figures) is the diagonal

matrix In (∆S) that lays the column vector |S〉 along the diagonal: In (∆S) =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 =

representation of set S of distinct S-entities. In (∆S) is the incidence matrix of the diagonal
relation ∆S ⊆ U ×U whose entries are the values of the characteristic function χ∆S on U ×U .

2. The #2 (quantum-like) representation of S (i.e., the S-thing) is the matrix In (S × S) whose
entries are the values of the characteristic function χS×S on U × U . Where ()t signifies the
transpose operation, this n×n incidence matrix can also be obtained as the product of the n×1

column vector |S〉 times the 1×n row vector (|S〉)t: In (S × S) = |S〉 (|S〉)t =


0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

 =

representation of one indistinct S-thing, ‘the solid figure’uS = 4s� 5s� 6s.

Recall that for (and only for) singletons S = {uj}, the #2 ‘abstract’is just uj , and thus they have
the same representation In (∆S) = In (S × S) as expected, but for |S| > 1, In (∆S) 6= In (S × S).

The two representations differ only in the off-diagonal entries. Think of the off-diagonal In (S × S)j,k =
1’s as equating, cohering, blurring out, or ‘blobbing’out the differences between uj and uk which
have the common S() = ‘being a solid figure’property:

In (S × S) =


0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

 says


0 0 0 0

0 4s
S∼ 4s 4s

S∼ 5s 4s
S∼ 6s

0 5s
S∼ 4s 5s

S∼ 5s 5s
S∼ 6s

0 6s
S∼ 4s 6s

S∼ 5s 6s
S∼ 6s

.
Intuitively, the differences in the number of sides of the solid figures have been blurred out or rendered
indefinite, so the only definite attribute of the paradigm entity is the solid-figure.

Since the #2 abstract paradigm entities are represened by a certain type of incidence matrix, we
can mathematically represent the blob-sum #2 operation on entities (used above only intuitively):
uS = � {ui ∈ U |S (ui)} is represented by the blob-sum � of the corresponding incidence matrices:

�ui∈S In ({ui} × {ui}) =df In (S × S)
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where the incidence-matrix blob-sum � is defined for S1, S2 ⊆ U with S = S1 ∪ S2:

In (S × S) = In (S1 × S1)� In (S2 × S2) = In ((S1 ∪ S2)× (S1 ∪ S2))
= In ((S1 × S1) ∪ (S2 × S2) ∪ (S1 × S2) ∪ (S2 × S1))

= In (S1 × S1) ∨ In (S2 × S2) ∨ In (S1 × S2) ∨ In (S2 × S1).
In (S × S) = In (S1 × S1) ∨ In (S2 × S2)∨ blobbing cross-terms.3

For S = {u2, u4}, the blob-sum uS = u2 � u4 is represented by:

In ({u2} × {u2})� In ({u4} × {u4}) = In (S × S)

where the blob-sum operation � means ‘blobbing-out’the distinctions between entities in S (given
by the cross-terms in {u2, u4} × {u2, u4}):

In (S × S) = In ({u2} × {u2})� In ({u4} × {u4})

=


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

�


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


= In ({u2, u4} × {u2, u4})

= In ({u2} × {u2}) ∨ In ({u4} × {u4}) ∨ In ({u2} × {u4}) ∨ In ({u4} × {u2})

=


0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

.
Due to the development of Boolean subset logic and set theory, we are perfectly comfortable

with considering the #1 abstractions of sets S of even concrete ur-elements like the set of chairs in a
room. The representatives In (∆S) trivially form a BA isomorphic to the BA of subsets S ∈ ℘ (U) .

To better understand abstraction in mathematics, the paradigm-version of probability theory
(defined below), and superposition states in QM, we should become as comfortable with paradigms
uS as with subsets S. The paradigms uS for S ∈ ℘ (U) form a Boolean algebra isomorphic to ℘ (U)
under the mapping: for any Boolean binary operation S#T for S, T ∈ ℘ (U), uS#uT is the paradigm
represented by In ((S#T )× (S#T )).

• The union or join of paradigms is the blob-sum uS∪T = uS � uT which is the #2 abstract or
paradigm represented by In (S × S) � In (T × T ) = In ((S ∪ T )× (S ∪ T )) (note as expected,
for T ⊆ S, uS � uT = uS);

• The intersection or meet of paradigms uS∧uT = uS∩T is represented by In (S × S)∧In (T × T ) =
In ((S ∩ T )× (S ∩ T )) (the meet ∧ of incidence matrices is just the entry-wise conjunction of
the 0, 1-entries) where, as expected, for T ⊆ S, uS ∧ uT = uT ;

• The negation of a paradigm ¬uS = uSc is represented by In (Sc × Sc) = � {In ({u} × {u}) |u /∈ S}
(note as expected, uS � uSc = uS∪Sc = uU ).

The top uU and bottom u∅ of the BA are represented by the incidence matrices of all ones or all
zeros respectively, and the partial order on the blobbed-out incidence matrices In (S × S) is that
induced by set inclusion [i.e., the entry-wise partial order 0 ≤ 1 on incidence matrices of the form
In (S × S)]. If T ⊆ S, then uT C uS , so moving down in the BA of paradigms represents ‘sharpening’
or rendering-more-definite just as a conditional probability Pr (T |S) is always for some event T (or

3The disjunction of incidence matrices is the usual entry-wise disjunction: 1∨ 1 = 1∨ 0 = 0∨ 1 = 1 and 0∨ 0 = 0,
and similarly for conjunction.
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T ∩ S) below the conditioning event S in the partial order of events. The atomic elements u{ui}
(corresponding to the singletons {ui}) are the sharpest or most definite elements. When the events
as subsets S of the sample space U , are replaced by the #2 abstracts uS , then this Boolean algebra
structure on the set of paradigms uS in their In (S × S) representation for S ⊆ U replaces the usual
BA of events S. Figure 7 illustrates the two BAs for U = {a, b, c}.

Figure 7: The Boolean algebras of events and paradigms for U = {a, b, c}.

9 The Projection Operation: Making an indefinite entity more
definite

In the example of four figures, suppose we classify or partition all the elements of U according to
an attribute such as the parity of the number of sides, where a partition is a set of disjoint subsets
(blocks) of U whose union is all of U . Let π be the partition of U with two blocks O = {Odd} =
{3h, 5s} and E = {Even} = {4s, 6s} according to the parity of the number of sides.

The equivalence relation defined by π is referred to by Ellerman [6] as the set of indistinc-
tions, indit (π) = (O ×O) ∪ (E × E), and the incidence matrix In (indit (π)) is formed by the usual
disjunction of corresponding matrix entries:

In (O ×O) ∨ In (E × E) = In (indit (π))

=


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

 ∨


0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

 =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

.
The #1 (classical) operation of intersecting the set of odd-sided figures with the set of solid

figures to give the set of odd-sided solid figures is represented as the conjunction:

In (∆O) ∧ In (∆S) =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 ∧


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

.
The #2 (quantum-like) operation of ‘sharpening’or ‘rendering more definite’‘the solid figure’

uS = u{u2,u3,u4} to ‘the odd-sided solid figure’u{us} = u{5s} = 5s, so u{5s}CuS (suggested reading:
u{5s} is a projection or sharpening of uS) is represented as:

In (O ×O) ∧ In (S × S) =


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

 ∧


0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 = u{5s}.
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But there is a better way to represent ‘sharpening’using matrix multiplication instead of just
the logical operation ∧ on matrices, and it foreshadows and illuminates the measurement operation
in QM. The matrix In (∆E) = PE is a projection matrix, i.e., the diagonal matrix with diagonal
entries χE (ui) so PE |S〉 = |E ∩ S〉. Then the result of the projection-sharpening can be represented
as:

|E ∩ S〉 (|E ∩ S〉)t = PE |S〉 (PE |S〉)t = PE |S〉 (|S〉)t PE
= PE In (S × S)PE = In (E × E) ∧ In (S × S).

Thus sharpening the solid-figure u{4s,5s,6s} by the even number-of-sides attribute to obtain u{4s,6s}
is represented by pre- and post-multiplying the incidence matrix In (S × S) by the projection PE
for evenness parity. Under the #2 interpretation, the parity-sharpening, parity-classifying, parity-
differentiation, or parity-measurement of ‘the solid figure’ by both the odd and even parities is
represented as:

In (indit (π))∧ In (S × S) = PO In (S × S)PO + PE In (S × S)PE

=


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 ∧


0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1


=


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

+


0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

 =


0 0 0 0
0 1 0 1
0 0 1 0
0 1 0 1

.4
The result is the mixture or sum (not blob-sum) of incidence matrices for ‘the even-sided solid
figure’u{u2,u4} = u{4s,6s} and ‘the odd-sided solid figure’u{u3} = u{5s} = 5s. The important thing
to notice is the action on the off-diagonal elements where the action 1  0 in the j, k-entry means
that a distinction between uj and uk has been created; uj and uk have been deblobbed, decohered,
distinguished, or differentiated—in this case by parity in the number of sides:

In (S × S) In (indit (π))∧ In (S × S)
= PO In (S × S)PO + PE In (S × S)PE

=


0 0 0 0

0 1 1
decohered 0 1

0 1
decohered 0 1 1

decohered 0

0 1 1
decohered 0 1


Differentiating by parity.

In terms of the logical notion of information-as-distinctions as in Ellerman [8], the non-zero off-
diagonal terms that are zeroed in the classification or measurement process give the increase in
logical entropy.

We could also classify the figures as to having 4 or fewer sides (few sides) or more (many sides)
so that partition is σ = {{u1, u2} , {u3, u4}} = {{3h, 4s} , {5s, 6s}} which is represented by:

In (indit (σ)) =


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 and
4This classifying or measuring operation using the pre- and post-multiplication by projection matrices foreshadows

the Lüders mixture representation of projective measurement in QM (see below).
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In (indit (σ)) ∧ (In (indit (π)) ∧ In (S × S))
= Pfew (In (indit (π)) ∧ In (S × S))Pfew + Pmany (In (indit (π)) ∧ In (S × S))Pmany

=


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = In (∆S).

Thus the parity and the few-or-many-sides properties suffi ce to classify the solid figures uniquely
and thus to yield the representation In (∆S) of the distinct elements of S = {u2, u3, u4} = {4s, 5s, 6s}.
Thus making all the distinctions (i.e., decohering the entities that cohered together in uS) takes
In (S × S) In (∆S).

In QM jargon, the parity and few-or-many-sides attributes constitute a “complete set of com-
muting operators” (CSCO) so that measurement of the ‘pure,’blobbed-out, superposition figure,
‘the solid figure,’by those observables will sharpen ‘the solid figure,’to the ‘mixture’of the three
separate solid eigen-figures:

• ‘the few- and even-sided solid figure’(the square u2 = 4s),

• ‘the many- and odd-sided solid figure’(the pentagon u3 = 5s), and

• ‘the many- and even-sided solid figure’(the hexagon u4 = 6s).

10 From Incidence to Density Matrices

To move from Boolean logic to probability theory for paradigms, we move from incidence matrices to
density matrices. The incidence matrices In (∆S) and In (S × S) can be turned into density matrices
by dividing through by their trace (sum of diagonal elements):

ρ (∆S) = 1
tr[In(∆S)] In (∆S) and ρ (S) = 1

tr[In(S×S)] In (S × S).

In terms of probabilities, this means treating the outcomes in S as being equiprobable with prob-
ability 1

|S| . But now we have the #1 and #2 interpretations of the sample space for finite discrete
probability theory.

1. The #1 interpretation, represented by ρ (∆U), is the classical version with U as the sample
space of outcomes. For instance, the 6 × 6 diagonal matrix with diagonal entries 1

6 is “the
statistical mixture describing the state of a classical dice [die] before the outcome of the throw”
[1, p. 176];

2. The#2 interpretation replaces the “sample space”with the one indefinite ‘the sample outcome’
uU represented by ρ (U) (a 6 × 6 matrix with the 1

6 diagonal entries ‘blobbed out’to fill the
whole matrix with 1

6 entries) and, in a trial, the indefinite outcome uU ‘sharpens to’or becomes
a definite outcome u{ui} = ui ∈ U with probability 1

|U | .

Let f : U → R be a real-valued random variable with distinct values φi for i = 1, ...,m and let
π = {Bi}i=1,...,m where Bi = f−1 (φi), be the partition of U according to the f -values as in Ellerman
[7]. The classification or differentiation of ρ (S) according to the different values is: In (indit (π))∧ρ (S)
which distinguishes the elements of S that have different f -values. If PBi is the diagonal (projection)
matrix with diagonal elements (PBi)jj = χBi (uj), then the classified, differentiated, or measured
density matrix is also obtained by the Lüders mixture operation of pre- and post-multiplying ρ (S)
by the projection matrices PBi

[1, p. 279]:

In (indit (π)) ∧ ρ (S) =
∑m
i=1 PBi

ρ (S)PBi
,
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and the probability of a trial returning φi is:

Pr (φi|S) = tr [PBiρ (S)].

There are two interpretations of that probability corresponding to the #1 or #2 abstracts:

1. It is the probability that given the #1 abstract, i.e., the event S, a trial leads to the #1
abstract, the event Bi ∩ S, occurring, or

2. It is the probability that given the #2 abstract, i.e., the entity uS , a trial leads to (or sharpens
to) the #2 abstract, the entity uBi∩S .

For instance, in the previous example, where f : U → R gives the parity partition π with the
two values φodd and φeven, then:

Pevenρ (S)Peven =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1




0 0 0 0
0 1

3
1
3

1
3

0 1
3

1
3

1
3

0 1
3

1
3

1
3




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 =


0 0 0 0
0 1

3 0 1
3

0 0 0 0
0 1

3 0 1
3


so tr [Pevenρ (S)] = 2

3 which, under the #2 (quantum-like) interpretation, is the conditional prob-
ability that a trial sharpens ‘the solid figure’ to ‘the even-sided solid figure’. And under the #1
(standard) interpretation, Pr (φeven|S) = tr [Pevenρ (∆S)] = 2

3 is the probability of a trial yielding
an even-sided solid figure starting with the set of equiprobable solid figures represented by ρ (∆S).
Thus we have two different interpretations of finite probability theory, the conventional one using
the #1 abstracts or events S and the new paradigm interpretation using #2 abstracts or paradigms
uS .

These two interpretations of finite discrete probability theory extend easily to the case of point
probabilities5 pj for uj ∈ U , where Pr (S) =

∑
uj∈S pj :

1. (ρ (∆S))jj = χS (uj) pj/Pr (S), so tr [Pevenρ (∆S)] = probability of getting an even-sided solid
figure starting with the set of solid figures, and

2. (ρ (S))j,k = χS (uj)χS (uk)
√
pjpk/Pr (S), so tr [Pevenρ (S)] = probability of getting ‘the even-

sided solid figure’starting with ‘the solid figure.’

The whole of finite discrete probability theory can be developed in this manner, mutatis mutandis,
for the #2 abstract paradigms instead of the usual #1 abstracts or events. That is the paradigm
interpretation of probability theory and it gives a clear path to cross the bridge to QM.

11 Density matrices in Quantum Mechanics

This paradigm interpretation of finite probability leads directly to the use of probability in finite-
dimensional quantum mechanics. The jump to quantum mechanics (QM) is to replace the reals√
pjpk in the density matrices by complex amplitudes. Instead of the set S represented by a column
|S〉 of real ‘amplitudes’√pj , we have a normalized column |ψ〉 of complex numbers αj whose absolute
squares are probabilities: |αj |2 = pj , e.g.,

|S〉 =


0√
p2√
p3√
p4

 |ψ〉 =


α1

α2

α3

α4


where α1 = 0 and |αj |2 = pj for j = 2, 3, 4.

5Point probabilities are given by a probability density function p : U → [0, 1] where p (uj) = pj and
∑
pj = 1.
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1. The density matrix ρ (∆ψ) has the absolute squares |αj |2 = pj laid out along the diagonal.

2. The density matrix ρ (ψ) = |ψ〉 〈ψ| (where 〈ψ| is the conjugate-tranpose|ψ〉) of has the j, k-
entry as the product of αj and α∗k (complex conjugate of αk), where pj = α∗jαj = |αj |2.

Thus:

ρ (∆ψ) =


0 0 0 0
0 p2 0 0
0 0 p3 0
0 0 0 p4

 and ρ (ψ) = |ψ〉 〈ψ| =


0 0 0 0
0 p2 α2α

∗
3 α2α

∗
4

0 α3α
∗
2 p3 α3α

∗
4

0 α4α
∗
2 α4α

∗
3 p4

.
Some modern quantum mechanics texts, such as the Cohen-Tannoudji, Diu, and Laloë text [4,

Vol. 1, p. 302] or the Auletta, Fortunato, and Parisi text [1], call attention to the special significance
of the “coherences”represented by the non-zero off-diagonal terms.

[The] off-diagonal terms of a density matrix...are often called quantum coherences because
they are responsible for the interference effects typical of quantum mechanics that are
absent in classical dynamics. [1, p. 177]

In the analogy between paradigm-universals in mathematics and superposition states in QM,
the point is that an indefinite superposition QM state is a single entity that ‘blobs out,’‘blurs out,’
or renders indefinite the differences between the definite eigenstates in the (coherent) superposition.
It is the indefiniteness aspect that carries over to the quantum case, not the classical notion of a
‘paradigm.’The notion of #2 abstraction could be applied to any collections of distinct entities. For
instance, in the example of three distinct properties P (x), Q(x), and R (x) which could distinguish
eight distinct elements, the property in common to the entities u1, u4, u7 is not, in any useful sense,
considered a ‘paradigm’of anything. Moreover in the quantum case, it is not a zero-one affair whether
two elements are equated as in the incidence matrices In (S × S) of the ‘blobbed-out’sets; the off-
diagonal elements in the density matrix give the ‘amplitude’of the equating or cohering together of
the eigenstates in the superposition state.

The classifying or measuring operation In (indit (π)) ∧ ρ (ψ) could still be defined taking the
minimum of corresponding entries in absolute value, but in QM it is obtained by what Auletta et
al. [1, p. 279] call the Lüders mixture operation. If π = {B1, ..., Bm} is a partition according to the
eigenvalues φ1, ..., φm on U = {u1, ..., un} (where U is an orthonormal basis set for the observable be-
ing measured), let PBi be the diagonal (projection) matrix with diagonal entries (PBi)jj = χBi (uj).
Then In (indit (π)) ∧ ρ (ψ) is obtained as:∑

Bi∈π PBiρ (ψ)PBi

The Lüders mixture.

The probability of getting the result φi is:

Pr (φi|ψ) = tr [PBiρ (ψ)].

These results are summarized in Table 5 (where P|ui〉 is the projection to the subspace generated
by |ui〉, and P{ui} is the corresponding projection to the subset {ui}).
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Parallel operations in both versions of probability theory and quantum mechanics

12 Simplest Quantum Example

Consider a system with two spin-observable σ eigenstates |↑〉 and |↓〉 (like electron spin up or down

along the z-axis) where the given normalized superposition state is |ψ〉 = 1√
2
|↑〉+ 1√

2
|↓〉 =

[
α↑
α↓

]
=[

1√
2

1√
2

]
so the density matrix is ρ (ψ) =

[
p↑ α↑α

∗
↓

α↓α
∗
↑ p↓

]
=

[
1
2

1
2

1
2

1
2

]
where p↑ = α↑α

∗
↑ and p↓ = α↓α

∗
↓.

The measurement in that spin-observable σ goes from ρ (ψ) to

In (indit (σ)) ∧ ρ (ψ) =

[
1 0
0 1

]
∧
[
p↑ α↑α

∗
↓

α↓α
∗
↑ p↓

]
=

[
p↑ 0
0 p↓

]
=

[
1
2 0
0 1

2

]
= ρ (∆ψ).

Or using the Lüders mixture operation:

P↑ρ (ψ)P↑ + P↓ρ (ψ)P↓

=

[
1 0
0 0

] [
p↑ α↑α

∗
↓

α↓α
∗
↑ p↓

] [
1 0
0 0

]
+

[
0 0
0 1

] [
p↑ α↑α

∗
↓

α↓α
∗
↑ p↓

] [
0 0
0 1

]
=

[
p↑ 0
0 p↓

]
=

[
1
2 0
0 1

2

]
= ρ (∆ψ).

The two versions of S = U give us two versions of finite discrete probability theory where: #1)
U is the sample space or #2) uU is the sample outcome.

1. The #1 classical version is the usual version which in this case is like flipping a fair coin and
getting head or tails with equal probability (Figure 7)—like the mixed state:

1
2 [|H〉 〈H|+ |T 〉 〈T |] = ρ (∆ψ) =

[
1
2 0
0 1

2

]
.
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Figure 8: Outcome set for classical coin-flipping trial.

2. The #2 quantum version starts with the indefinite entity uU = � {ui ∈ U}, ‘the (indefinite)
outcome’, and a trial renders it into one of the definite outcomes ui with some probability pi
so that uU could be represented by the density matrix ρ (U) where (ρ (U))jk =

√
pjpk. In this

case, this is like a coin u{H,T} with the difference between heads or tails rendered indefinite
or blurred out, and the trial results in it sharpening to definitely heads or definitely tails with
equal probability (Figure 8)—which in QM is the pure state (with the blobbed-out cross-terms
|H〉 〈T | and |T 〉 〈H| in the density matrix):

1√
2

[|H〉+ |T 〉] [〈H|+ 〈T |] 1√
2

= ρ (ψ) =

[
1
2

1
2

1
2

1
2

]
.

Figure 9: ‘the outcome state’for quantum coin-flipping trial.

Experimentally, it is not possible to distinguish between the#1 and#2 versions by σ-measurements—
since, in either case, the result will be spin up or spin down (heads or tails) with equal probability.
But in QM the two states ρ (∆ψ) and ρ (ψ) can be distinguished by measuring other observables
like spin along a different axis as emphasized by Auletta et al. [1, p. 176]. Thus we know in QM

which version is the superposition (pure) state |ψ〉 =

[
α↑
α↓

]
; it is the #2 blob-state ρ (ψ).

13 Revisiting distinguishability of states

It is a standard doctrine of quantum information theory that one can always in principle distinguish
two classical states like heads or tails, but cannot always distinguish two non-orthogonal pure states
in quantum mechanics [17, p. 87] like |0〉 and 1√

2
[|0〉+ |1〉]. But that changes when we admit blob- or

paradigm-states likeH�T , represented by
[

1
2

1
2

1
2

1
2

]
, into our set of classical states—as in the paradigms

version of finite discrete probability theory described above. Then
[
1 0
0 0

]
and

[
1
2

1
2

1
2

1
2

]
are both pure

classical states and they cannot be reliably distinguished by any classification-measurements just
like the quantum pure states |0〉 and 1√

2
[|0〉+ |1〉].

14 Conclusions

We have approached the paradigm interpretation of probability theory by starting with the logical
situation of a universe U of distinct entities—where two distinct entities are always distinguished by
some property as in Leibniz’s principle of identity of indiscernibles. Given a property S (x) on U , we
can associate with it:

1. the #1 abstract object S = {ui ∈ U |S (ui)}, the set of S (x)-entities, or
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2. the #2 abstract object uS = � {ui ∈ U |S (ui)} which is the abstract paradigm-entity ex-
pressing the properties common to the S (x)-entities but “abstracting away from,”“rendering
indefinite,”“cohering together,” or “blobbing or blurring out” the differences between those
entities.

We argued that the mathematical machinery that could distinctly treat both abstractions was
incidence matrices in logic and density matrices in probability theory:

1. #1 representation as In (∆S) in logic or ρ (∆S) in probability theory; and

2. #2 representation as In (S × S) in logic or ρ (S) in probability theory.

This dove-tailed precisely into usual density-matrix mathematical treatment in QM of quantum
states |ψ〉 as ρ (ψ) which can be interpreted as objectively indefinite states, an interpretation of QM
proposed by Abner Shimony.

From these two basic ideas alone — indefiniteness and the superposition principle — it
should be clear already that quantum mechanics conflicts sharply with common sense. If
the quantum state of a system is a complete description of the system, then a quantity
that has an indefinite value in that quantum state is objectively indefinite; its value is
not merely unknown by the scientist who seeks to describe the system. [20, p. 47]
But the mathematical formalism ... suggests a philosophical interpretation of quantum
mechanics which I shall call "the Literal Interpretation." ...This is the interpretation
resulting from taking the formalism of quantum mechanics literally, as giving a represen-
tation of physical properties themselves, rather than of human knowledge of them, and
by taking this representation to be complete.[21, pp. 6-7]

Yet since the ancient Greeks, we have the #2 Platonic notion of the abstract paradigm-universal
‘the S-entity’, definite on what is common to the entities with the property S(), and indefinite on
where they differ. By using incidence and density matrices to differentiate the #1 abstraction (e.g.,
set of distinct but parallel lines) and the #2 abstraction (e.g., the direction of the lines), we can
cross the conceptual bridge to better understand indefiniteness in quantum mechanics by seeing the
analogy:

The paradigm uS , ‘the S-entity’represented by In (S × S) ≈ the superposition state ψ represented
by the density matrix ρ (ψ).

This recalls Whitehead’s quip that Western philosophy is “a series of footnotes to Plato.”[25, p. 39]
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