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The logical basis for information theory is the newly developed logic of partitions that is dual to
the usual Boolean logic of subsets. The key concept is a \distinction" of a partition, an ordered

pair of elements in distinct blocks of the partition. The logical concept of entropy based on

partition logic is the normalized counting measure of the set of distinctions of a partition on a

¯nite set ��� just as the usual logical notion of probability based on the Boolean logic of subsets
is the normalized counting measure of the subsets (events). Thus logical entropy is a measure on

the set of ordered pairs, and all the compound notions of entropy (join entropy, conditional

entropy, and mutual information) arise in the usual way from the measure (e.g. the inclusion-

exclusion principle) ��� just like the corresponding notions of probability. The usual Shannon
entropy of a partition is developed by replacing the normalized count of distinctions (dits) by

the average number of binary partitions (bits) necessary to make all the distinctions of the

partition.
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1. Introduction

Information is about making distinctions or di®erences. In James Gleick's magisterial

book, The Information: A History, A Theory, A Flood [10], he noted the focus on

di®erences in the seventeenth-century polymath, John Wilkins, who was a founder of

the Royal Society. In 1641, the year before Newton was born, Wilkins published one

of the earliest books on cryptography, Mercury or the Secret and Swift Messenger

[29], which not only pointed out the fundamental role of di®erences but noted that

any (¯nite) set of di®erent things could be encoded by words in a binary alphabet.

For in the general we must note, That whatever is capable of a competent

Di®erence, perceptible to any Sense, may be a su±cient Means whereby to

express the Cogitations. It is more convenient, indeed, that these Di®erences

should be of as great Variety as the Letters of the Alphabet; but it is suf-

¯cient if they be but twofold, because Two alone may, with somewhat more

Labour and Time, be well enough contrived to express all the rest. [29]
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As Gleick noted:

Any di®erence meant a binary choice. Any binary choice began the expres-

sing of cogitations. Here, in this arcane and anonymous treatise of 1641, the

essential idea of information theory poked to the surface of human thought,

saw its shadow, and disappeared again for [three] hundred years. [10]

We will focus on two notions of information content or entropy, the relatively new

logic-based notion of logical entropy [5] and the usual Shannon entropy in Claude

Shannon's founding paper, A Mathematical Theory of Communication [26]. Both

entropy concepts will be explained using the basic idea of distinctions. Shannon's

notion of entropy is well adapted to the theory of communications, as indicated by

the title of his original article and his later book [27], while the notion of logical

entropy arises out of the new logic of partitions [6] that is mathematically dual to the

usual Boolean logic of subsets [3].

2. Shannon Entropy

2.1. Shannon-Hartley information content

Shannon, like Ralph Hartley [13] before him, starts with the question of how much

`̀ information" is required to distinguish from one another all the elements in a set U

of equiprobable elements.a

Intuitively, one might measure `̀ information" as the minimum number of yes-or-

no questions in a game of Twenty Questions that it would take in general to

distinguish all the possible `̀ answers" (or `̀ messages" in the context of communi-

cations). This is readily seen in the simple case where jU j ¼ 2m, the size of the set of

equiprobable elements is a power of 2. Then following the lead of Wilkins three

centuries earlier, the 2m elements could be encoded using words of length m in a

binary alphabet such as the digits 0, 1 of binary arithmetic (or fA;Bg in the case of

Wilkins). Then an e±cient or minimum set of yes-or-no questions it takes in general

to distinguish the elements are the m questions:

Is the jth digit in the binary code for the hidden element a 1?

for j ¼ 1; . . . ;m. Each element is distinguished from any other element by their

binary codes di®ering in at least one digit. The information gained in ¯nding the

outcome of an equiprobable binary trial, like °ipping a fair coin, is what Shannon

calls a bit (derived from `̀ binary digit"). Hence the information gained in dis-

tinguishing all the elements out of 2m equiprobable elements is:

m ¼ log2ð2mÞ ¼ log2ðjU jÞ ¼ log2ð1=pÞbits ð1Þ

aThis is often formulated in terms of the search [23] for a designated hidden element like the answer in a

Twenty Questions game or the sent message in a communication. But being able to always ¯nd the
designated element is equivalent to being able to distinguish all elements from one another. That is, if the

designated element was in a set of two or more elements that had not been distinguished from one another,

then one would not be able to single out the designated element.
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where p ¼ 1=2m is the probability of any given element. In the more general case

where jU j ¼ n is not a power of 2, then the Shannon–Hartley information content

for an equiprobable set U gained in distinguishing all the elements is taken to be

log2ðnÞ ¼ log2ð1=pÞ bits where p ¼ 1=n.

3. Shannon Entropy of a Probability Distribution

This interpretation of the special case of 2m or more generally n equiprobable

elements is extended to an arbitrary ¯nite probability distribution p ¼ ðp1; . . . ; pnÞ
by an averaging process (where jU j ¼ nÞ. For the ith outcome (i ¼ 1; . . . ; n), its

probability pi is `̀ as if " it were drawn from a set of (1=pi) equiprobable elements

(ignoring that (1=pi)) may not be an integer for this averaging argument) so the

Shannon–Hartley information content of distinguishing the equiprobable elements of

such a set would be log2ð1=piÞ. But that occurs with probability pi so the prob-

abilistic average gives the usual de¯nition of the:

HðpÞ ¼
Xn
I¼1

pi log2ð1=piÞ ¼ �
Xn
i¼1

pi log2ðpiÞ ð2Þ

Shannon entropy of a finite probability distribution p:

For the uniform distribution pi ¼ 1=n, the Shannon entropy has it maximum value

of log2ðnÞwhile the minimum value is 0 for the trivial distribution p ¼ ð1; 0; . . . ; 0Þ so
that:

0 � HðpÞ � log2ðnÞ:

4. A Statistical Treatment of Shannon Entropy

Shannon makes this heuristic averaging argument rigorous by using the law of large

numbers. Suppose that we have a three-letter alphabet fa; b; cg where each letter was

equiprobable, pa ¼ pb ¼ pc ¼ 1=3, in a multi-letter message. Then a one-letter or

two-letter message cannot be exactly coded with a binary 0, 1 code with equiprobable

0's and 1's. But any probability can be better and better approximated by longer and

longer representations in the binary number system. Hence we can consider longer

and longer messages of N letters along with better and better approximations with

binary codes. The long run behavior of messages u1u2; . . . ; uN where ui 2 fa; b; cg is

modeled by the law of large numbers so that the letter a will tend to occur paN ¼
ð1=3ÞN times and similarly for b and c. Such a message is called typical.

The probability of any one of those typical messages is:

ppaN
a ppbN

b ppcN
c ¼ ½ppa

a ppb
b p

pc
c �N ð3Þ

or, in this case, ð1=3ÞN . Hence the number of such typical messages is 3N .

If each message was assigned a unique binary code, then the number of 0, 1's in

the code would have to be X where 2X ¼ 3N or X ¼ log2ð3N Þ ¼ N log2ð3Þ. Hence the
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number of equiprobable binary questions or bits needed per letter of the messages is:

N log2ð3Þ=N ¼ log2ð3Þ ¼ 3� ð1=3Þlog2ð1=ð1=3ÞÞ ¼ HðpÞ: ð4Þ
This example shows the general pattern.

In the general case, let p ¼ ðp1; . . . ; pnÞ be the probabilities over a n-letter

alphabet A ¼ fa1; . . . ; ang. In an N -letter message, the probability of a particular

message u1u2; . . . ; uN is
YN

i¼1 PrðuiÞ where ui could be any of the symbols in the

alphabet so if ui ¼ aj then PrðuiÞ ¼ pj .

In a typical message, the i th symbol will occur piN times (law of large numbers)

so the probability of a typical message is (note change of indices to the letters of the

alphabet):

Yn
k¼1

ppkN
k ¼

Yn
k¼1

ppk
k

" #
N

: ð5Þ

Since the probability of a typical message is PN for P ¼Yn
k¼1 p

pk
k , the typical

messages are equiprobable. Hence the number of typical messages is ½Yn
k¼1 p

�pk
k �N

and assigning a unique binary code to each typical message requires X bits where

2X ¼ ½Yn
k¼1 p

�pk
k �N and where:

X ¼ log2
Yn
k¼1

p�pk
k

" #
N

( )
¼ N log2

Yn
k¼1

p�pk
k

" #

¼ N
Xn
k¼1

log2ðp�pk
k Þ ¼ �N

Xn
k¼1

pk log2ðpkÞ

¼ N
X
k

pk log2ð1=pkÞ ¼ NHðpÞ: ð6Þ

Hence the Shannon entropy H ðpÞ ¼Pkpk log2ð1=pkÞ is interpreted as the limiting

average number of bits necessary per letter in the message. In terms of distinctions,

this is the average number of binary partitions necessary per letter to distinguish the

messages.

5. Shannon Entropy of a Partition

Entropy can also be de¯ned for a partition on a set. A partition � ¼ fBg on a ¯nite

set U is a set of non-empty disjoint subsets of U whose union is U . If the elements of

U are equiprobable, then the probability that a randomly drawn element is in a block

B 2 � is pB ¼ jBj=jU j. Then we have the:

Hð�Þ ¼
X
B2�

pB log2ð1=pBÞ ð7Þ

Shannon entropy of a partition �:

A partition � ¼ fBg re¯nes a partition � ¼ fCg, written � � �, if each block B 2 �

is contained in some block C 2 �. The most re¯ned partition is the discrete partition
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1 ¼ ffuggu2U of singleton blocks fug and the least re¯ned partition is the indiscrete

partition 0 ¼ fUg whose only block is all of U . The special case of � ¼ 1 gives

the Hartley information content or Shannon entropy log2ðnÞ of a set of equiprobable

elements. In the more general case where the elements of U ¼ fu1; . . . ; ung are

considered as the distinct values of a random variable u with the probabilities

p ¼ ðp1; . . . ; pnÞ, the induced block probabilities would be pB ¼Pu2Bpu and then the

Shannon entropy of the discrete partition � ¼ 1 is the same as the Shannon entropy

of the probability distribution p.

6. Whence \Entropy"?

The functional form of Shannon's formula is often further `̀ justi¯ed" or `̀ motivated"

by asserting that it is the same as the notion of entropy in statistical mechanics, and

hence the name `̀ entropy." The name `̀ entropy" is here to stay but the justi¯cation

by reference to statistical mechanics is not quite correct. The connection between

entropy in statistical mechanics and Shannon's entropy is only via a numerical

approximation, the Stirling approximation, where if the ¯rst two terms in the Stir-

ling approximation are used, then the Shannon formula is obtained.

The ¯rst two terms in the Stirling approximation for lnðN !Þ are: lnðN !Þ �
N lnðNÞ �N . The ¯rst three terms in the Stirling approximation are: lnðN !Þ �
NðlnðNÞ � 1Þ þ ð1=2Þ lnð2�NÞ.

If we consider a partition on a ¯nite U with jU j ¼ N , with n blocks of size

N1; . . . ;Nn, then the number of ways of distributing the individuals in these n boxes

with those numbers Ni in the ith box is: W ¼ N !=ðN1!� � � � � Nn!Þ. The normalized

natural log of W , S ¼ ð1=NÞ lnðW Þ is one form of entropy in statistical mechanics.

Indeed, the formula S ¼ k logðW Þ is engraved on Boltzmann's tombstone.

The entropy formula can then be developed using the ¯rst two terms in the

Stirling approximation.

S ¼ 1

N
lnðW Þ ¼ 1

N
ln

N !

N1!� � � � � Nn!

� �
¼ 1

N
lnðN !Þ �

X
i

lnðNi!Þ
" #

� 1

N
N ½lnðNÞ � 1� �

X
i

Ni½lnðNiÞ � 1�
" #

¼ 1

N
N lnðNÞ �

X
i

Ni lnðNiÞ
" #

¼ 1

N

X
Ni lnðNÞ �

X
Ni lnðNiÞ

h i

¼ 1

N
N lnðNÞ �

X
Ni lnðNiÞ

h i
¼ 1

N

X
Ni lnðNÞ �

X
Ni lnðNiÞ

h i

¼
X

NiN ln
1

Ni=N

� �
¼
X

pi ln
1

pi

� �
¼ HeðpÞ ð8Þ

where pi ¼ Ni=N (and where the formula with logs to the base e only di®ers from the

usual base 2 formula by a scaling factor). Shannon's entropy HeðpÞ is in fact an
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excellent numerical approximation to S ¼ ð1=NÞ lnðW Þ for large N (e.g. in statistical

mechanics).

But the common claim is that Shannon's entropy has the same functional form as

entropy in statistical mechanics, and that is simply false. If we use a three-term

Stirling approximation, then we obtain an even better numerical approximationb:

S ¼ 1

N
lnðW Þ � HeðpÞ þ

1

2N
ln

2�Nn

ð2�ÞnQ pi

� �
ð9Þ

but no one would suggest using that `̀ entropy" formula in information theory.

Shannon's formula should be justi¯ed and understood by the arguments given pre-

viously, and not by over-interpreting the numerically approximate relationship with

entropy in statistical mechanics.

7. Logical Entropy

7.1. Partition logic

The logic normally called `̀ propositional logic" is a special case of the logic of subsets

originally developed by George Boole [3]. In the Boolean logic of subsets of a ¯xed

non-empty universe set U , the variables in formulas refer to subsets S � U and the

logical operations such as the join S _ T , meet S ^ T , and implication S ) T are

interpreted as the subset operations of union S [ T , intersection S \ T , and the

conditional S ) T ¼ S c [ T . Then `̀ propositional" logic is the special case where

U ¼ 1 is the one-element set whose subsets � and 1 are interpreted as the truth

values 0 and 1 (or false and true) for propositions.

In subset logic, a valid formula or tautology is a formula such as ðS ^ ðS ) TÞÞ )
T where for any non-empty U , no matter what subsets of U are substituted for the

variables, the whole formula evaluates to U . It is a theorem that if a formula is valid

just for the special case of U ¼ 1, then it is valid for any U . But in `̀ propositional"

logic, the `̀ truth-table" version of a tautology is usually given as a de¯nition, not as a

theorem in subset logic (see any textbook on `̀ propositional" logic).

What is lost by using the special case of propositional logic rather than Boole's

original version of subset logic? At least two things are lost and both are relevant for

our development.

Firstly if it is developed as the logic of subsets, then it is natural, as Boole did, to

attach a quantitative measure to each subset S of a ¯nite universe U , namely its

relative cardinality jSj=jU j which can be as the logical probability PrðSÞ (where the
elements of U are assumed equiprobable) of randomly drawing an element from S .

Secondly, the notion of a subset (unlike the notion of a proposition) has a

mathematical dual in the notion of a quotient set, as is evidenced by the dual

interplay between subobjects (subgroups, subrings, . . .) and quotient objects

bMacKay [20, p. 2] uses Stirling's approximation to give another `̀ more accurate approximation" to the

entropy of statistical mechanics than the Shannon entropy for the case n ¼ 24.
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throughout abstract algebra. This duality is the `̀ turn-around-the-arrows" category-

theoretic duality, e.g. between monomorphisms and epimorphisms, applied to sets

[19]. The notion of a quotient set of U is equivalent to the notion of an equivalence

relation on U or a partition � ¼ fBg of U . When Boole's logic is seen as the logic of

subsets (rather than propositions), then the notion arises of a dual logic of partitions

which has only recently been developed [6].

7.2. Logical entropy

Going back to the original idea of information as making distinctions, a distinction or

dit of a partition � ¼ fBg of U is an ordered pair ðu; u 0Þ of elements u; u 0 2 U that

are in di®erent blocks of the partition. The notion of `̀ a distinction of a partition"

plays the analogous role in partition logic as the notion of `̀ an element of a subset" in

logic. The set of distinctions of a partition � is its dit set ditð�Þ. The subsets of U are

partially ordered by inclusion with the universe set U as the top of the order and the

empty set � as the bottom of the order. The partitions of U are partially ordered by

re¯nement, which is just the inclusion of dit sets, with the discrete partition 1 as the

top of the order and the indiscrete partition 0 as the bottom. Only the self-pairs

ðu; uÞ 2 � � U � U of the U � U of the diagonal � can never be a distinction. All

the possible distinctions U � U �� are the dits of 1 and no dits are distinctions of 0

just as all the elements are in U and none in �.

In this manner, we can construct a table of analogies between subset logic and

partition logic (Table 1).

But for our purposes here, the key analogy is the quantitative measure

PrðSÞ ¼ jS j=jU j, the normalized number of elements in a subset S for ¯nite U . In

view of the analogy between elements in subset logic and dits in partition logic, the

construction analogous to the logical probability PrðSÞ ¼ jSj=jU j as the normalized

number of elements of a subset would be the normalized number of distinctions of a

partition � on a ¯nite U . That is the de¯nition of the:

hð�Þ ¼ jditð�Þj
jU � U j ð10Þ

Logical entropy of a partition �:

Table 1. Analogies between subset and partition logics.

Subset logic Partition logic

`̀ Elements" Elements u of S Dits ðu; u 0Þ of �
Order Inclusion Re¯nement: ditð�Þ � ditð�Þ
Top of order U all elements ditð1Þ ¼ U 2 ��; all dits
Bottom of order � no elements ditð0Þ ¼ �; no dits

Variables in formulas Subsets S of U Partitions � on U

Operations Subset ops. Partition ops. [6]

Formula �ðx; y; . . .Þ holds u element of �ðS ;T ; . . .Þ ðu; u 0Þ a dit of �ð�; �; . . .Þ
Valid formula �ðS ;T ; . . .Þ ¼ U ; 8 S ;T ; . . . �ð�; �; . . .Þ ¼ 1;8�; �; . . .
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In a random (i.e. equiprobable) drawing of an element from U , the event S occurs

with the probability PrðSÞ. If we take two independent (i.e. with replacement)

random drawings from U , i.e. pick a random pair from U � U , then hð�Þ is the

probability that the pair is a distinction of �, i.e. that � distinguishes. These

analogies are summarized in Table 2.

Thus we might say that the logical entropy hð�Þ of a partition � is to partition

logic as the logical probability PrðSÞ of a subset S is to subset logic.

To generalize logical entropy from partitions to ¯nite probability distributions,

note that:

ditð�Þ ¼ fB � B 0;B 2 �;B 6¼ B 0g ¼ U � U � fB � B;B 2 �g: ð11Þ

Using pB ¼ jBj=jU j, we have:

hð�Þ ¼ jditð�Þj
jU � U j ¼

jU j2 �PB2� jBj2
jU j2

¼ 1�
X
B2�

ðjBj=jU jÞ2

¼ 1�
X
B2�

p2
B: ð12Þ

An ordered pair ðu; u 0Þ 2 B � B for B 2 � is an indistinction or indit of � where

inditð�Þ ¼ U � U � ditð�Þ. Hence in a random drawing of a pair from U � U ,
P

B2�
p2
B is the probability of drawing an indistinction, which agrees with hð�Þ ¼

1�PB2�p2
B being the probability of drawing a distinction.

In the more general case, we assume a random variable u with the probability

distribution p ¼ ðp1; . . . ; pnÞ over the n values U ¼ fu1; . . . ; ung. Then with the usual

pB ¼Pu2Bpu, we the notion hð�Þ ¼ 1�PB2�p2
B of the logical entropy of a partition

� on a set U with the point probabilities p ¼ ðp1; . . . ; pnÞ. Note that the probability

interpretation of the logical entropy still holds (even though the pairs ðu; u 0Þ are no
longer equiprobable) since:

p2
B ¼

X
u2B

pu

 !
2

¼
X

u;u 02B
pupu 0 ð13Þ

Table 2. Quantitative analogies between subset and partition logics.

Subset logic Partition logic

`̀ Outcomes" Elements u of S Ordered pairs ðu; u 0Þ 2 U �U

`̀ Events" Subsets S of U Partitions � of U
`̀ Event occurs" u 2 S ðu; u 0Þ 2 ditð�Þ
Quant. measure PrðSÞ ¼ jS j=jU j hð�Þ ¼ jditð�Þj=jU �U j
Random drawing Prob. event S occurs Prob. partition � distinguishes

128 D. Ellerman



is the probability of drawing an indistinction from B � B. Hence
P

B2�p2
B is still the

probability of drawing an indistinction of �, and the complement hð�Þ the prob-

ability of drawing a distinction.

In the case of the discrete partition, we have the:

hðpÞ ¼ 1�
X
i

p2
i ¼

X
i

pið1� piÞ ð14Þ

Logical entropy of a finite probability distribution p:

For the uniform distribution pi ¼ 1=n, the logical entropy has its maximum value

of 1� 1=n (regardless of the ¯rst draw, the probability that the second draw is

di®erent is 1� 1=n), and the logical entropy has its minimum value of 0 for p ¼
ð1; 0; . . . ; 0Þ so that: 0 ¼ hðpÞ ¼ 1� 1=n.

The two entropies of a probability distribution p or generally of a partition � with

given point probabilities p can now be compared:

Hð�Þ ¼
X
B2�

pB log2ð1=pBÞ and hð�Þ ¼
X
B2�

pBð1� pBÞ: ð15Þ

If we de¯ne the Shannon set entropy as H ðBÞ ¼ log2ð1=pBÞ (the Shannon–Hartley

information content for the set BÞ and the logical set entropy as hðBÞ ¼ 1� pB ,

then each entropy is just the average of the set entropies weighted by the block

probabilities:

Hð�Þ ¼
X
B2�

pBHðBÞ and hð�Þ ¼
X
B2�

pBhðBÞ ð16Þ

where the set entropies are precisely related: hðBÞ ¼ 1� 1=2HðBÞ and HðBÞ ¼
log2½1=ð1� hðBÞÞ�.

8. A Brief History of the Logical Entropy Formula

The logical entropy formula hðpÞ ¼Pipið1� piÞ ¼ 1�Pip
2
i is the probability of

getting distinct values ui 6¼ uj in two independent samplings of the random variable

u. The complementary measure 1� hðpÞ ¼Pip
2
i is the probability that the two

drawings yield the same value from U . Thus hðpÞ ¼ 1�Pip
2
i is a measure of het-

erogeneity or diversity in keeping with our theme of information as distinctions,

while the complementary measure 1� hðpÞ ¼Pip
2
i is a measure of homogeneity or

concentration. Historically, the formula can be found in either form depending on the

particular context. The pi's might be relative shares such as the relative share of

organisms of the ith species in some population of organisms, and then the

interpretation of pi as a probability arises by considering the random choice of an

organism from the population.

According to Good, the formula has a certain naturalness: `̀ If p1; . . . ; pt are the

probabilities of t mutually exclusive and exhaustive events, any statistician of this
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century who wanted a measure of homogeneity would have take about two seconds

to suggest
P

ip
2
i which I shall call %." [12, p. 561] As noted by Bhargava and Up-

puluri [2], the formula 1�Pip
2
i was used by Gini in 1912 ([8] reprinted in [9, p. 369])

as a measure of `̀ mutability" or diversity. But another development of the formula

(in the complementary form) in the early twentieth century was in cryptography.

The American cryptologist, William Friedman, devoted a 1922 book [7] to the `̀ index

of coincidence" (i.e.
P

ip
2
i Þ. Solomon Kullback (see the Kullback-Leibler divergence

treated later) worked as an assistant to Friedman and wrote a book on cryptology

which used the index [18].

During World War II, Alan Turing worked for a time in the Government Code

and Cypher School at the Bletchley Park facility in England. Probably unaware of

the earlier work, Turing used
P

ip
2
i in his cryptoanalysis work and called it the repeat

rate since it is the probability of a repeat in a pair of independent draws from a

population with those probabilities (i.e. the identi¯cation probability 1� hðpÞ ¼P
ip

2
i Þ. Polish cryptoanalyists had independently used the repeat rate in their work

on the Enigma [24].

After the war, Edward Simpson, a British statistician, proposed
P

Bp
2
B as a

measure of species concentration (the opposite of diversity) where � is the partition

of animals or plants according to species and where each animal or plant is considered

as equiprobable. And Simpson gave the interpretation of this homogeneity measure

as `̀ the probability that two individuals chosen at random and independently from

the population will be found to belong to the same group." [28, p. 688] Hence 1�P
Bp

2
B is the probability that a random ordered pair will belong to di®erent species,

i.e. will be distinguished by the species partition. In the biodiversity literature [25],

the formula is known as `̀ Simpson's index of diversity" or sometimes, the `̀ Gini-

Simpson diversity index." However, Simpson along with Good worked at Bletchley

Park during WWII, and, according to Good, `̀ Simpson and I both obtained the

notion [the repeat rate] from Turing." [11, p. 395] When Simpson published the index

in 1948, he (again, according to Good) did not acknowledge Turing `̀ fearing that to

acknowledge him would be regarded as a breach of security." [12, p. 562].

In 1945, Albert Hirschman ([15, p. 159] and [16]) suggested using
ffiffiffiffiffiffiffiffiffiffiffiP

p2
i

p
as an

index of trade concentration (where pi is the relative share of trade in a certain

commodity or with a certain partner). A few years later, Orris Her¯ndahl [14]

independently suggested using
P

ip
2
i as an index of industrial concentration (where

pi is the relative share of the i th ¯rm in an industry). In the industrial economics

literature, the index H ¼Pip
2
i is variously called the Hirschman–Her¯ndahl index,

the HH index, or just the H index of concentration. If all the relative shares were

equal (i.e. pi ¼ 1=n), then the identi¯cation or repeat probability is just the prob-

ability of drawing any element, i.e. H ¼ 1=n, so n ¼ 1=H is the number of equal

elements. This led to the `̀ numbers equivalent" interpretation of the reciprocal of the

H index [1]. In general, given an event with probability p0, the `̀ numbers-equivalent"

interpretation of the event is that it is `̀ as if " an element was drawn out of a set of

1=p0 equiprobable elements (it is `̀ as if " since 1=p0 need not be an integer).
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In view of the frequent and independent discovery and rediscovery of the formulaP
ip

2
i or its complement 1�Pip

2
i by Gini, Friedman, Turing, Hirschman, Her¯n-

dahl, and no doubt others, Good wisely advises that `̀ it is unjust to associate % with

any one person." [12, p. 562]

Two elements from U ¼ fu1; . . . ; ung are either identical or distinct. Gini [8]

introduced dij as the `̀ distance" between the i th and j th elements where dij ¼ 1 for

i 6¼ j and dii ¼ 0. Since 1 ¼ ðp1 þ � � � þ pnÞðp1 þ � � � þ pnÞ ¼
P

ip
2
i þ

P
i 6¼jpipj , the

logical entropy, i.e. Gini's index of mutability, hðpÞ ¼ 1�Pip
2
i ¼

P
i 6¼jpipj , is the

average logical distance between a pair of independently drawn elements. But one

might generalize by allowing other distances dij ¼ dji for i 6¼ j (but always dii ¼ 0Þ so
that Q ¼Pi 6¼jdijpipj would be the average distance between a pair of independently

drawn elements from U . In 1982, Rao introduced precisely this concept as quadratic

entropy [22]. In many domains, it is quite reasonable to move beyond the bare-bones

logical distance of dij ¼ 1 for i 6¼ j (i.e. the complement 1� �ij of the Kronecker

delta) so that Rao's quadratic entropy is a useful and easily interpreted generaliz-

ation of logical entropy.

9. Mutual Information for Shannon Entropies

9.1. The case for partitions

Given two partitions � ¼ fBg and � ¼ fCg on a set U , their join � _ � is the par-

tition on U whose blocks are the non-empty intersections B \ C . The join � _ � is the

least upper bound of both � and � in the re¯nement ordering of partitions on U .

To motivate's Shannon's treatment of mutual information, we might apply some

Venn diagram heuristics using a block B 2 � and a block C 2 �. We might take the

block entropy HðBÞ ¼ logð1=pBÞ as representing `̀ the information contained in B"

and similarly for C while HðB \ C Þ ¼ logð1=PB\C Þ might be taken as the `̀ union of

the information in B and in C" (the more re¯ned blocks in � _ � makes more dis-

tinctions). Hence the overlap or `̀ mutual information" in B and C could be motiv-

ated, using the inclusion-exclusion principle,c as the sum of the two informations

minus the union (all logs to base 2):

I ðB;CÞ ¼ log
1

pB

� �
þ log

1

pC

� �
� log

1

pB\C

� �
¼ log

pB\C
pBpC

� �
: ð17Þ

Then the Shannon mutual information in the two partitions is obtained by averaging

over the mutual information for each pair of blocks from the two partitions:

I ð�; �Þ ¼
X
B;C

pB\C log
pB\C
pBpC

� �
: ð18Þ

cThe inclusion-exclusion principle for the cardinality of subsets is: jB [ C j ¼ jBj þ jC j � jB \ C j.
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The mutual information can be expanded to obtain the inclusion-exclusion principle

built into the Venn diagram heuristics:

I ð�; �Þ ¼
X
B;C

pB\C log
pB\C
pBpC

� �

¼
X
B;C

pB\C logðpB\C Þ þ
X
B;C

pB\C logð1=pBÞ þ
X
B;C

pB\C logð1=pC Þ

¼ � Hð� _ �Þ þ
X
B2�

pB logð1=pBÞ þ
X
2�

pC logð1=pC Þ

¼ Hð�Þ þHð�Þ � Hð� _ �Þ: ð19Þ
Inclusion-exclusion analogy for Shannon entropies of partitions:

9.2. The case for joint distributions

To move from partitions to probability distributions, consider two ¯nite sets X and

Y , and a joint probability distribution pðx; yÞ where
P

x;ypðx; yÞ ¼ 1 with

pðx; yÞ � 0, i.e. a random variable with values in X � Y . The marginal distributions

are de¯ned as usual: pðxÞ ¼Pypðx; yÞ and pðyÞ ¼Pxpðx; yÞ. Then replacing the

block probabilities pB\C in the join � _ � by the joint probabilities pðx; yÞ and the

probabilities in the separate partitions by the marginals (since pB ¼PC2�pB\C and

pC ¼PB2�pB\C Þ, we have the de¯nition:

I ðx; yÞ ¼
X
x;y

pðx; yÞ log pðx; yÞ
pðxÞpðyÞ
� �

ð20Þ

Shannon mutual information in a joint probability distribution:

Then the same proof carries over to give [where we write HðxÞ instead of HðpðxÞÞ
and similarly for HðyÞ and Hðx; yÞ]:

( ) ( ) ( ) (    )−+=

Fig. 1. Inclusion-exclusion analogy for Shannon entropies of probability distributions.
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10. Mutual Information for Logical Entropies

10.1. The case for partitions

If the `̀ atom" of information is the distinction or dit, then the atomic information in a

partition � is its dit set, ditð�Þ. The information common to two partitions � and �,

their mutual information set, would naturally be the intersection of their dit sets

(which is not necessarily the dit set of a partition):

Mutð�; �Þ ¼ ditð�Þ \ ditð�Þ: ð21Þ
It is an interesting and not completely trivial fact that as long as neither � nor � are

the indiscrete partition 0 (where ditð0Þ ¼ �Þ, then � and � have a distinction in

common.

Theorem 1. Given two partitions � and � on U with � 6¼ 0 and � 6¼ 0;

Mutð�; �Þ 6¼ �.

Proof. Since � is not the indiscrete partition, consider two elements u and u 0

distinguished by � but identi¯ed by � [otherwise ðu; u 0Þ 2 Mutð�; �Þ and we are

¯nished]. Since � is also not the indiscrete partition, there must be a third element u 00

not in the same block of � as u and u 0. But since u and u 0 are in di®erent blocks of �,

the third element u 00 must be distinguished from one or the other or both in �. Hence

ðu; u 00Þ or ðu 0; u 00Þ must be distinguished by both partitions and thus must be in their

mutual information set Mutð�; �Þ.
The contrapositive of this proposition is also interesting. Given two equivalence

relations E1;E2 � U � U , if every pair of elements u; u 0 2 U is identi¯ed by one

or the other of the relations, i.e. E1 [ E2 ¼ U �U , then either E1 ¼ U �U or

E2 ¼ U �U .

The dit sets ditð�Þ and their complementary indit sets (¼ equivalence relations)

inditð�Þ ¼ U 2 � ditð�Þ are easily characterized as:

inditð�Þ ¼
[
B2�

B � B and ditð�Þ ¼
[

B 6¼B 0
B � B 0 ¼ U �U � inditð�Þ: ð22Þ

The mutual information set can also be characterized in this manner.

Theorem 2. Given partitions � ¼ fBg and � ¼ fCg, then
Mutð�; �Þ ¼

[
B;C

ðB � CÞ � ðC � BÞ:

Proof. The union (which is a disjoint union) will include the pairs ðu; u 0Þ where for
some B 2 � and C 2 �, u 2 B � ðB \ CÞ ¼ B � C and u 0 2 C � ðB \ C Þ ¼ C � B.

Since u 0 is in C but not in the intersection B \ C , it must be in a di®erent block of �

than B so ðu; u 0Þ 2 ditð�Þ. Symmetrically, ðu; u 0Þ 2 ditð�Þ so ðu; u 0Þ 2 Mutð�; �Þ ¼
ditð�Þ \ ditð�Þ. Conversely if ðu; u 0Þ 2 Mutð�; �Þ then take the B containing u and

the C containing u 0. Since ðu; u 0Þ is distinguished by both partitions, u 62 C and

u 0 62 B so that ðu; u 0Þ 2 ðB � ðB \ CÞÞ � ðC � ðB \ C ÞÞ.
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The probability that a pair randomly chosen from U �U would be distinguished

by � and � would be given by the relative cardinality of the mutual information set

which is the:

mð�; �Þ ¼ jditð�Þ \ ditð�Þj
jU � U j ¼ probability that � and � distinguishes ð23Þ

Mutual logical information of � and �:

Then we may make an actual (i.e. non-heuristic) application of the inclusion-

exclusion principle to obtain:

jMutð�; �Þj ¼ jditð�Þ \ ditð�Þj ¼ jditð�Þj þ jditð�Þj � jditð�Þ [ ditð�Þj: ð24Þ
It is easily checked that the dit set ditð� _ �Þ of the join of two partitions is the union

of their dits sets: ditð� _ �Þ ¼ ditð�Þ [ ditð�Þ.d Normalizing, the probability that a

random pair is distinguished by both partitions is given by the inclusion-exclusion

principle:

mð�; �Þ ¼ hð�Þ þ hð�Þ � hð� _ �Þ: ð25Þ
Inclusion-exclusion principle for logical entropies of partitions:

This can be extended after the fashion of the inclusion-exclusion principle to any

number of partitions.

The mutual information set Mutð�; �Þ is not necessarily the dit set of a partition.

But given any subset S � U � U such as Mutð�; �Þ, there is a unique largest dit set

contained in S which might be called the interior intðSÞ of S. As in the topological

context, the interior of a subset is de¯ned as the `̀ complement of the closure of the

complement" but in this case, the `̀ closure" is the re°exive-symmetric-transitive (rst)

closure and the `̀ complement" is within U � U . We might apply more topological

terminology by calling the binary relations E � U � U closed if they equal their rst-

closures, in which case the closed subsets of U � U are precisely the indit sets of some

partition or in more familiar terms, precisely the equivalence relations on U . Their

complements might thus be called the open subsets which are precisely the dit sets of

some partition, i.e. the complements of equivalence relations which might be called

partition relations (sometimes called `̀ apartness relations" in computer science).

Indeed, the mapping � ! ditð�Þ is a representation of the lattice of partitions on U

by the open subsets of U � U . While the topological terminology is convenient, the

rst-closure operation is not a topological closure operation since the union of two

closed sets is not necessarily closed. Thus the intersection of two open subsets is not

necessarily open as is the case with Mutð�; �Þ ¼ ditð�Þ \ ditð�Þ. But by taking the

interior, we obtain the dit set of the partition meet:

ditð� ^ �Þ ¼ int½ditð�Þ \ ditð�Þ�: ð26Þ

dBut nota bene, the dit sets for the other partition operations are not so simple.
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In general, the partition operations corresponding to the usual binary subset oper-

ations of subset logic can be de¯ned by applying the subset operations to the dit sets

and then taking the interior of the result so that, for instance, the partition impli-

cation operation can be de¯ned by:

ditð� ) �Þ ¼ int½ditð�Þc [ ditð�Þ�: ð27Þ
The equivalent but more perspicuous de¯nition of � ) � is the partition that is like �

except that whenever a block B 2 � is contained in a block C 2 �, then B is

`̀ discretized" in the sense of being replaced by all the singletons fug for u 2 B. Then

it is immediate that the re¯nement � � � holds i® � ) � ¼ 1, as we would expect

from the corresponding relation in subset logic, S � T i® S ) T ¼ S c [ T ¼ U .

10.2. The case for joint distributions

Consider again a joint distribution pðx; yÞ over X �Y for ¯nite X and Y. Intuitively,

the mutual logical information m(x, y) in the joint distribution pðx; yÞ would be the

probability that a sampled pair ðx; yÞ would be a distinction of pðxÞ and a distinction

of pðyÞ. That means for each probability pðx; yÞ, it must be multiplied by the

probability of not drawing the same x and not drawing the same y (e.g. in a second

independent drawing). In the Venn diagram, the area or probability of the drawing

that x or that y is pðxÞ þ pðyÞ � pðx; yÞ (correcting for adding the overlap twice) so

the probability of getting neither that x nor that y is the complement:

1� pðxÞ � pðyÞ þ pðx; yÞ ¼ ð1� pðxÞÞ þ ð1� pðyÞÞ � ð1� pðx; yÞÞ ð28Þ
where 1� pðx; yÞ is the area of the union of the two circles.

Hence we have:

mðx; yÞ ¼
X
x;y

pðx; yÞ½1� pðxÞ � pðyÞ þ pðx; yÞ� ð29Þ

Logical mutual information in a joint probability distribution:

The probability of two independent draws di®ering in either the x or the y is just

the logical entropy of the joint distribution:

hðx; yÞ ¼
X
x;y

pðx; yÞ½1� pðx; yÞ� ¼ 1�
X
x;y

pðx; yÞ2: ð30Þ

Fig. 2. ½1� pðxÞ� þ ½1� pðyÞ� � ½1� pðx; yÞ� ¼ shaded area in Venn diagram for X �Y .
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Using a little algebra to expand the logical mutual information:

mðx; yÞ ¼
X
x;y

pðx; yÞ½ð1� pðxÞÞ þ ð1� pðyÞÞ � ð1� pðx; yÞÞ�

¼ hðxÞ þ hðyÞ � hðx; yÞ ð31Þ
Inclusion-exclusion principle for logical entropies of joint distributions:

11. Independence

11.1. Independent partitions

Two partitions � and � are said to be (stochastically) independent if for all B 2 � and

C 2 �, pB\C ¼ pBpC . If � and � are independent, then:

I ð�; �Þ ¼
X
B;C

pB\C log
pB\C
pBpC

� �
¼ 0 ¼ Hð�Þ þ Hð�Þ �H ð� _ �Þ; ð32Þ

so that:

Hð� _ �Þ ¼ Hð�Þ þHð�Þ ð33Þ
Shannon entropy for partitions additive under independence:

In ordinary probability theory, two events E;E 0 � U for a sample space U are

said to be independent if PrðE \ E 0Þ ¼ PrðEÞPrðE 0Þ. We have used the motivation

of thinking of a partition-as-dit-set ditð�Þ as an `̀ event" in a sample space U �U

with the probability of that event being hð�Þ, the logical entropy of the partition.

The following proposition shows that this motivation extends to the notion of

independence.

Theorem 3. If � and � are (stochastically) independent partitions, then their dit sets

ditð�Þ and ditð�Þ are independent as events in the sample space U � U (with

equiprobable points).

Proof. For independent partitions � and �, we need to show that the probability

mð�, �Þ of the event Mutð�; �Þ ¼ ditð�Þ \ ditð�Þ is equal to the product of the

Fig. 3. mðx; yÞ ¼ hðxÞ þ hðyÞ � hðx; yÞ ¼ shaded area in Venn diagram for ðX �Y Þ2.
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probabilities hð�Þ and hð�Þ of the events ditð�Þ and ditð�Þ in the sample space

U �U . By the assumption of stochastic independence, we have jB \ C j=jU j ¼
pB\C ¼ pBpC ¼ jBjjC j=jU j2 so that jB \ C j ¼ jBjjC j=jU j. By the previousTheorem 2

for the mutual information set: Mutð�; �Þ ¼ [B;C ðB � ðB \ C ÞÞ � ðC � ðB \ CÞÞ,
where the union is disjoint so that:

jMutð�; �Þj ¼
X
B;C

ðjBj � jB \ C jÞðjC j � jB \ C jÞ

¼
X
B;C

jBj � jBjjC j
jU j

� �
jC j � jBjjC j

jU j
� �

¼ 1

jU j2
X
B;C

jBjðjU j � jC jÞjC jðjU j � jBjÞ

¼ 1

jU j2
X
B

jBjjU � Bj
X
C

jC jjU � C j ¼ 1

jU j2 jditð�Þjjditð�Þj ð34Þ

so that:

mð�; �Þ ¼ jMutð�; �Þj
jU j2 ¼ jditð�Þj

jU j2
jditð�Þj
jU j2 ¼ hð�Þhð�Þ: ð35Þ

Hence the logical entropies behave like probabilities under independence; the prob-

ability that � and � distinguishes, i.e. mð�; �Þ, is equal to the probability hð�Þ that �
distinguishes times the probability hð�Þ that � distinguishes:

mð�; �Þ ¼ hð�Þhð�Þ ð36Þ
Logical entropy multiplicative under independence:

It is sometimes convenient to think in the complementary terms of an equivalence

relation `̀ identifying" rather than a partition distinguishing. Since hð�Þ can be

interpreted as the probability that a random pair of elements from U are dis-

tinguished by �, i.e. as a distinction probability, its complement 1� hð�Þ can be

interpreted as an identi¯cation probability, i.e. the probability that a random pair is

identi¯ed by � (thinking of � as an equivalence relation on UÞ. In general,

½1� hð�Þ�½1� hð�Þ� ¼ 1� hð�Þ � hð�Þ þ hð�Þhð�Þ
¼ ½1� hð� _ �� þ ½hð�Þhð�Þ �mð�; �Þ� ð37Þ

which could also be rewritten as:

x½1� hð� _ �Þ� � ½1� hð�Þ�½1� hð�Þ� ¼ mð�; �Þ � hð�Þhð�Þ: ð38Þ
Thus if � and � are independent, then the probability that the join partition � _ �

identi¯es is the probability that � identi¯es times the probability that � identi¯es:

½1� hð� _ �Þ� ¼ ½1� hð�Þ�½1� hð�Þ�: ð39Þ
Multiplicative identification probabilities under independence:
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11.2. Independent joint distributions

A joint probability distribution pðx; yÞ on X � Y is independent if each value is the

product of the marginals: pðx; yÞ ¼ pðxÞpðyÞ.
For an independent distribution, the Shannon mutual information

I ðx; yÞ ¼
X
x;y

pðx; yÞ log pðx; yÞ
pðxÞpðyÞ
� �

ð40Þ

is immediately seen to be zero so we have:

Hðx; yÞ ¼ HðxÞ þH ðyÞ ð41Þ
Shannon entropies for independent pðx; yÞ:

For the logical mutual information, independence gives:

mðx; yÞ ¼
X
x;y

pðx; yÞ½1� pðxÞ � pðyÞ þ pðx; yÞ�

¼
X
x;y

pðxÞpðyÞ½1� pðxÞ � pðyÞ þ pðxÞpðyÞ�

¼
X
x

pðxÞ½1� pðxÞ�
X
y

pðyÞ½1� pðyÞ�

¼ hðxÞhðyÞ ð42Þ
Logical entropies for independent pðx; yÞ :mðx; yÞ ¼ hðxÞhðyÞ.

This independence condition mðx; yÞ ¼ hðxÞhðyÞ plus the inclusion-exclusion

principle mðx; yÞ ¼ hðxÞ þ hðyÞ � hðx; yÞ implies that:

½1� hðxÞ�½1� hðyÞ� ¼ 1� hðxÞ � hðyÞ þ hðxÞhðyÞ
¼ 1� hðxÞ � hðyÞ þmðx; yÞ
¼ 1� hðx; yÞ: ð43Þ

Hence under independence, the probability of drawing the same pair ðx; yÞ in two

independent draws is equal to the probability of drawing the same x twice times the

probability of drawing the same y twice.

12. Conditional Entropies

12.1. Conditional entropies for partitions

The Shannon conditional entropy for partitions � and � is based on subset reasoning

which is then averaged over a partition. Given a subset C 2 �, a partition � ¼ fBg
induces a partition of C with the blocks fB \ CgB2�. Then pBjC ¼ pB\C=pC is the

probability distribution associated with that partition so it has a Shannon entropy

which we denote: Hð� jCÞ ¼PBpB jC logð1=pBjC Þ ¼
P

BðpB\C=pC Þ logðpC=pB\C Þ.
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The Shannon conditional entropy is then obtained by averaging over the blocks of �:

Hð� j�Þ ¼
X
C

pCHð� jCÞ ¼
X
B;C

pB\C logðpC=pB\C Þ ð44Þ

Shannon conditional entropy of � given �:

Developing the formula gives:

Hð� j�Þ ¼
X
C

pC logðpC Þ �
X
B

pB\C logðpB\C Þ
" #

¼ Hð� _ �Þ �Hð�Þ ð45Þ

so that the inclusion-exclusion formula then yields:

H ð� j�Þ ¼ Hð�Þ � Ið�; �Þ ¼ Hð� _ �Þ �Hð�Þ: ð46Þ
Thus the conditional entropy Hð� j�Þ is interpreted as the Shannon-information

contained in � that is not mutual to � and �, or as the combined information in � and

� with the information in � subtracted out. If one considered the Venn diagram

heuristics with two circles Hð�Þ and Hð�Þ, then Hð� _ �Þ would correspond to the

union of the two circles, and Hð� j�Þ would correspond to the crescent-shaped area

with Hð�Þ subtracted out, i.e. Hð� _ �Þ � Hð�Þ.

The logical conditional entropy of a partition � given � is simply the extra logical-

information (i.e. dits) in � not present in �, so it is given by the di®erence between

their dit sets which normalizes to:

hð� j�Þ ¼ jditð�Þ � ditð�Þj
jU j2 ð47Þ

Logical conditional entropy of � given �:

Since these notions are de¯ned as the normalized size of subsets of the set of

ordered pairs U � U , the Venn diagrams and inclusion-exclusion principle are not

just heuristic. For instance,

jditð�Þ � ditð�Þj ¼ jditð�Þj � jditð�Þ \ ditð�Þj ¼ jditð�Þ [ ditð�Þj � jditð�Þj: ð48Þ
Then normalizing yields:

hð� j�Þ ¼ hð�Þ �mð�; �Þ ¼ hð� _ �Þ � hð�Þ: ð49Þ

Fig. 4. Venn diagram heuristics for Shannon conditional entropy.
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12.2. Conditional entropies for probability distributions

Given the joint distribution pðx; yÞ onX �Y , the conditional probability distribution

for a speci¯c y 2 Y is pðxjY ¼ yÞ ¼ pðx; yÞ=pðyÞ which has the Shannon entropy:

HðxjY ¼ yÞ ¼PxpðxjY ¼ yÞ logð1=pðxjY ¼ yÞÞ. Then the conditional entropy is the

average of these entropies:

Hðx j yÞ ¼
X
y

pðyÞ
X
x

pðx; yÞ
pðyÞ log

pðyÞ
pðx; yÞ

� �
¼
X
x;y

pðx; yÞ log pðyÞ
pðx; yÞ

� �
: ð50Þ

Shannon conditional entropy of x given y:

Expanding as before gives:

Hðx j yÞ ¼ HðxÞ � I ðx; yÞ ¼ Hðx; yÞ � HðyÞ: ð51Þ
The logical conditional entropy hðxjyÞ is intuitively the probability of drawing a

distinction of pðxÞ which is not a distinction of pðyÞ. Given the ¯rst draw ðx; yÞ, the
probability of getting an ðx; yÞ-distinction is 1� pðx; yÞ and the probability of getting

a y-distinction is 1� pðyÞ. A draw that is a y-distinction is, a fortiori, an

ðx; yÞ-distinction so the area 1� pðyÞ is contained in the area 1� pðx; yÞ. Then the

probability of getting an ðx; yÞ-distinction that is not a y-distinction on the second

draw is:

ð1� pðx; yÞÞ � ð1� pðyÞÞ ¼ pðyÞ � pðx; yÞ.

Fig. 5. Venn diagram for subsets of U � U .

Fig. 6. ð1� pðx; yÞÞ � ð1� pðyÞÞ ¼ probability of an x-distinction but not a y-distinction on X � Y .
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Since the ¯rst draw ðx; yÞ was with probability pðx; yÞ, we have the following as

the probability of pairs ½ðx; yÞ; ðx 0; y 0Þ� that are X-distinctions but not Y -distinctions:

hðx j yÞ ¼
X
x;y

pðx; yÞ½ð1� pðx; yÞÞ � ð1� pðyÞÞ� ð52Þ

logical conditional entropy of x given y:

Expanding gives the expected relationships:

13. Cross-Entropies and Divergences

Given two probability distributions p ¼ ðp1; . . . ; pnÞ and q ¼ ðq1; . . . ; qnÞ on the same

sample space f1; . . . ; ng, we can again consider the drawing of a pair of points but

where the ¯rst drawing is according to p and the second drawing according to q. The

probability that the pair of points is distinct would be a natural and more general

notion of logical entropy that would be the:

hðpjjqÞ ¼
X
i

pið1� qiÞ ¼ 1�
X
i

piqi ð53Þ

Logical cross entropy of p and q

which is symmetric. The logical cross entropy is the same as the logical entropy when

the distributions are the same, i.e. if p ¼ q, then hðpjjqÞ ¼ hðpÞ.
The notion of cross entropy in Shannon entropy is: HðpjjqÞ ¼Pipi logð1=qiÞ

which is not symmetrical due to the asymmetric role of the logarithm, although if

p ¼ q, then HðpjjqÞ ¼ HðpÞ.
The Kullback–Leibler divergence (or relative entropy) DðpjjqÞ ¼Pipi logðpi=qiÞ is

de¯ned as a measure of the distance or divergence between the two distributions

where DðpjjqÞ ¼ HðpjjqÞ � HðpÞ. A basic result is the:

DðpjjqÞ � 0 with equality if and only if p ¼ q ð54Þ
Information inequality ½4; p: 26�:

Fig. 7. hðx j yÞ ¼ hðxÞ �mðx; yÞ ¼ hðx; yÞ � hðyÞ.
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Given two partitions � and �, the inequality I ð�; �Þ � 0 is obtained by applying

the information inequality to the two distributions fpB\Cg and fpBpCg on the

sample space fðB;C Þ : B 2 �;C 2 �g ¼ �� �:

I ð�; �Þ ¼
X
B;C

pB\C log
pB\C
pBpC

� �
¼ DðfpB\CgjjfpBpCgÞ � 0 ð55Þ

with equality iff independence:

In the same manner, we have for the joint distribution pðx; yÞ:
I ðx; yÞ ¼ Dðpðx; yÞjjpðxÞpðyÞÞ � 0 ð56Þ
with equality iff independence:

But starting afresh, one might ask: `̀ What is the natural measure of the di®erence

or distance between two probability distributions p ¼ ðp1; . . . ; pnÞ and q ¼
ðq1; . . . ; qnÞ that would always be non-negative, and would be zero if and only if they

are equal? " The (Euclidean) distance between the two points in Rn would seem to be

the `̀ logical" answer ��� so we take that distance (squared with a scale factor) as the

de¯nition of the:

dðpjjqÞ ¼ 1

2

X
i

ðpi � qiÞ2 ð57Þ

Logical divergence ðor logical relative entropyÞe

which is symmetric and we trivially have:

dðpjjqÞ � 0 with equality iff p ¼ q ð58Þ
Logical information inequality:

We have component-wise:

0 � ðpi � qiÞ2 ¼ p2
i � 2piqi þ q 2

i ¼ 2
1

n
� piqi

� �
� 1

n
� p2

i

� �
� 1

n
� q 2

i

� �
ð59Þ

so that taking the sum for i ¼ 1; . . . ; n gives:

dðpjjqÞ ¼ 1

2

X
i

ðpi � qiÞ2

¼ 1�
X
i

piqi

" #
� 1

2
1�

X
i

p2
i

 !
þ 1�

X
i

q 2
i

 !" #

¼ hðpjjqÞ � hðpÞ þ hðqÞ
2

: ð60Þ

Logical divergence ¼ Jensen difference ½22; p: 25� between probability

distributions:

eIn [5], this de¯nition was given without the useful scale factor of 1/2.
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Then the information inequality implies that the logical cross entropy is greater than

or equal to the average of the logical entropies:

hðpjjqÞ � hðpÞ þ hðqÞ
2

with equality iff p ¼ q: ð61Þ

The half-and-half probability distribution ðpþ qÞ=2 that mixes p and q has the

logical entropy of

h
pþ q

2

� �
¼ hðpjjqÞ

2
þ hðpÞ þ hðqÞ

4
¼ 1

2
hðpjjqÞ þ hðpÞ þ hðqÞ

2

� �
ð62Þ

so that:

hðpjjqÞ � h
pþ q

2

� �
� hðpÞ þ hðqÞ

2
with equality iff p ¼ q: ð63Þ

Mixing different p and q increases logical entropy:

14. Summary and Concluding Remarks

The following table summarizes the concepts for the Shannon and logical entropies.

We use the case of probability distributions rather than partitions, and we use the

abbreviations pxy ¼ pðx; yÞ, px ¼ pðxÞ, and py ¼ pðyÞ.
Table 3 shows many of the same relationships holding between the various forms

of the logical and Shannon entropies. What is the connection? The connection

between the two notions of entropy is based on them being two di®erent measures of

the `̀ amount of distinctions," i.e. the quantity of information-as-distinctions.

This is easily seen by going back to the original example of a set of 2n elements

where each element has the same probability pi ¼ 1=2n. The Shannon set entropy is

the minimum number of binary partitions it takes to distinguish all the elements

which is:

n ¼ log2
1

1=2n

� �
¼ log2

1

pi

� �
¼ HðpiÞ: ð64Þ

Table 3. Comparisons between Shannon and logical entropies.

Shannon entropy Logical entropy

Entropy HðpÞ ¼P pi logð1=piÞ hðpÞ ¼P pið1� piÞ
Mutual Info. I ðx; yÞ ¼ HðxÞ þHðyÞ � Hðx; yÞ mðx; yÞ ¼ hðxÞ þ hðyÞ � hðx; yÞ
Independence I ðx; yÞ ¼ 0 mðx; yÞ ¼ hðxÞhðyÞ
Indep. Relations Hðx; yÞ ¼ HðxÞ þHðyÞ 1� hðx; yÞ ¼ ½1� hðxÞ�½1� hðyÞ�
Cond. entropy Hðx j yÞ ¼Px;ypxy logðpy=pxyÞ hðx j yÞ ¼Px;ypxyðpy � pxyÞ
Relationships Hðx j yÞ ¼ Hðx; yÞ �HðyÞ hðx j yÞ ¼ hðx; yÞ � hðyÞ
Cross entropy HðpjjqÞ ¼P pi logð1=qiÞ hðpjjqÞ ¼P pið1� qiÞ
Divergence DðpjjqÞ ¼P pi logðpi=qiÞ dðpjjqÞ ¼P ðpi � qiÞ2=2
Relationships DðpjjqÞ ¼ HðpjjqÞ � HðpÞ dðpjjqÞ ¼ hðpjjqÞ � ½hðpÞ þ hðqÞ�=2
Info. Inequality DðpjjqÞ � 0 with ¼ iff p ¼ q dðpjjqÞ � 0 with ¼ iff p ¼ q
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The Shannon entropy HðpÞ for p ¼ fp1; . . . ; pmg is the probability-weighted average

of those binary partition measures:

HðpÞ ¼
Xm
i¼1

piHðpiÞ ¼
X
i

pi log2
1

pi

� �
: ð65Þ

Rather than measuring distinctions by counting the binary partitions needed to

distinguish all the elements, let's count the distinctions directly. In the set with 2n

elements, each with probability pi ¼ 1=2n, how many distinctions (pairs of distinct

elements) are there? All the ordered pairs except the diagonal are distinctions so the

total number of distinctions is 2n � 2n � 2n which normalizes to:

2n � 2n � 2n

2n � 2n
¼ 1� 1

2n
¼ 1� pi ¼ hðpiÞ: ð66Þ

The logical entropy hðpÞ is the probability-weighted average of these normalized dit

counts:

hðpÞ ¼
Xm
i¼1

pihðpiÞ ¼
X
i

pið1� piÞ: ð67Þ

Thus we see that the two notions of entropy are just two di®erent quantitative

measures of:

Information ¼ distinctions:

Logical entropy arises naturally out of partition logic as the normalized counting

measure of the set of distinctions in a partition. Logical entropy is simpler and more

basic in the sense of the logic of partitions which is dual to the usual Boolean logic of

subsets. All the forms of logical entropy have simple interpretations as the prob-

abilities of distinctions. Shannon entropy is a higher-level and more re¯ned notion

adapted to the theory of communications and coding where it can be interpreted as

the average number of bits necessary per letter to identify a message, i.e. the average

number of binary partitions necessary per letter to distinguish the messages.
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