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Abstract

“For in the general we must note, That whatever is capable
of a competent Difference, perceptible to any Sense, may be
a sufficient Means whereby to express the Cogitations.”
(John Wilkins 1641)
********************
“So information really is a very useful abstraction. It is the
notion of distinguishability abstracted away from what we
are distinguishing, or from the carrier of information. ...And
we ought to develop a theory of information which
generalizes the theory of distinguishability to include these
quantum properties... .” (Charles H. Bennett 2003)
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Duality of Subsets and Partitions: I

Duality of Subsets and Partitions &
Duality of Elements and Distinctions ("Its" & "Dits")
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Duality of Subsets and Partitions: II

Partition π = {B1, ..., B6} on set U = {u1, ..., un}.
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Duality of Subsets and Partitions: III

Dual Logics: Boolean subset logic of subsets and partition logic

David Ellerman (University of California-Riverside)New Foundations for Information Theory:The transition to quantum information theory 4 / 29



Duality of Subsets and Partitions: IV

Gian-Carlo Rota
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Duality of Subsets and Partitions: V
Rota: “Probability is a measure on the Boolean algebra of
events” that gives quantitatively the “intuitive idea of the
size of a set”, so we may ask by “analogy” for some
measure to capture a property for a partition like “what size
is to a set.” Rota goes on to ask:

How shall we be led to such a property? We have already an
inkling of what it should be: it should be a measure of
information provided by a random variable. Is there a
candidate for the measure of the amount of information?
(Rota’s Fubini Lecture)

Elements : Subsets :: Dits : Partitions, so

#elements (“size of subset”) ≈ #dits (“size of partition”).
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The logical theory of information: I

New foundations of information theory starts with sets, not
probabilities.

Information theory must precede probability theory, and not
be based on it. By the very essence of this discipline, the
foundations of information theory have a finite combinatorial
character. [Kolmogorov, A. N. 1983]

The notion of information-as-distinctions thus starts with
the set of distinctions, the information set, of a partition
π = {B, B′, ...} on a finite set U where that set of distinctions
(dits) is:

dit (π) = {(u, u′) : ∃B, B′ ∈ π, B 6= B′, u ∈ B, u′ ∈ B′}.
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The logical theory of information: II

The ditset of a partition is the complement in U×U of the
equivalence relation associated with the partition π.
Given any probability measure p : U→ [0, 1] on
U = {u1, ..., un} which defines pi = p (ui) for i = 1, ..., n, the
product measure p× p : U×U→ [0, 1] has for any
S ⊆ U×U the value of:

p× p (S) = ∑(ui,uj)∈S p (ui) p
(
uj
)
= ∑(ui,uj)∈S pipj.

The logical entropy of π is the product measure of its ditset:

h (π) = p× p (dit (π)) = ∑(ui,uj)∈dit(π) pipj = 1−∑B∈π p (B)2.
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The logical theory of information: III
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Compound logical entropies: I

Given partitions π = {B1, ..., BI} , σ =
{

C1, ..., CJ
}

on U, the
information set or ditset for their join is:
dit (π ∨ σ) = dit (π) ∪ dit (σ) ⊆ U×U.
Given probabilities p = {p1, ..., pn}, the joint logical entropy
is: h (π, σ) = h (π ∨ σ) = p× p (dit (π) ∪ dit (σ)) =
1−∑i,j p

(
Bi ∩ Cj

)2.

The infoset for the conditional logical entropy h (π|σ) is the
difference of ditsets, and thus:
h (π|σ) = p× p (dit (π)− dit (σ)).
The infoset for the logical mutual information m (π, σ) is the
intersection of ditsets, so:
m (π, σ) = p× p (dit (π) ∩ dit (σ)).
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Compound logical entropies: II

Logical entropies Venn diagram

Information algebra I (π, σ) = Boolean subalgebra of
℘ (U×U) generated by ditsets and their complements.
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Deriving the Shannon entropies from the
logical entropies: I

All the Shannon entropies can be derived from the logical
definitions by a uniform transformation–since they are just
two different ways to measure distinctions.
Canonical case of n equiprobable elements, pi =

1
n , the

logical entropy of 1U = {B1, ..., Bn} where Bi = {ui} with
p =

{ 1
n , ..., 1

n
}

is:

h (p (Bi)) =
|U×U−∆|
|U×U| = n2−n

n2 = 1− 1
n = 1− p (Bi).

General case π = {B1, ..., Bm} is average of this dit-count
1− p (Bi):
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Deriving the Shannon entropies from the
logical entropies: II

h (π) = ∑i p (Bi) (1− p (Bi)).

Canonical case of 2n equiprobable elements and discrete
partition so p (Bi) =

1
2n , the minimum number of binary

partitions ("yes-or-no questions") or "bits" it takes to
uniquely determine or encode each distinct element or block
is n, so the Shannon-Hartley entropy is:

H(p (Bi)) = n = log2 (2
n) = log2

(
1

1/2n

)
= log2

(
1

p(Bi)

)
.

General case is average of this bit-count log2

(
1

p(Bi)

)
:
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Deriving the Shannon entropies from the
logical entropies: III

H (π) = ∑i p (Bi) log2

(
1

p(Bi)

)
.

Dit-Bit Transform: express any logical entropy concept (joint,
conditional, or mutual) as average of dit-counts 1− p (Bi),
and then substitute the bit-count log

(
1

p(Bi)

)
to obtain the

corresponding formula as defined by Shannon.
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Deriving the Shannon entropies from the
logical entropies: IV
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Deriving the Shannon entropies from the
logical entropies: V

The dit-bit transform is linear in the sense of preserving
plus and minus, so the Shannon formulas satisfy the same
Venn diagram formulas in spite of not being a measure (in
the sense of measure theory):
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Deriving the Shannon entropies from the
logical entropies: VI

Venn diagram ‘mnemonic’ for Shannon entropies
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Logical entropy via density matrices: I

All this will carry over to quantum logical entropy using
density matrices.
Let U = {u1, ..., un} be the sample space with the point
probabilities p = (p1, ..., pn). An event S ⊆ U has the
probability p (S) = ∑uj∈S pj.

For any event S with p (S) > 0, let
|S〉 = 1√

p(S)
(χS (u1)

√
p1, ..., χS (un)

√
pn)t which is a

normalized column vector in Rn where χS : U→ {0, 1} is
the characteristic function for S, and let 〈S| be the
corresponding row vector. Since |S〉 is normalized,
〈S|S〉 = 1.
Then the density matrix representing the event S is the n× n
symmetric real matrix:
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Logical entropy via density matrices: II

ρ (S) = |S〉 〈S| =
{

1
p(S)
√pjpk for uj, uk ∈ S

0 otherwise
.

Then ρ (S)2 = |S〉 〈S|S〉 〈S| = ρ (S) so borrowing language
from QM, |S〉 is said to be a pure state or event.
Given any partition π = {B1, ..., BI} on U, its density matrix
is the average of the block density matrices:

ρ (π) = ∑i p (Bi) ρ (Bi).

Then ρ (π) represents the mixed state, experiment, or lottery
where the event Bi occurs with probability p (Bi).
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Logical entropy via density matrices: III

Example
For the throw of a fair die, U = {u1, u3, u5, u2, u4, u6} (where uj
represents the number j coming up), the density matrix ρ (0U) is
the “pure state” 6× 6 matrix with each entry being 1

6 .

ρ (0U) =


1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6


u1
u3
u5
u2
u4
u6

.
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Logical entropy via density matrices: IV

Nonzero off-diagonal entries represents indistinctions or
indits of partition 0U, or in quantum terms as “coherences”
where all 6 “eigenstates” cohere together in a pure
“superposition” state. All pure states have logical entropy
of zero, i.e., h (0U) = 0 (i.e., no dits).

Example (continued)
Now classify or “measure” the elements by parity (odd or even)
partition (observable)
π = {Bodd, Beven} = {{u1, u3, u5} , {u2, u4, u6}}. Mathematically,
this is done by the Lüders mixture operation where Podd and
Peven are the projections to the odd or even components:
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Logical entropy via density matrices: V

Poddρ (0U)Podd + Pevenρ (0U)Peven = ∑m
i=1 p (Bi) ρ (Bi) = ρ (π).

ρ (0U) =


1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6

 


1/6 1/6 1/6 0 0 0
1/6 1/6 1/6 0 0 0
1/6 1/6 1/6 0 0 0

0 0 0 1/6 1/6 1/6
0 0 0 1/6 1/6 1/6
0 0 0 1/6 1/6 1/6

 = ρ (π)
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Logical entropy via density matrices: VI

Theorem (Basic)
The increase in logical entropy due to a Lüders mixture operation is the
sum of amplitudes squared of the non-zero off-diagonal entries of the
beginning density matrix that are zeroed in the final density matrix.

Proof.
Since for any density matrix ρ, tr

[
ρ2] = ∑i,j

∣∣ρij
∣∣2,

h (ρ (π))− h (ρ (0U)) =
(

1− tr
[
ρ (π)2

])
−
(

1− tr
[
ρ (0U)

2
])
=

tr
[
ρ (0U)

2
]
− tr

[
ρ (π)2

]
= ∑i,j

∣∣ρij (0U)
∣∣2 −∑i,j

∣∣ρij (π)
∣∣2.
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Logical entropy via density matrices: VII

Example (continued)
In comparison with the matrix ρ (0U) of all entries 1

6 , the entries
that got zeroed in ρ (0U) ρ (π) correspond to the distinctions
created in the transition
0U = {U} π = {{u1, u3, u5} , {u2, u4, u6}}. Increase in logical
entropy = h (π)− h (0U) = 2× 9×

(1
6

)2
= 18

36 =
1
2 . Usual

calculations: h (π) = 1− 2×
(1

2

)2
= 1

2 and h (0U) = 1− 12 = 0.
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Logical entropy via density matrices: VIII

Since a projective measurement’s effect on a density matrix
is the Lüders mixture operation, that means that the effects
of the measurement is the above-described “making
distinctions” by decohering or zeroing certain coherence
terms in the density matrix, and the sum of the absolute
squares of the coherences that were decohered is the change
in the logical entropy.
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Generalization to Quantum Info. Theory: I

[Information] is the notion of distinguishability abstracted
away from what we are distinguishing, or from the carrier of
information. ...And we ought to develop a theory of
information which generalizes the theory of
distinguishability to include these quantum properties... .
[Bennett, 2003]

Qubit = pair of states definitely distinguishable by any
observable, e.g., distinction of self-adjoint operator ∑k kP[uk]

.
In general, a qubit (or qudit?) needs to be relativized to an
observable–classically entropy is the entropy of a partition.
A qubit of F is a pair (uk, uk′) in the eigenbasis definitely
distinguishable by F, i.e., φ (uk) 6= φ (uk′), distinct
eigenvalues.
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Generalization to Quantum Info. Theory: II
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Generalization to Quantum Info. Theory: III
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Basic Theorem about measurement

Nonzero off-diagonal terms in density matrix ρ (ψ) are
called “coherences”–like indistinctions in classical case.
Measurement creates distinctions, i.e., turn coherences into
‘decoherences’–classically, turn indistinctions into
distinctions.
Basic Theorem: Measure of distinctions created in
measuring pure state ψ by F = sum of absolute squares of
off-diagonal terms zeroed (i.e., coherences that were
decohered) in measurement = logical entropy increase, e.g.,
h (F : ψ) = h (ρ′ (ψ))− h (ρ (ψ)) = probability that two
independent measurements of ψ will yield a qubit of F.
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