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This paper presents a model of double entry multidimensional accounting in ‘physical terms’ using
vectors of property rights. Property accounting gives a valuation-free description of the property
transactions underlying the value transactions of ordinary accounting. Thus it avoids the valuation
controversies of value accounting. Given any vector of valuation coefficients (e.g. prices or costs), a
system of value accounting can be derived from a valuation-free system of property accounting by
multiplying the property vectors by the value vector. The extension of double entry accounting to
vectors is based on the modern mathematical formulaton of double entry bookkeeping using the group

of differences.

INTRODUCTION

THIS ARTICLE presents a system of property
accounting. It 1is the first complete and
valuation-free system of accounting. The valu-
ation controversies of ordinary accounting are
undercut by the property accounting system
which keeps accounts directly in terms of
vectors of the underlying property rights
themselves—instead of wusing some scalar
measure of the value of those rights.

The mathematical framework of property
accounting, namely vector accounting, is based
on the modern mathematical treatment of
double entry bookkeeping using the group of
differences or ‘Pacioli group’ [10]. There is, in
modern algebra, a standard construction called
the group of differences. In a university modern
algebra course, it is used to construct the (posi-
tive and negative) integers using ordered pairs of
natural numbers (non-negative integers). The
mathematical treatment of double entry book-
keeping given here is based on the observation
that the intuitive algebra of T-accounts used in
double entry bookkeeping is precisely equiv-
alent to that group of differences construction—
which is thus renamed the ‘Pacioli group’. The
T-accounts of double entry bookkeeping are
the ordered pairs of the group of differences
construction.

PREVIOUS WORK ON DOUBLE ENTRY
MULTIDIMENSIONAL ACCOUNTING

Neither the mathematical treatment of
double entry bookkeeping using the Pacioli
group nor double entry multidimensional prop-
erty accounting have previously appeared in
the mathematical accounting literature (see
bibliography). Since some researchers believe
that double entry multidimensional property
accounting has been successfully treated in the
literature, we must briefly review some of the
previous work.

The presentation of the transactions in value
accounting can be facilitated by using a square
array or table usually called a ‘transactions
matrix’. These transactions tables were first
used by the English mathematician, Augustus
DeMorgan [7], and have been popularized a
century later by the American mathematician
John Kemeny and his colleagues in an
influential text [20].

Transactions tables have, however, retarded
the development of a mathematical formulation
of double entry bookkeeping. Double entry
bookkeeping lives in group theory, not in matrix
algebra. Transactions tables do not themselves
constitute a complete mathematical treatment
of double entry bookkeeping. The crucial
accounting operations, such as finding the bal-
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ance in a 7-account, are still performed infor-
mally, i.e. by the informal comparison of a row
sum and a column sum. The mathematical
formulation of double entry bookkeeping using
the Pacioli group allows it to be generalized to
new systems of accounting such as vector and
property accounting. The matrix treatment of
scalar accounting exploits certain particular
features of scalar accounting (i.e. in the termi-
nology defined below, the feature is that all
scalar T-accounts in reduced form have pure
balances). These features do not extend to
vector accounting so the matrix approach does
not generalize to these new domains [see 9,
Chap. 12, section 2, “Transactions Matrices™].
Hence transactions tables are not used here.

The most fundamental characteristic of a
double entry accounting system is that it up-
dates an equation, and that it uses 7T-accounts
with debit and credit entries. Conventional
value accounting records economic events as
transactions to update the balance sheet equa-
tion. Indeed, it is the equational aspect of an
accounting system which requires that two or
more entries be made to update the equation.
Given any equation

U+V+ ... +W=X+Y+...+Z

there is no way that only one term, such as V,
can be changed and still maintain the truth of
the equation. Two or more terms must be
changed.

The systems of ‘double entry multidimensional
accounting’ previously presented in the litera-
ture lack this most basic characteristic of an
accounting system, the equational aspect (e.g.
[4,5,12].

“For instance, the convenient idea of an accounting

identity is lost since the dimensional and metric compara-

bility it assumes is no longer present except under special
circumstances’’. [15, p. 333]

However, vector accounting shows that an
accounting equation can still be used in the
presence of incomparability between dimen-
sions by using vector equations. This is a math-
ematical fact independent of the content. The
content of the vector accounting formalism
could be property accounting, social account-
ing, accounting for physical inventories at
different locations, and so forth.

Professor Yuji Ijiri has made the most deter-
mined attempt to develop a system of double
entry multidimensional accounting [13-17]. Tjiri

clearly states the idea of a property accounting
system that he calls multi-dimensional physical
accounting [14, p. 155]. His worked-out model
of double entry multi-dimensional physical
accounting is presented in three separate places
[14-16].

Ljiri’s work is, however, bound to be fragmen-
tary and unsuccessful without the mathematical
prerequisite of double entry vector accounting
using the Pacioli group. The balance sheet is
presented simply as a set of physically incom-
mensurate quantities (debts as negative assets).
There is no balance sheet equation in the
model. Ijiri introduces permanent T-accounts
called ‘asset accounts’ and temporary T-
accounts called ‘activity accounts’. But none of
the T-accounts use vectors; they are all scalar
accounts.

Ljiri describes a number of sample physical
transactions and each is carefully recorded with
equal debits and credits. The debit and credit
entries for different transactions are made in
incommensurate quantities. This creates no
problem in the asset accounts since each asset
account deals only with one type of physical
quantity. But the incommensurate quantities
get jumbled together in the activity accounts.
This means that no meaningful accounting
operations can be performed on the activity
accounts, In particular, the activity accounts
cannot be summed and cannot be closed. All
Ijiri can do is simply abandon them as a jumble
of incommensurate quantities and rule them as
if they had been closed.

There is no proprietorship account to close
the temporary accounts into because there is no
balance sheet equation. The balance sheet just
gives the incommensurate physical totals for
the assets and debts with no equity accounts.
The abandonment of the activity or temporary
accounts also raises the question of in what
sense the model is ‘double entry’. ‘Double entry’
bookkeeping makes little sense in a context
where there is no equation to be updated. It is
as if the second entry was made on a scrap of
paper (the activity accounts) which is then
simply discarded.

Ijiri rigorously recorded each transaction with
an equal debit and credit entry to illustrate the
trial balance in the context of multidimensional
accounting.

“Since every number is entered twice, once on the debit
side and once on the credit side, the flash total of entries
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on the debit side of all accounts is equal to the flash total
of entries on credit side of all accounts.” [14, p. 158; with
a similar statement in 15, p. 113]

Firstly, this trial balance (unlike the trial
balance in vector accounting) adds incommen-
surates together. For instance, on the debit side
of the Sales account, the trial balance would be
adding 3,500 cases of finished goods and 600
man-hours together to get 4,100 ‘whatevers’.
Secondly, the trial balance cannot possibly
work. It is well understood in accounting that
the trial balance works becapse one starts with
an equation which gives equal debits and credits
in the beginning ledger. Adding on the equal
debits and credits from the transactions will
yield the equal debits and credits in the ending
ledger. But since Ijiri does not begin with an
equation, his totals are foredoomed to be un-
equal. He adds equals to unequals and, of
course, gets unequals as a result. When one adds
up the debits and the credits in his ledger [14,
pp. 156-157; 15, pp. 112-113; 16, pp. 101-102],
one finds that there are 12,500 more ‘whatevers’
on the credit side of the ledger than on the debit
side.

This audit of Professor Ijiri’s model of double
entry multidimensional physical accounting
serves to acknowledge his formulation of idea of
a physical accounting system and to point out
the reasons for the failure of his particular
model. It is hard to understand a successful
model if one fails to see how earlier models
failed. Yet in the almost two decades since Ijiri’s
model was first published, there seems to have
been no analysis and criticism of the model in
the accounting journals. No one seems to have
publicly pointed out such basic matters as:

(1) the lack of a balance sheet equation,
(2) the lack of any equity accounts,

(3) the nonclosure and unworkability of the
temporary accounts, and

(4) the nonbalancing trial balance.

But it is not necessary to accept any of these
sacrifices in the step to multidimensional
accounting. All those desirable features of ordi-
nary accounting are maintained and generalized
in the model of double entry multidimensional
accounting presented here.

OME. 14 1—B

MONOIDS AND GROUPS

A binary operation, x +y, on a set M is
associative if for any x, y, and z in M,

x+yP)+z=x+0Q+2)

A set with an associative binary operation on it
is a semigroup. An identity element (for the
binary operation + ) is an element e such that
for all elements x,x + ¢ =e¢ + x = x. An iden-
tity element is unique since if ¢’ is another such
identity, then e = ¢ + ¢’ = ¢’. A semigroup with
an identity element is a monoid. If the binary
operation in a monoid is written as addition,
then the identity element is written as the zero
0. The inverse of element x in a monoid M is an
element —x such that x + (—x)=0= —x + x.
A group G is a monoid in which every element
has an inverse.

A semigroup, monoid, or group is commu-
tative (or Abelian) if for any x and y,
x +y =y + x. Double entry bookkeeping uses
the device of T-accounts to construct a (cum-
mutative) group from a (commutative) monoid.
In modern mathematics, this is called the group
of differences [e.g. 1, p. 20], but since the special
case of double entry bookkeeping was first
published by the Italian mathematician Luca
Pacioli in 1494 [11], it should be called the
Pacioli group [9, pp. 177-178]. Especially access-
ible treatments of special cases have been given
by Dubisch [8, p. 17], Jacobson [19, p. 10], and
MacLane and Birkhoff [21, p. 44].

THE PACIOLI GROUP

A monoid M (always commutative) is cancel-
lative if for any x, y, and a in M

X +a =y +aimpliesx = y.

The Pacioli group P(M) is constructed by
defining an equivalence relation on the set of
ordered pairs of elements from a cancellative
monoid M. The ordered pairs (or, to be specific,
equivalence classes of ordered pairs) will be
represented as a generalization of a T-account
called a T-term and denoted [d//c] for any d and
¢ in M. The left-hand side (LHS) entry d is the
debit entry and the right-hand side (RHS) entry
¢ is the credit entry. The double slash notation
[d//c] was suggested by Pacioli himself.

“At the beginning of each entry, we always provide “per”,

because, first, the debtor must be given, and immediately
after the creditor, the one separated from the other by
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two little slanting parallels (virgolette), thus, //, .. .. ”
p- 43]

T-terms add together by adding debits to
debits and credits to credits:

wiixl+Dyjjzl =Iw + »//x +z1.

The identity element is the zero T-term [0//0].
Given two T-terms [w//x] and [y//z], the cross-
sums are the two elements of M obtained by
adding the credit in one T-term to the debit in
the other. The equivalence relation between
T-terms is defined by setting two T-terms equal
if their cross-sums are equal:

[w//x]=[y//z]if and only if x +y =w + z.

The cancellation law insures that if
w//x]=[y//z] and [y//z]=[u//v], then
w//x]=1[u/lv]:

xX+y=w+z

z+u=y+v

x+u+(y+z)=w+v+(y+2)

Cancelling y +z yields [w//x]=[u//v]. If
[w//x]=[y//z] but w does not equal y and x
does not equal z, then [w//x] and [y//z] are
said to be different representations of the
same T-term. The inverse or negative of a
T-term is obtained by reversing the debit and
credit entries, i.e. — [w//x] =[x//w], and

— [w//x] + [w//x] =[x//w]
+w/ix]=Ix + w//x + w]=[0//0].

That completes the construction of the Pacioli
group P(M) of a cancellative commutative
monoid M.

THE DOUBLE ENTRY METHOD

Double entry bookkeeping uses the Pacioli
group P(M) of a cancellative commutative
monoid M to perform additive and subtractive
operations on an equation in M (e.g. the balance
sheet equation).

A T-term [b//a]=[0//0] equal to the zero
T-term is called a zero-term. The double entry
method operates by encoding or translating
equations in M as zero-terms in the Pacioli
group P(M). Given an equation LHS = RHS in
M, the corresponding equational zero-term in
P(M) is obtained as follows. A LHS term d
encodes as a debit-balance T-account [d//0], and
a RHS term ¢ encodes as a credit-balance
T-account [0//c]. The sum of the resulting T-

terms is the equational zero-term representing
the equation. For example, the equation

1500 = 1000 + 500

in the additive monoid of natural numbers
encodes as the equational zero-term

[1500//0] + [0//1000] + [0//500].

Since there are only plus signs between the
T-terms in the equational zero-term, the plus
signs can be left implicit to obtain the set of
T-terms (which sum to [0//0]) encoding the
accounts which is called the ledger. Thus the
ledger of T-accounts is just the equational zero-
term with the plus signs between the T-terms
left implicit.

A wvalid algebraic operation on an equation
will transform the equation into another equa-
tion. But each equation in M encodes as a
zero-term in the Pacioli group. Hence an alge-
braic operation which transforms equations into
equations would itself encode as an algebraic
operation which transforms zero-terms into
zero-terms. There is one and only one such
group operation: add zero. Zero plus zero
equals zero. A zero-term plus a zero-term equals
a zero-term. Thus any additive or subtractive
operation on the original equation is expressed
in double entry bookkeeping as adding a
zero-term to the original equational zero-term
to obtain another equational zero-term. In
accounting, these operations, which change the
amounts in the accounts, are called transactions.
Hence the added-on zero-terms, which encode
transactions, will be called transactional zero-
terms.

Beginning equational zero-term
+ First transactional zero-term
+ Second transactional zero-term

+...
+ Last transactional zero-term

= Ending equational zero-term

In conventional accounting, the list of trans-
actional zero-terms is called the journal, and
each transactional zero-term is expressed as the
Jjournal entry for the transaction. The operation
of adding the transactional zero-terms to the
equational zero-term is called posting the
journal to the ledger. Hence the above sum has
the form:
Beginning Ledger
+ Journal

= Ending Ledger.
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Since a transactional zero-term is equal to
[0//0], the sum of the debit entries must equal
the sum of the credit entries in the transactional
zero-term. That is the familhar double entry
principle that the debits must equal the credits in
each transaction. Similarly, in an equational
zero-term, the sum of the debits must also equal
the sum of the credits, and that is the familiar
trial balance.

Given the ending equational zero-term in
P(M), each debit-balance account [d//c] would
be decoded as d — ¢ and placed on the LHS
of the ending equation. Any credit-balance
account [d//c]is decoded as ¢ — d and placed on
the RHS of the ending equation.

VECTOR ACCOUNTING

Conventional value accounting is fraught
with controversy, e.g. the current vs historical
cost question or the questions about the proper
recognition of revenues and expenses. One
might wonder if there couldn’t be an accounting
system which would undercut these valuation
controversies and simply describe the objective
underlying realities (e.g. in physical terms). For
instance, regardless of whether a raw material
inventory is valued using LIFO, FIFO, current
entry price, or whatever, it is an objective fact
that so many units of a certain type of raw
material are purchased, that a certain amount is
used in production, and so forth.

A double entry accounting system has been
developed [9] which is the first complete
valuation-free system of accounting. It is called
property accounting because it keeps accounts
directly in terms of the stocks and flows of the
underlying property rights. Property accounting
does not solve the valuation controversies of
accounting. It attempts to stake out the objec-
tive territory that involves no valuation. With a
common area of agreement clearly specified, it
will perhaps be easier to delineate the areas of
disagreement and the real issues at the level of
valuation.

From the mathematical viewpoint, prop-
erty accounting uses the machinery of vector
accounting. An n-dimensional vector is (for our
purposes) an ordered n-tuple X =(x;....,Xx,)
of scalars. Vectors of the same dimension add
together by adding the corresponding compo-
nents. For X =(x,...,x,)and Y={(y,...,¥u)>

X+Y=(X|,.. -’yn)

- XpF Vo)

X)) F Y-
=X +Y,-.

For vector accounting, the commutative
monoid M can be the monoid of n-dimensional
vectors of non-negative integers. The non-
negative reals could also be used instead of the
non-negative integers. One-dimensional vectors
of non-negative integers can be identified with
the non-negative integers themselves (natural
numbers), so the usual case of value account-
ing with scalars is the special case of vector
accounting with n=1.

The minimum of two vectors Min(X,Y)
is formed by taking the component-wise
minimum:

Min(X, Y), = minimum of x, and y, fork=1,....n.
In conventional value accounting, there is the
operation of finding the balance in a T-account.
For example, the balance of [3//5] is [0//2]. This
generalizes in vector accounting. Each vector
T-term [X//Y] has a reduced representation
[X-Min(X, Y)//Y-Min(X,Y)]. For instance,
given the T-term [(3,7,2)//(5,4,6)], the minimum
of the debit and credit entries is (3,4,2) and the
reduced representation is

[(3,7.2) — (3,4.2)//(5,4,6) — (3.4,2)] =[(0,3,0)//(2,0,4)].

A T-term is said to be in reduced form if it is its
own reduced representation (i.e. if the minimum
of its debit and credit entries is the zero vector).

A T-term has a pure balance if it has the zero
vector as either its debit or credit entry. Other-
wise it has a mixed balance. In one dimension
(i.e. scalar accounting), all T-terms in reduced
form have pure balances. In larger dimensions,
T-terms will in general have mixed balances
even in reduced form, i.e. non-zero balances on
both the debit and credit sides. In the above
example, the vector T-term [(0,3,0)//(2,0,4)] is in
reduced form, but it does not have purely a
debit balance or a credit balance; it has a mixed
balance. Each component will, however, be zero
on either the debit or credit side in the reduced
representation, so a reduced T-term in vector
accounting has component-wise pure balances.

The scalar product of two n-dimensional vec-
tors is the scalar obtained by multiplying each
component of one vector times the correspond-
ing component of the other vector and summing
the resulting products. Given P=(p,...p,)
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and X = (xy,...,X,), their scalar product is

PX =pux; +.. 0+ Xy

In the economic interpretation, X is a quantity
vector where x, 1s the number of units of the kth
type of commodity (or property right) and P is
a price vector where py is the unit price of the kth
commodity. Then the scalar product PX is the
value of the quantity vector X when evaluated at
the price vector P.

Given a vector T-term [X//Y] and a price or
cost vector P, the scalar product is the scalar
T-term [PX//PY]. Given a valuation vector P, a
system of value accounting can be derived from
a system of property accounting. The value
accounting system is obtained by multiplying
each T-term in the property accounting system
by a given vector of prices or other valuation
coeflicients P [e.g. 9, Chap. 10]. In the remaining
sections, a property accounting example will be
sketched (without deriving any value account-
ing systems).

INTRODUCTORY PROPERTY THEORY

Double entry property accounting is the de-
velopment of property theory within the formal
framework of double entry vector accounting.
Hence we must briefly review some of the basic
concepts of the theory of property. Property
changes by:

(1) transactions between legal parties, and

(2) appropriations (or, metaphorically, trans-
actions with Nature).

Transactions between legal parties can be
divided into two types;

(l.a) Market transactions, where there is an
equal quid pro quo in market value, and

(1.b) non-reciprocal transfers between legal
parties such as dividends, taxes, and gifts.

It is convenient to further subdivide market
transactions into;

(1.a.1) purchases, and

(1.a.2) sales.

In a transaction, a party acquires a property
right by transfer from another party or gives up
a property right by transfer to another party or
both. In an appropriation, a party acquires a
property right but not by transfer from another
party, or a party gives up a property right but
not by transfer to another party or both. Since
there is no other legal party involved in an
appropriation, it is sometimes metaphorically
considered to be a ‘trade with Nature’. For
example, production is often viewed as an ex-
change with Nature where the inputs are the
property given up to Nature and the outputs are
the property acquired back from Nature. This
metaphor may be helpful for illustrative pur-
poses, but ‘Nature’ will not be awarded by an
account in property accounting.

We have briefly catalogued the ways in which
‘property changes’. Any of these changes in
property can be interpreted in either of two
fundamental senses;

(A) as a change in the legal property rights, i.e.
as a de jure or legal change, and

(B) as a change in the possession of the prop-
erty, i.e. as a de facto or factual change.

For instance, in a market transaction, a legally
valid contract constitutes the exchange of legal
property rights. The actual delivery of the goods
and the payment of the consideration constitute
the factual exchange of property. The factual
transfers are said to fulfil the contract. Both the
legal transaction and the factual transaction
must be recorded in property accounting. For a
current cash market exchange, both the legal
and factual transaction could be recorded with
one accounting transaction.

For credit transactions, the legal and factual
transfers are accounted for separately. In a
credit purchase of inputs, there is the legal
transaction wherein a present right to certain
inputs i1s exchanged for the right to certain
future-dated cash. Only the one side of the
factual transaction can occur at the time of the
credit transaction, namely the delivery of the
purchased inputs. The other side of the factual
transaction, the payment of the future-dated
cash, must await that future due date. In the
mean time, the unfulfilled legal transfer sits on
the balance sheet as a liability.
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Table 1.

Assets Bank Debt

Suppliers Total A & L

(2500,10,6) = (1000,0,0) + (0,0,0) + (1500.10,6)

Whole Prod.

Purchases Sales NRT dA & L

+(0,0,0) + (0,0,0) + (0,0.0) + (0,0,0) + (0,0,0).

A PROPERTY ACCOUNTING EXAMPLE

Consider a simple manufacturing enterprise
which only utilizes three types of commodities,
cash, outputs, and inputs, so the vectors will be
three dimensional. There are no fixed assets.
The cost of time and taxes will be ignored. The
initial balance sheet has cash, output inventory,
and input inventory as assets. The property
vectors have three components: (Cash, Outputs,
Inputs). The initial Assets vector is (2500,10,6)
so there is $2500 of cash on hand, the output
inventory contains ten physical units of outputs,
and the input inventory contains six physical
units of the inputs.

Debts are legal obligations for future-dated
cash (or other asset) payments. We will repre-
sent debts in terms of the present cash which
would pay off the debt, i.e. the present value of
the debt payments. Debts are owed to other
legal parties, so the vector representing that debt
can be labeled with the name of that party.
We assume that the firm owes a bank a debt
with the present value of $1000, so it would be
represented by the vector (1000,0,0). The re-
maining vector which completes the balance
sheet identity which will be called the Total
Assets and Liabilities vector or just the Total
A & L vector. The initial balance sheet vector
equation is:

Assets Bank Debt Total A & L
(2500.10,6) = (1000,0.0) + (1500,10,6).

The Total A & L property account records
the total legal rights and obligations of the legal
party. Temporary or flow accounts will be asso-
ciated with it to record changes in legal rights
and obligations. The summary flow account
associated with the Total A & L will simply be
called Changes in A & L or simply d A & L. This

other flow accounts which record the various
specific ways that property rights change such as
market transactions, non-reciprocal transfers,
and appropriations. The market transactions
will be recorded in two accounts, Purchases and
Sales. The non-reciprocal transfers account will
be abbreviated NRT. The appropriations will be
recorded in the Whole Product account.

Debts owed by the firm and debts owed to the
firm require personal accounts for the creditors
(such as the Bank Debt account) and debtors.
Since credit transactions create such debts, we
require a personal account for each party in-
volved in a credit transaction. In the economic
activity being modeled in the example, we will
assume a credit purchase of some inputs from
suppliers so there will be a Suppliers account.
With the flow accounts and the Suppliers
account added in (all with zero balances), the
initial balance sheet vector equation is shown in
Table 1.

This initial equation is then encoded as the
initial equational zero-term, (shown in Table 2).
Since the T-accounts can only be added
together, we can leave the plus signs implicit so
that we have the set of property T-accounts,
namely, the property ledger.

The following is the list of the economic
events which we assume to take place:

1. 15 units of the inputs are purchased and
delivered for $5 cash each.

2. Contract for credit purchase of 5 units of
inputs at $5 each.

3. Suppliers deliver the 5 units purchased on
credit,

4. 18 units of the inputs are used-up in prod-

summary flow account will be subdivided into uction.
Table 2.

Assets Bank Debt Suppliers
[(2500,10,6)//(0,0,0)] + [(0,0,0)//(1000,0,0)] + [(0,0,0)//(0,0,0)]

Total A & L Whole Product Purchases
+ [(0,0,0)//(1500,10.6)] + [(0.0,0)//(0,0,0)] + [(0,0,0)//(0,0,0)}

Sales NRT dA & L
+1(0,0,0)//(0,0,0)] + [(0,0,0)//(0,0.,0)] + [(0,0,0)//(0,0,0)].
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Table 3.
Transaction
Number Accounts and Description [Debit//Credit]
Assets [(0,0,15)//(75,0,0)]
1 Purchases [(75,0,0)//(0,0.15)]
Cash purchase of inputs
Suppliers [(0,0,5)//(25,0,0)]
2 Purchases [(25,0,0)//(0.0,5)]
Contract to purchase inputs on credit
Assets [(0,0,5)//(0,0,0)]
3 Suppliers [(0,0,0)//(0,0,5)]
Delivery of purchased inputs
Whole Product [0,0,18)//(0,0,0]
4 Assets [(0,0,0)//(0,0,18)]
Inputs used-up in production
Assets ((0,36.0//(0,0,0)]
5 Whole Product [(0,0,0)//(0,36,0)]
Outputs produced in production
Assets [(120,0.0)//(0,40,0))
6 Sales [(0,40,0)//(120,0,0)]
Cash sale of outputs
Bank Debt [(200,0,0)//(0,0,0)]
7 Assets [(0,0,0)//(200,0,0)]
Principal payment on bank debt
NRT [(100,0,0)//(0,0,0)]
8 Assets [(0,0,0)//(100,0,0)]

Payment of dividends

5. 36 units of the outputs are produced.

6. 40 units of the outputs are sold and delivered
for $3 cash each.

7. A $200 principal payment is made on the
bank debt.

8. A $100 dividend is paid.

Each event can be encoded as a transaction
zero-term. The list of the transaction zero-terms
with the affected T-accounts is the property
Journal. (See Table 3).

The temporary or flow accounts, Whole
Product, Purchases, Sales, and NRT are then
closed into the summary flow account dA & L,
and then it is closed into Total A & L. (See
Table 4).

The list of the property T-accounts in the
equation zero-term is the property-ledger. (See
Table 5).

Dropping the closed flow accounts, we can
reinsert the plus signs between the permanent or
stock property T-accounts to obtain the ending
equational zero-term. (See Table 6).

Each T-account can then be decoded accord-
ing to its side in the original balance sheet

Table 4.
Transaction
Number Accounts and Description [Debit//Credit]
Whole Product {(0,36,0)//(0,0,18)]
Cl dA & L [(0,0,18)//(0,36,0)]
Close Whole Product into dA & L
Purchases [(0,0,20)//(100,0,0)]
C2 dA & L [(100,0,0)//(0,0,20)]
Close Purchases into dA & L
Sales [(120,0,0)//(0,40,0)]
C3 dA & L {(0,40,0)//(120,0,0)]
Close Sales into dA & L
NRT [(0.0,0)//(100,0,0)]
C4 dA & L [(100,0,0//(0,0,0)]
Close NRT into dA & L
dA & L ((0,0,2)//(80,4,0)]
[ Total A & L {(80,4,0)//(0,0.2)]

Close dA & L into Total A & L
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Table 5.

Assets

Bank Debt

[(2500,10,6)//(0,0,0)]
(1) [(0,0,15)i/(75,0,0)]
(3) [(0.0,5)//(0,0,0)]

(4) (0.,0,0)//(0.0,18)]
(5) [(0.36.0)//(0,0.0)]
(6) [(120,0,0)/(0,40,0)]
(7) [(0.,0.0//(200,0,0)}
(8) 1(0,0,0//(100,0,0)]

{(2620,46,26//(375,40,18)]
= [(2245,6,8)//(0,0,0)]

Suppliers

(2) [(0,0,5)//(25,0,0)]
® [000/009)

[(0,0,5)//(25,0,5)]

=[(0.0,0)//(25,0,0)]

Whole Product

@) [(0.0.18)//(0.0.0)]
(5) [(0,0.0//(0,36,0)]
(C1) [(0,36,0)//(0,0,18)]

[(0,0,0)//(1000,0,0)]

(7) [(200,0,0)//(0,0,0)]
[(200,0,0)//(1000.,0,0)]

=[(0.0.0)//(800,0,0)]

Total A & L

((0.0.0)//(1500,10.6)]
(C5) [(80.4.0)//(0,0,2)]

=1[(0,0,0)//(1420,6.8)]

Purchases

(1) ((7500//00,15]
) [(250,0)//(0.0.5))
(C2) [(0,0,20)//(100,0,0)]

Sales

NRT

(6) [(0,40,0)//(120,0,0)]
(C3) {(120,0,0)//(0,40,0)]

(8) [(100.0,0)//(0,0,0]
(C4) 1(0,0,0)//(100,0,0]

dA & L

(C1) [(0,0,18)//(0,36,0)]
(C2) [(100,0,0)//(0,0,20)]
(C3) [(0,40,0)//(120,0,0)]
(C4) {(100,0,0)//(0,0.0)]

[(200,40,18)//(120,36,20)]
=[(80,4,0)//(0,0.2)]
(C5) [(0.0,2)//(80,4,0)]

equation. This yields the Final balance sheet
vector equation:

Assets Bank Debt  Suppliers Total A &L
(2245,6,8) = (800,0,0) + (25,0,0) + (1420,6,8) .
The income statement in value accounting

could be defined as the statement which con-
nects the Net Worth accounts in the beginning
and ending balance sheet equations. In property
accounting, the corresponding statement would
be the property flow statement which connects
the Total A & L accounts in the beginning and
ending balance sheet vector equations. Since all
those changes are channeled through the sum-
mary flow account, dA & L, the property flow
statement is just a list of the activity in the dA
& L account.

Property Flow Statement
Whole Product = [(0,0,18)//(0,36,0)]
Purchases = [(100,0,0)//(0,0,20)]
Sales = [(0,40,0)//(120,0,0)]
NRT = {(100,0,0)//(0,0,0)]
dA &L = [(200,40,18)//(120,36,20)]
= [(80,4,0)//(0,0,2)}

The dA & L account connects together the
beginning and ending Total A & L accounts in
the sense that:

Beginning Total A& L dA&L
[(0,0,0)//(1500,10,6)] + [(80,4,0)//(0,0,2)]
Ending Total A& L

= {(0,0,0)//(1420,6,8)]

The closing balance in the Whole Product
account shows that the liabilities for 18 units of

Table 6.

Assets

Bank Debt

[(2245,6,8)//(0,0,0)] + [(0,0,0)//(800,0,0)]

Suppliers

Total A & L

+[(0,0,0)//(25,0,0)] + [(0,0,0)//(1420,6,8)]
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inputs were appropriated in production (i.e. 18
units of the inputs were the assets expropriated
in production) and that 36 units of outputs were
the assets appropriated in production. The
Whole Product T-account is an RHS account so
it decodes as the whole product vector,
(0,36, — 18). Whole product vectors are used in
economics (without the cash component) in the
modern production set representation of prod-
uction opportunities where they are variously
called production vectors, activity vectors, or
input-output vectors [e.g. 26, p. 27].

A system of value accounting (balance sheet
equation, journal, and ledger) can be derived
from the above (highly simplified) property
accounting system by multiplying each property
vector by a vector of valuation coefficients such
as prices or costs. Different rules for defining
costs or recognizing revenue would lead to
different value vectors and different derived
systems of value accounting. But the property
accounting system remains the same regardless
of the values used. Thus property accounting
allows one to sidestep the valuation contro-
versies of accounting and to describe the under-
lying transactions in an objective manner.
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