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THE LOGIC OF PARTITIONS: INTRODUCTION TO THE DUAL OF
THE LOGIC OF SUBSETS

DAVID ELLERMAN

Department of Philosophy, University of California/Riverside

Abstract. Modern categorical logic as well as the Kripke and topological models of intuitionistic
logic suggest that the interpretation of ordinary “propositional” logic should in general be the logic
of subsets of a given universe set. Partitions on a set are dual to subsets of a set in the sense of the
category-theoretic duality of epimorphisms and monomorphisms—which is reflected in the duality
between quotient objects and subobjects throughout algebra. If “propositional” logic is thus seen as
the logic of subsets of a universe set, then the question naturally arises of a dual logic of partitions on
a universe set. This paper is an introduction to that logic of partitions dual to classical subset logic.
The paper goes from basic concepts up through the correctness and completeness theorems for a
tableau system of partition logic.

§1. Introduction to partition logic.

1.1. The idea of a dual logic of partitions. In ordinary propositional logic, the atomic
variables and compound formulas are usually interpreted as representing propositions. But
in terms of mathematical entities, the variables and formulas may be taken as representing
subsets of some fixed universe set U with the propositional interpretation being isomorphic
to the special case of a one element set U with Subsets 0 and 1. The logic of subsets of a
universe set is used to model truth-functional reasoning with propositions as well as other
binary on–off phenomena such as switching circuits. But these specific applications should
not obscure the fact that from the purely mathematical viewpoint, it is the logic of subsets
of a universe set.

The propositional calculus considers “Propositions” p, q, r, . . . com-
bined under the operations “and,”“or,” “implies,” and “not,” often written
as p∧q, p∨q, p ⇒ q, and ¬p. Alternatively, if P , Q, R, . . . are subsets
of some fixed set U with elements u, each proposition p may be replaced
by the proposition u ∈ P for some subset P ⊂ U ; the propositional
connectives above then become operations on subsets; intersection ∧,
union ∨, implication (P ⇒ Q is ¬P ∨ Q), and complement of subsets.
(Mac Lane & Moerdijk, 1992, p. 48)

In order not to take a specific application for the whole theory, “propositional logic”
would be better called “subset logic” or “Boolean logic.”
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288 DAVID ELLERMAN

Modern logic was reformulated and generalized largely by F. William Lawvere in what
is now called categorical logic.1 Subsets were generalized to subobjects or “parts” (equiv-
alence classes of monomorphisms) so that this generalized logic became the logic of
subobjects or parts in a topos (such as the category of sets).2

There is a category-theoretic duality between subsets of a set and partitions on a set.
“The dual notion (obtained by reversing the arrows) of ‘part’ is the notion of partition”
(Lawvere & Rosebrugh, 2003, p. 85). In category theory, this reverse-the-arrows dual-
ity gives the duality between monomorphisms, for example, injective set functions, and
epimorphisms, for example, surjective set functions, and between subobjects and quotient
objects. If modern logic is formulated as the logic of subsets (or more generally, subobjects
or “parts”), then the question naturally arises of a dual logic of partitions.

Quite aside from category theory duality, Gian-Carlo Rota emphasized the seminal
analogies between the subsets of a set and the partitions on a set. Just as subsets of a set
are partially ordered by inclusion, so partitions on a set are partially ordered by refinement.
Moreover, both partial orderings are lattices (i.e., have meets and joins) with a top element
and a bottom element. This work on partition logic was inspired both by Rota’s program
to develop the subset–partition analogies and by the category-theoretic treatment of logic
together with the reverse-the-arrows duality between subsets and partitions.

This paper is an introduction to the “propositional” part of partition logic. The first part
is an introduction that defines the logical operations on partitions and develops the algebra
of partitions (along with the dual algebra of equivalence relations) that is analogous to the
Boolean algebra of subsets of a set. The second part of the paper develops a proof theory
for partition logic using semantic tableaus and proves the correctness and completeness
theorems for those tableaus.

1.2. Duality of elements of a subset and distinctions of a partition. The set-of-blocks
definition of a partition on a set U is a set of nonempty subsets (“blocks”) of U where
the blocks are mutually exclusive (the intersection of distinct blocks is empty) and jointly
exhaustive (the union of the blocks is U ). If subsets are dual to partitions (in the sense of
monomorphisms being dual to epimorphisms), then what is the dual concept that corre-
sponds to the notion of elements of a subset? The dual notion is the notion of a distinction
of a partition which is a pair of elements in distinct blocks of the partition. The duality
between elements of a subset and distinctions of a partition already appears in the very
notion of a function between sets. What binary relations, that is, subsets R ⊆ X × Y ,
specify functions f : X → Y ?

A binary relation R ⊆ X × Y transmits elements if for each element x ∈ X , there is an
ordered pair (x, y) ∈ R for some y ∈ Y .

1 See Lawvere & Rosebrugh (2003, appendix A) for a good treatment. For the generalization to
topos theory see Mac Lane & Moerdijk (1992) and for the category theoretic background, the
best references are Mac Lane (1971) and Awodey (2006).

2 Sometimes the propositional and subset interpretations are “connected” by interpreting U as the
set of possible worlds and a subset as the set of possible worlds where a proposition is true.
While this interpretation may be pedagogically useful, it is conceptually misleading since U
is simply an abstract set. None of the philosophical problems involved in “possible worlds”
semantics have anything to do with the subset interpretation of ordinary logic. Starting with
the subset interpretation, each subset P ⊆ U has an associated proposition u ∈ P (see the
tableau rules given below) so that the operations on the subsets (e.g., union, intersection, etc.)
have corresponding truth-functional operations on these propositions.
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A binary relation R ⊆ X × Y reflects elements if for each element y ∈ Y , there is an
ordered pair (x, y) ∈ R for some x ∈ X .

A binary relation R ⊆ X × Y transmits distinctions if for any pairs (x, y) and (x ′, y′) in
R, if x �= x ′, then y �= y′.

A binary relation R ⊆ X × Y reflects distinctions if for any pairs (x, y) and (x ′, y′) in
R, if y �= y′, then x �= x ′.

The dual role of elements and distinctions can be seen if we translate the usual charac-
terization of the binary relations that define functions into the elements-and-distinctions
language. A binary relation R ⊆ X × Y defines a function X → Y if it is defined
everywhere on X and is single valued. But “being defined everywhere” is the same as
transmitting elements, and being single valued is the same as reflecting distinctions:

a binary relation R is a function if it transmits elements and reflects distinctions.

What about the other two special types of relations, that is, those which transmit distinc-
tions or reflect elements? The two important special types of functions are the injections
and surjections, and they are defined by the other two notions:

an injective function is a function that transmits distinctions, and a sur-
jective function is a function that reflects elements.

In view of the dual role of subsets and partitions (and elements and distinctions), it is
interesting to note that many basic ideas expressed using subsets such as the notion of a
“function” could just as well be expressed in a dual manner using partitions. The dual to the
product X × Y is the coproduct X

⊎
Y which in the category of sets is the disjoint union.

If a binary relation is defined as a subset R of the product X × Y , then a binary corelation
would be a partition π on the coproduct X

⊎
Y . Instead of defining a function as a certain

type of binary relation (i.e., which transmits elements and reflects distinctions), a function
could just as well be defined as a certain type of binary corelation. Let [u]π denote the
block of a partition π containing an element u from the universe set of the partition. Then
a binary corelation π (a partition on X

⊎
Y ) is functional if 1) every element x ∈ X is

transmitted to some y-block, that is, ∃y ∈ Y , x ∈ [y]π , and 2) distinctions on Y are
reflected as distinctions of π , that is, if y �= y′ for y, y′ ∈ Y , then [y]π �= [y′]π .

Moreover, this definition of a function is quite familiar (with different terminology)
in combinatorics. For a functional corelation π , there is one and only one block of the
partition for each element y ∈ Y so the blocks [y]π can be thought of as “boxes.” Then
the elements of X can be thought of as “balls” and then a function is just a distribution
of the balls into the boxes. Thus the functional corelation definition of a function is just
a “disguised” version of the balls-in-boxes definition of a function used in combinatorial
theory (Stanley, 1997, p. 31). A functional corelation is injective if distinctions between
balls are transmitted as distinctions between boxes (“different balls to different boxes”),
that is, x �= x ′ implies [x]π �= [x ′]π , and is surjective if each box contains at least one ball
(i.e., each y is reflected as an x). Although functions were historically defined as functional
binary relations, from the mathematical viewpoint, functions could just as well be defined
as functional binary corelations.

The duality between the two definitions of functions is clear in category theory. Given the
diagram f : X → Y in the category of sets, its limit is the functional relation corresponding
to f and its colimit is the functional corelation corresponding to f . The functional relation
corresponding to a function is its graph and the functional corelation corresponding to a
function is its cograph (Lawvere & Rosebrugh, 2003, p. 29).
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1.3. Partitions and equivalence relations. An equivalence relation on a set U is a
subset E ⊆ U × U that is reflexive, symmetric, and transitive. Every equivalence relation
on a set U determines a partition on U where the equivalence classes are the mutually
exclusive and jointly exhaustive blocks of the partition. Conversely, every partition on a
set determines an equivalence relation on the set (two elements are equivalent if they are
in the same block of the partition). The notions of a partition on a set and an equivalence
relation on a set are thus interdefinable (“cryptomorphic” as Gian-Carlo Rota would say).
Indeed, equivalence relations and partitions are often considered as the “same.” But for our
purposes it is important to keep the notions distinct (as in the above definitions) so that we
may consider the complementary type of binary relation. A partition relation R ⊆ U × U
is irreflexive (i.e., (u, u) �∈ R for any u ∈ U ), symmetric [i.e., (u, u′) ∈ R implies (u′, u) ∈
R], and antitransitive in the sense that if (u, u′) ∈ R, then for any a ∈ U , either (u, a) ∈ R
or (a, u′) ∈ R [i.e., U × U − R = Rc is transitive]. Thus as binary relations, equivalence
relations and partition relations are complementary. That is, E ⊆ U × U is an equivalence
relation if and only if (iff) Ec ⊆ U ×U is a partition relation. A partition relation is the set
of distinctions of a partition.

In a similar manner, the closed and open sets of a topological space can each be defined
in terms of the other and are complementary as subsets of the space. Indeed, this is a useful
analogy. There is a natural (“built-in”) closure operation on U × U = U 2 which makes it
a closure space. A subset C ⊆ U 2 is closed (1) if C contains the diagonal � = {(u, u) |
u ∈ U } (reflexivity), (2) if (u, u′) ∈ C , then (u′, u) ∈ C (symmetry), and (3) if (u, u′)
and (u′, u′′) are in C , then (u, u′′) is in C (transitivity). Thus the closed sets of U 2 are the
reflexive, symmetric, and transitive relations, that is, the equivalence relations on U . The
intersection of any number of closed sets is closed. Given a subset S ⊆ U 2, the closure
S is the reflexive, symmetric, and transitive closure of S. The formation of the closure S
can be divided into two steps. First S∗ is formed from S by adding any diagonal pairs
(u, u) not already in S and by symmetrizing S, that is, adding (u′, u) if (u, u′) ∈ S. To
form the transitive closure of S∗, for any finite sequence u = u1, u2, . . . , un = u′ with
(ui , ui+1) ∈ S∗ for i = 1, . . . , n − 1, add (u, u′) and (u′, u) to the closure. The result
is the reflexive, symmetric, and transitive closure S of S. The complements of the closed
sets in U × U are defined as the open sets which are the partition relations on U . As
usual, the interior int(S) of any subset S is defined as the complement of the closure of its
complement: int(S) = (Sc)c.

It should, however, be carefully noted that the closure space U × U is not a topological
space, that is, the closure operation on U 2 is not a topological closure operation in the sense
that the union of two closed set is not necessarily closed (or, equivalently, the intersection
of two open sets is not necessarily open). Since the lattice of open sets (or of closed sets)
of a topological space is distributive, this failure of the closure operation on U × U to
be topological is behind the nondistributivity of the lattice of partitions (or of equivalence
relations) on a set U .

The set-of-blocks definition of a partition π on a set U is a set {B}B∈π of nonempty
subsets or “blocks” B ⊆ U that are disjoint and whose union is U .3 A pair (u, u′) ∈ U ×U
is a distinction or dit (from DIsTinction) of the partition π if there are distinct blocks

3 Just as the usual treatment of the Boolean algebra of all subsets of a universe U assumes that U
has one or more elements, so our treatment of the lattice of all partitions on U will assume that
U has two or more elements. This avoids the “degenerate” special cases of there being only one
subset of an empty U and only one partition on a singleton U .
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B, B ′ ∈ π with u ∈ B and u′ ∈ B ′. The set of distinctions of a partition π, its dit set
denoted dit(π) ⊆ U × U , is the partition seen as a partition relation:

dit(π) =
⋃

B,B′∈π,B �=B′
B × B ′

(where it is understood that the union includes both the cartesian products B × B ′ and
B ′ × B for B �= B ′).4

A pair (u, u′) ∈ U × U is an indistinction or indit (from INDIsTinction) of a partition
π if u and u′ belong to the same block of π . The set of indistinctions of a partition π , its
indit set denoted indit(π) = U × U − dit(π), is the complementary equivalence relation:

indit(π) =
⋃
B∈π

B × B = U × U − dit(π) = dit(π)c.

In terms of the closure space structure on U ×U , letO(U ×U ) be the open sets (partition
relations) which are the dit sets dit(π) of partitions while the complementary closed sets
(equivalence relations) are the indit sets indit(π) of partitions.

Partitions on U are partially ordered by the refinement relation: given two partitions
π = {B}B∈π and σ = {C}C∈σ ,

σ � π (read “π refines σ” or “σ is refined by π”) if for any block B ∈ π , there is a block
C ∈ σ with B ⊆ C .5

The equivalent definition using dit sets (i.e., partition relations) is just inclusion:

σ � π iff dit(σ ) ⊆ dit(π).

Partitions might be represented by surjections U → π and every refinement relation
σ � π is realized by the unique map π → σ that takes each block B ∈ π to the block
C ∈ σ containing it. The refinement map makes the following triangle commute:

U → π
↓ ↙
σ

Refinement as a map

and thus it gives a morphism in the (“coslice”) category of sets under U (Awodey, 2006,
p. 15).

4 Strictly speaking, one could argue that a “distinction” should be an unordered pair {u, u′} but
it is analytically more convenient to deal with ordered pairs. In finite probability theory with
equiprobable elements in the sample space, the relative count of elements in a subset (or event)
defines the probability Prob(S) of the subset S. Dualizing, the count of the distinctions of a
partition relative to the total number of ordered pairs with a finite universe U defines the logical
entropy h(π) of a partition π (Ellerman, 2009). In this logical information theory, it is also
analytically better to deal with ordered pairs. Then the logical entropy h(π) of a partition π
is simply the probability that a random draw of a pair (with replacement) is a distinction of the
partition just as Prob(S) is the probability that a random draw is an element of the subset.

5 Note that the opposite partial order is called the “refinement” ordering in the customary “upside
down” treatment of the lattice of partitions. Gian-Carlo Rota used to joke that it should be called
the “unrefinement” relation. Indeed, in a recent book on Rota-style combinatorial theory, that
relation is sensibly called “reverse refinement” (Kung et al., 2009, p. 30). It could also be called
the “coarsening” (Lawvere & Rosebrugh, 2003, p. 38) relation.
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The partial ordering of partitions on U has a least element or bottom which is the
indiscrete partition 0 = {U } (nicknamed the “blob”) with the null dit set dit(0) = ∅
(no distinctions). The blob distinguishes nothing and is refined by all partitions on U .
The partial ordering also has a greatest element or top which is the discrete partition
1 = {{u} : u ∈ U } where all blocks are singletons and whose dit set is all ordered pairs
off the diagonal, that is, dit(1) = U × U − � where � = {(u, u) : u ∈ U }. The discrete
partition refines all partitions on U .

In any partial order with a least element 0, an element α is an atom in the partial ordering
if there is no element between it and the bottom 0, that is, if 0 ≤ π ≤ α implies π = 0 or
π = α. In the inclusion partial order of subsets of U , the atoms are the singleton subsets.
In the refinement partial order of partitions, the atomic partitions are the binary partitions,
the partitions with two blocks. Any partition less refined than a partition π must fuse two
or more blocks of π . Hence the binary partitions are the partitions so that any less refined
partition has to be the blob.

1.4. Category-theoretic duality of subsets and partitions. In addition to the basic
monomorphism–epimorphism duality between subsets and partitions, a set of dual rela-
tionships between subset and partition concepts as well as between element and distinc-
tion concepts will be described in this section using basic category-theoretic notions in
the category of sets. This duality in the category of sets extends beyond the basic reverse-
the-arrows duality that holds in all categories, and it underlies the duality between subset
logic and partition logic.

In the category of sets, the Singleton 1 might be thought of as the generic element.
We have seen that functions preserve (or transmit) elements and reflect (or transmit in the
backward direction) distinctions. The basic property of the Generic Element 1 is that for
every element u ∈ U , there is a function 1

u→ U that transmits “elementness” from the
generic element to u ∈ U . The partition dual to the generic element 1 is 2 = {0, 1} which
might be thought of as the generic distinction. The basic property of the Generic Distinction
2 is that for any pair u, u′ of distinct elements of U , there is a function α : U → 2 that
reflects or backwards-transmits “distinctness” from the Generic Distinction 2 to the pair
u, u′.

Given two parallel functions f, g : X → Y , if they are different, f �= g, then there
is an element x ∈ X such that the two functions carry x to a distinction f (x) �= g(x)

of Y . By the basic property of the Generic Element 1, there is a function 1
x→ X that

transmits the generic element to that element x . Thus the Generic Element 1 is a separator
in the sense that given two set functions f, g : X → Y , if f �= g, then ∃x : 1 → X (an

injection) such that 1
x→ X

f→ Y �= 1
x→ X

g→ Y . Dually, by the basic property of the
generic distinction, there is a function α : Y → 2 that reflects the generic distinction to the
distinction f (x) �= g(x) of Y . Thus the Generic Distinction 2 is a coseparator (Lawvere
& Rosebrugh, 2003, pp. 18–19) in the sense that given two set functions f, g : X → Y , if

f �= g, then ∃α : Y → 2 (a surjection) such that X
f→ Y

α→ 2 �= X
g→ Y

α→ 2.
Other dual roles of the Generic Element 1 and Generic Distinction 2 follow from the

dual basic properties. Consider the product of X and Y in the category of sets. A set P
with maps p1 : P → X and p2 : P → Y is the product, denoted X × Y , if for any
set Z and pair of maps f : Z → X and g : Z → Y with domain Z , there is a unique
map 〈 f, g〉 : Z → P such that p1〈 f, g〉 = g and p2〈 f, g〉 = g. The Generic Element 1
has the property that it suffices as the test set Z = 1. That is, if the set P with its pair of
maps had the universal mapping property for pairs of maps with domain 1, then it has the
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universal mapping property for any pairs of maps with a common domain Z , that is, it is
the product. This property of the Generic Element 1 extends to all limits in the category of
sets.

The dual construction is the coproduct, denoted X
⊎

Y or X + Y , which can be con-
structed as the disjoint union of X and Y with the two insertion maps. A set C with maps
i1 : X → C and i2 : Y → C is the coproduct X

⊎
Y if for any set Z and pair of

maps f : X → Z and g : Y → Z with codomain Z , there is a unique map (which we will
denote) 〉 f, g〈: C → Z such that: 〉 f, g〈i1 = f and 〉 f, g〈i2 = g.6 The Generic Distinction
2 has the property that it suffices as the test set Z = 2. That is, if the set C and its pair
of maps had the universal mapping property for pairs of maps with codomain 2, then it
has the universal mapping property for any pair of maps with a common codomain Z , that
is, it is the coproduct (Lawvere & Schanuel, 1997, p. 272). This property of the Generic
Distinction 2 extends to all colimits in the category of sets.

The dual properties also show up in the respective partial orders (and lattices). The
images of injections 1

u−→ U are the atoms {u} in the inclusion partial order of subsets of
U and in the power set Boolean algebra P(U ). The inverse images of surjections U

α−→ 2
are the atoms (binary partitions) in the refinement partial order of partitions on U and in
the partition lattice �(U ) defined below.

Given a subset S of U and a partition π on U , there is the associated injection S −→ U
and the associated surjection U −→ π (taking π as a set of blocks). The atom {u} given by
1

u−→ U is contained in S, iff 1
u−→ U uniquely factors through S −→ U . Analogously,

an atomic partition U
α−→ 2 is refined by π [dit(α) ⊆ dit(π)] iff U

α−→ 2 uniquely factors
through U −→ π .

1

↓∃! ↘u

S −→ U

U −→ π

↘α ↓∃!

2

Analogous diagrams showing which atoms contained in an object (subset or partition)

The dual pullback and pushout constructions allow us to represent each partition as a
subset of a product and to represent each subset as a partition on a coproduct.

Given a partition as a surjection U → π , the pullback of the surjection with itself, that
is, the kernel pair (Mac Lane, 1971, p. 71) of U → π , gives the indit set indit(π) as a
subset of the product U × U , that is, as a binary (equivalence) relation on U :

indit(π)
p2−→ U

p1 ↓ ↓
U −→ π

Pullback for equivalence relation indit(π)

Given a subset as an injection S → U , the pushout of the injection with itself, that
is, the cokernel pair (Mac Lane, 1971, p. 66) of S → U , gives a partition �(S) on the
coproduct (disjoint union) U

⊎
U , that is, a binary corelation which might be called a

6 There seems to be no standard notation for the coproduct factor map so we have just reversed the
angle brackets from the product factor map.
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subset corelation:

S −→ U

↓ ↓[u∗]

U
[u]−→ �(S)

Pushout for subset corelation �(S)

The disjoint union U
⊎

U consists of the elements u ∈ U and the copies u∗ of the
elements u ∈ U . The subset corelation �(S) is constructed by identifying any u and its
copy u∗ for u ∈ S so �(S) is the partition on U

⊎
U whose only nonsingleton blocks are

the pairs {u, u∗} for u ∈ S.
The constructions can also be reversed by viewing the pullback square as a pushout

square, and by viewing the pushout square as a pullback square. Equivalently, we can
reconstruct π as the coequalizer of the two projection maps p1, p2 from indit(π) ⊆ U ×U
to U (Lawvere & Rosebrugh, 2003, p. 89).

indit(π)
p1
⇒
p2

U −→ π

↘α ↓∃!

2

Partition π as coequalizer of indit(π)
p1−→ U and indit(π)

p2−→ U

Dually, we have the two maps U → �(S) given by u �→ [u]�(S) and u �→ [u∗]�(S),
and the subset S is reconstructed as their equalizer:

1
∃! ↓ ↘u

S → U ⇒ �(S)

Subset S as equalizer of [u] : U → �(S) and [u∗] : U → �(S)

In general, the equalizer (in the category of sets) of two set functions f, g : X → Y is
the largest subset S of the domain X so that no element of S goes via the functions to a
distinction ( f (x), g(x)) of the codomain Y .

Dually, the coequalizer of two set functions f, g : X → Y is the largest (most refined)
partition π on the codomain Y so that no distinction of π comes via the functions from an
element of the domain X (i.e., has the form ( f (x), g(x)) for some x ∈ X ).

Then the functions [u], [u∗] : U ⇒ �(S) are such that S is the largest subset of
the domain U so that no element of the subset goes via those functions to a distinction
of the codomain �(S).

The functions p1, p2 : indit(π) ⇒ U are such that π is the largest partition on the
codomain U so that no distinction of the partition comes via those functions from an
element of the domain indit(π) (Lawvere & Rosebrugh, 2003, p. 89).
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Dualities Subsets Partitions

Generic element Generic Element 1 Generic Distinction 2
Basic property Each element u ∈ U Each distinction u �= u′
of generic element realized by some 1 → U realized by some U → 2
Separating functions 1 is a separator 2 is a coseparator
Sufficient test set 1 is a test set for limits 2 is a test set for colimits
Objects Subsets: monos S −→ U Partitions: epis U −→ π

Atoms in partial orders Images of monos 1
u−→ U Inv. images of epis U

α−→ 2

Inclusion of atoms 1
u−→ U uniquely factors U

α−→ 2 uniquely factors
through S −→ U through U −→ π

Subsets ↔ Partitions Partition � (S) on U
⊎

U Subset indit (π) of U × U
is cokernal pair of S → U is kernel pair of U → π

Inverse operation Subset S is equalizer Partition π is coequalizer
of [u] ,

[
u∗] : U ⇒ � (S) of p1, p2 : indit (π)⇒ U

Summary of dual relationships

1.5. Lattice of partitions. Traditionally the “lattice of partitions,” for example,
Birkhoff (1948) or Grätzer (2003), was defined as isomorphic to the lattice of equivalence
relations where the partial order was inclusion between the equivalence relations as subsets
of U×U . But since equivalence relations and partition relations are complementary subsets
of the closure space U × U , we have two antiisomorphic lattices with opposite partial
orders.

Which lattice should be used in partition logic? For the purposes of comparing formulas
with ordinary logic (interpreted as applying to subsets of elements), it is crucial to take the
lattice of partitions as (isomorphic to) the lattice O(U × U ) of partition relations (sets of
distinctions), the opposite of the lattice of equivalence relations.

The lattice of partitions �(U ) on U adds the operations of join and meet to the partial
ordering of partitions on U with the Top 1 and the Bottom 0.7 There are at least four ways
that partitions and operations on partitions might be defined:

1. the basic set-of-blocks definition of partitions and their operations;

2. the closure space approach using open subsets or dit sets and the interior operator
on U × U ;

3. the graph-theoretic approach where the blocks of a partition on U are the nodes in
the connected components of a simple (at most one arc between two nodes and no
loops at a node) undirected graph;8 and

4. the approach where the blocks of a partition on U are the atoms of a complete
Boolean subalgebra of the power set Boolean algebra P(U ) of subsets of U (Ore,
1942).

The lattice of partitions �(U ) is the partition analogue of the power set Boolean lattice
P(U ). In the power set lattice, the partial order is inclusion of elements, and in the partition
lattice, it is inclusion of distinctions.

7 For a survey of what is known about partition lattices, see Grätzer (2003) where the usual opposite
presentation is used.

8 See any introduction to graph theory such as Wilson (1972) for the basic notions.
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The join π ∨ σ in �(U ) is the partition whose blocks are the nonempty intersections
B ∩ C of the blocks of the two partitions. The equivalent dit-set definition in O(U × U ) is
simply the union: dit(π ∨ σ) = dit(π) ∪ dit(σ ).

Recall that the closure operator on the closure space was not topological in the sense
that the union of two closed sets is not necessarily closed and thus the intersection of two
open sets (i.e., two dit sets) is not necessarily open. Hence the definition of the meet of
two partitions requires some more complication. The dit-set definition in O(U × U ) is the
easiest: the dit set of the meet of two partitions is the interior of the intersection of the two
dit sets, that is,

dit(σ ∧ π) = int(dit(σ ) ∩ dit(π)).

In the older literature, this meet of two partitions is what is defined as the join of the two
equivalence relations. Given the two partitions as sets of blocks {B}B∈π and {C}C∈σ in
�(U ), two elements u and u′ are directly equated, u ∼ u′ if u and u′ are in the same block
of π or σ so the set of directly equated pairs is: indit(σ )∪indit(π). Then u and u∗ are in the
same block of the join in �(U ) if there is a finite sequence u = u1 ∼ u2 ∼ . . . ∼ un = u∗
that indirectly equates u and u∗. The operation of indirectly equating two elements is just
the closure operation in the closure space so the set of pairs indirectly equated, that is,
equated in the join σ ∧ π in �(U ), is:

indit(σ ∧ π) = (indit(σ ) ∪ indit(π)).

The complementary subset of U ×U is the dit set of the meet of the partitions inO(U ×U ):

dit(σ ∧ π) = indit(σ ∧ π)c = (indit(σ ) ∪ indit(π))
c = int(dit(σ ) ∩ dit(π)).

This defines the lattice of partitions �(U ) and the isomorphic lattice O(U × U ) which
represents the partitions as open subsets of the product U × U :

�(U ) ∼= O(U × U ) .

Representation of the lattice of partitions �(U )

as the lattice of open subsets O(U × U )

The analogies between the lattice of subsets P(U ) and the lattice of partitions �(U ) are
summarized in the following table.

Analogies Boolean lattice of subsets Lattice of partitions

Elements Elements of subsets Distinctions of partitions
Partial order Inclusion of elements Inclusion of distinctions
Join Elements of join are Distinctions of join are

union of elements union of distinctions
Meet Largest subset Largest partition

of only common elements of only common distinctions
Top Subset U with all elements Partition 1 with all distinctions
Bottom Subset ∅ with no elements Partition 0 with no distinctions

Elements–distinctions analogies between the Boolean lattice of subsets and the
lattice of partitions
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With this definition of the lattice of partitions �(U ), the usual lattice of equivalence
relations is �(U )op where the top is 1̂ = U × U = indit(0) and the bottom is 0̂ = � =
indit(1).9

1.6. Two other definitions of the partition meet operation. Since the partition meet
is the first nontrivial definition of a partition operation, we might also give the equiva-
lent definitions using the graph-theoretic method and the complete-Boolean-subalgebras
method.

The power of the dit-set approach to defining partition operations is that it allows us to
mimic subset operations using dit sets and the interior operations as needed. The power
of the graph-theoretic approach is that it allows a very intuitive connection back to the
truth tables of classical propositional logic. The truth tables for the classical Boolean
propositional connectives can be stated in an abbreviated form using signed formulas such
as T (π ∧ σ) or Fσ . The truth table for the Boolean meet π ∧ σ is abbreviated by saying
the Boolean conditions for T (π ∧ σ) are “T π and T σ” while the Boolean conditions for
F(π ∧ σ) are “Fπ or Fσ .” Thus for the four Boolean operations of join π ∨ σ , meet
π ∧σ , implication σ ⇒ π , and Sheffer stroke, not-and or nand σ | π , the table of Boolean
conditions is as follows:

Signed Formula T (π ∨ σ) F(π ∨ σ) T (σ ⇒ π) F(σ ⇒ π)
Boolean Conditions T π or T σ Fπ and Fσ Fσ or T π T σ and Fπ

Boolean conditions for ∨ and ⇒,
and

Signed Formula T (π ∧ σ) F(π ∧ σ) T (σ | π) F(σ | π)
Boolean Conditions T π and T σ Fπ or Fσ Fσ or Fπ T σ and T π

Boolean conditions for ∧ and |.
Given any partition π on U , and any pair of elements (u, u′), we say that T π holds

at (u, u′) if (u, u′) is a distinction of π , and that Fπ holds at (u, u′) if (u, u′) is not a
distinction of π , that is, if u and u′ are in the same block of π . Given any two partitions
π and σ on U , we can define the partition version of any Boolean connective π ∗ σ by
putting an arc between any two nodes u and u′ if the Boolean conditions for F(π ∗σ) hold
at (u, u′). Then the blocks of the partition operation π ∗ σ are taken as the nodes in the
connected components of that graph. Thus two elements u and u′ are in the same block
of the partition π ∗ σ if there is a chain or finite sequence u = u1, u 2, . . . , un−1, un =
u′ such that for each i = 1, . . . , n − 1, the Boolean conditions for F(π ∗ σ) hold at
(ui , ui+1).

In order for π ∗ σ to distinguish u and u′, it has to “cut” them apart in the sense of the
graph-theoretic notion of a “cut” which is the graph-theoretic dual to the notion of a chain
(Rockafellar, 1984, p. 31). A set of arcs in a graph form a cut between the nodes u and u′
if every chain connecting u and u′ contains an arc from the set—so that the set of arcs cut
every chain connecting the two points. The complementation duality between chains and
cuts is brought out by the fact that if we arbitrarily color the arcs of any simple undirected
graph by either black or white, then for any two nodes, there is either a white cut between

9 Inevitably notational conflicts arise for such common symbols as “0” and “1” so where there is
less risk of confusion, different uses of these symbols will be clear from the context. In other
cases, the symbols are modified as in using 1̂ and 0̂ for the top and bottom of the opposite lattice
of equivalence relations.
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Fig. 1. Graph for meet σ ∧ π .

the nodes or a black chain connecting the nodes. The above graph-theoretic definition of
π ∗ σ , that is, two points are not distinguished if there is “falsifying” chain connecting the
points with the Boolean conditions for F(π ∗ σ) holding at each arc (i.e., a black chain),
can be stated in an equivalent dual form. Two points are distinguished in π ∗ σ if the set of
arcs where the Boolean conditions for T (π ∗ σ) hold form a (white) cut between the two
points. These falsifying chains and distinguishing cuts results are the basis for the semantic
tableaus used below.

This graph-theoretic approach can be used to uniformly define all the partition logical
operations in terms of the corresponding Boolean logical operations, but the case at hand
is the meet. The graph constructed for the meet would have an arc between u and u′ if
the Boolean conditions for F(π ∧ σ) held at (u, u′), that is, if Fπ or Fσ held at (u, u′).
But this just means that (u, u′) ∈ indit(σ ) ∪ indit(π), and the nodes in the connected
components of that graph are the nodes u and u′ connected by a finite sequence u =
u1, u 2, . . . , un−1, un = u′ where for each i = 1, . . . , n − 1, (ui , ui+1) ∈ indit(σ ) ∪
indit(π), which is the closure space definition of the meet given above.

EXAMPLE 1.1. Let σ = {{a, b, c}, {d, e}} and π = {{a, b}, {c, d, e}}. In figure 1, all the
arcs in the complete graph K5 on five nodes are labeled according to the status of the two
endpoints in the two partitions. The Boolean conditions for F(σ ∧ π) are “Fσ or Fπ .”
The arcs where those conditions hold are the solid lines. In the graph with only the solid
arcs, there is only one connected component so σ ∧π = {{a, b, c, d, e}} = 0. Equivalently,
the set of arcs where the Boolean conditions for T (σ ∧ π) hold, that is, the dashed arcs,
do not “cut” apart any pair of points.

For the Boolean subalgebra approach, given a partition π on U , define B(π) ⊆ P(U ) as
the complete subalgebra generated by the blocks of π as the atoms so that all the elements
of B(π) are formed as the arbitrary unions and intersections of blocks of π . Conversely,
given any complete subalgebra B of P(U ), the intersection of all elements of B containing
an element u ∈ U will provide the atoms of B which are the blocks in a partition π on U
so that B = B(π). Thus an operation on complete subalgebras of the power set Boolean
algebra will define a partition operation. Since the blocks of the partition meet π ∧ σ are
minimal under the property of being the exact union of π -blocks and also the exact union
of σ -blocks, a nice feature of this approach to partitions is that:

B(π ∧ σ) = B(π) ∩ B(σ ).
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The power set Boolean algebra (BA) P(U ) is not just a lattice; it has additional structure
which can be defined using the binary connective of the set implication: A ⇒ B = (U −
A) ∪ B = Ac ∪ B, for A, B ⊆ U . The lattice structure on �(U ) needs to be enriched with
other operations such as the new binary operation of implication on partitions.

1.7. Partition implication operation. Boolean algebras, or more generally, Heyting
algebras are not just lattices; there is another operation A ⇒ B, the implication operation.
In a Heyting algebra, the implication can be introduced by an adjunction (treating the
partial order as the morphisms in a category) that can be written in the Gentzen style10

which in this case is an “if and only if” statement:

C ≤ A ⇒ B

C ∧ A ≤ B
Implication as the right adjoint to meet in a Heyting algebra

In the standard model of the Heyting algebra of open sets of a topological space, the
implication is defined for open sets A and B as:

A ⇒ B = int(Ac ∪ B).

A co-Heyting algebra is also a lattice with top and bottom but with the dual adjunction
where the difference Bc\Ac is left adjoint to the join:

Bc ≤ Ac ∨ Cc

Bc\Ac ≤ Cc

Difference as the left adjoint to join in a co-Heyting algebra

In the standard model of the co-Heyting algebra of closed sets of a topological space,
the difference is defined for closed sets Ac and Bc (where A and B are open sets) as:

Bc\Ac = (Bc ∩ Acc) = (Bc ∩ A) = (A ⇒ B)c.

Neither of these adjunctions holds in the lattice of partitions �(U ) (or its opposite). The
adjunctions imply distributivity for Heyting and co-Heyting algebras, and lattices of par-
titions (usually viewed in the opposite presentation as the lattice of equivalence relations)
are standard examples of nondistributive lattices.

How might the implication partition σ ⇒ π of two partitions (or the difference between
two equivalence relations) be defined? Some motivation might be extracted from Heyting
algebras, or, equivalently, intuitionistic propositional logic. The subset version of intuition-
istic propositional logic is explicit in its topological interpretation where the variables are
interpreted as open subsets of a topological space U and the valid formulas are those that
evaluate to the whole space U regardless of what open subsets are assigned to the atomic
variables. The implication is then defined as: A ⇒ B = int(Ac ∪ B) for open subsets A and
B which gives the classical definition if the topology is discrete. Since we have an interior

10 Sometimes the Gentzen-style statement x→Gy
Fx→y of an adjunction, HomY (Fx, y) ∼=

HomX (x, Gy), has the top and bottom reversed. But there is a theory showing how adjoints
arise out of representations of heteromorphisms (Ellerman, 2006), and that theory suggests that
the Gentzen-style statement should be written as above since there are “behind the scenes”
heteromorphisms (dashed arrows) as vertical downward maps Gy ��� y and x ��� Fx so that
this “adjoint square” commutes, that is, x → Gy ��� y = x ��� Fx → y.
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operator on the (nontopological) closure space U × U , this suggests that the implication
partition σ ⇒ π might be defined by the dit-set definition:

dit(σ ⇒ π) = int(dit(σ )c ∪ dit(π)) = (indit(π) ∩ indit(σ )c)
c
.

The equivalence relation that corresponds to a partition is its indit set so the corresponding
notion of the difference indit(π) − indit(σ ) between two equivalence relations would be
the equivalence relation:

indit(π) − indit(σ ) = (indit(π) ∩ indit(σ )c) = indit(σ ⇒ π) = dit(σ ⇒ π)c.

The dit set dit(σ ⇒ π) and its complement, the indit set indit(σ ⇒ π) = indit(π) −
indit(σ ), define the same partition which is denoted σ ⇒ π rather than say “π − σ”
since we have made the symmetry-breaking decision to define the lattice of partitions to be
isomorphic to the lattice of partition relations rather than the opposite lattice of equivalence
relations.

Since the dit-set definition of σ ⇒ π involves the interior operator on the closure
space U × U , it would be very convenient to have a direct set-of-blocks definition of the
implication partition σ ⇒ π . From Boolean algebras and Heyting algebras, we can extract
one desideratum for the implication σ ⇒ π : if σ ≤ π in the partial order of the Boolean
or Heyting algebra, then and only then σ ⇒ π = 1. Hence for any partitions σ and π
on U , if σ is refined by π , that is, σ � π in �(U ), then and only then we should have
σ ⇒ π = 1 (the discrete partition).11 The property is realized by the simple set-of-blocks
definition of the implication, temporarily denoted as σ

∗⇒ π , that if a block B ∈ π is
contained in a block C ∈ σ , then B is “discretized,” that is, replaced by singleton blocks
{u} for all u ∈ B, in the implication σ

∗⇒ π and otherwise the block B remains the same.
The following proposition says that the dit-set definition is the same as the set-of-blocks
definition so that either may be used to define the partition implication σ ⇒ π .

PROPOSITION 1.2. σ ⇒ π = σ
∗⇒ π .

Proof. By the two definitions, dit(π) ⊆ dit(σ ⇒ π) and dit(π) ⊆ dit(σ
∗⇒ π) with

the reverse inclusions holding between the indit sets. We prove the proposition by showing
indit(σ

∗⇒ π) ⊆ indit(σ ⇒ π) and indit(σ ⇒ π) ⊆ indit(σ
∗⇒ π) where indit(σ ⇒

π) = (indit(π) − indit(σ )) = [dit(σ ) ∩ indit(π)]. Let (u, u′) ∈ indit(σ
∗⇒ π) where

indit(σ
∗⇒ π) ⊆ indit(π) so that u, u′ ∈ B for some block B ∈ π . Moreover if B were

contained in any block C ∈ σ , then (u, u′) ∈ dit(σ
∗⇒ π) = indit(σ

∗⇒ π)c contrary
to assumption so B is not contained in any C ∈ σ . If u and u′ were in different blocks
of σ then (u, u′) �∈ indit(σ ) so that (u, u′) would not be subtracted off in the formation of
indit(σ ⇒ π) = (indit(π) − indit(σ )) and thus would be in indit(σ ⇒ π) which was to be
shown. Hence we may assume that u and u′ are in the same block C ∈ σ . Thus (u, u′) was
subtracted off in indit(π) − indit(σ ) and we need to show that it is restored in the closure
(indit(π) − indit(σ )). Since u, u′ ∈ B ∩ C but B is not contained in any one block of σ ,
there is another σ -block C ′ such that B∩C ′ �= ∅. Let u′′ ∈ B∩C ′. Then (u, u′′) and (u′, u′′)
are not in indit(σ ) since u, u′ ∈ C and u′′ ∈ C ′ but those two pairs are in indit(π) since
u, u′, u′′ ∈ B. Hence the pairs (u, u′′), (u′, u′′) ∈ indit(π) − indit(σ ) = indit(π) ∩ dit(σ )

11 The equality sign “=” is not a sign in the formal language of partition logic so “σ ⇒ π = 1”
is not a formula in that language. It simply says that the formulas “σ ⇒ π” and “1” denote the
same partitions in �(U ).



THE LOGIC OF PARTITIONS 301

which implies that (u, u′) must be in the closure indit(σ ⇒ π) = (indit(π) − indit(σ )).
That establishes indit(σ

∗⇒ π) ⊆ indit(σ ⇒ π).
To prove the converse indit(σ ⇒ π) ⊆ indit(σ

∗⇒ π), if (u, u′) ∈ indit(σ ⇒ π) =
[dit(σ ) ∩ indit(π)], then there is a sequence u = u1, u2, . . . , un = u′ with every pair
(ui , ui+1) ∈ dit(σ ) ∩ indit(π). Now (ui , ui+1) ∈ indit(π) implies there exists a block
Bi ∈ π with ui , ui+1 ∈ Bi for i = 1, . . . , n − 1. But ui , ui+1 ∈ Bi and ui+1, ui+2 ∈ Bi+1
implies Bi = Bi+1 so all the elements ui belong to the same block B ∈ π and in particular,
u, u′ ∈ B. Now if there was a C ∈ σ with B ⊆ C , then, contrary to assumption, we could
not have any (ui , ui+1) ∈ dit(σ ) since all the ui ∈ B ⊆ C . Hence there is no C ∈ σ

containing B so B would not be discretized in σ
∗⇒ π and thus (u, u′) ∈ indit(σ

∗⇒ π). �
Hence we may drop the temporary notation σ

∗⇒ π and consider the partition impli-
cation σ ⇒ π as characterized by the set-of-blocks definition: form σ ⇒ π from π by
discretizing any block B ∈ π contained in a block C ∈ σ .12

Another way to characterize the partition implication σ ⇒ π is by using an adjunc-
tion.13 In a Heyting algebra, the implication is characterized by the adjunction which in
our notation would be:

τ � σ ⇒ π

τ ∧ σ � π
.

For partitions, the top implies the bottom, but the bottom does not imply the top. The
simplest nontrivial partition algebra is that on the three-element set U = {a, b, c} where
we may take τ = {{a, b}, {c}}, σ = {{a, c}, {b}}, and π = {{a}, {b, c}}. Then τ ∧σ = 0 so
the bottom 0 � π is true. But σ ⇒ π = π (since no nonsingleton block of π is contained
in a block of σ ), so the top is τ � π which is false.

However, on the closure space U × U , for any S ⊆ U × U , there is the usual adjunction
P(U × U )� P(U × U ) defining the set implication:

T ⊆ S ⇒ P

T ∩ S ⊆ P

(where S ⇒ P is just Sc ∪ P) for any subsets T, P ∈ P(U × U ). Moreover, the dit-
set representation �(U ) → P(U × U ) where τ �−→ dit(τ ) has a right adjoint where
P ∈ P(U × U ) is taken to the partition G(P) whose dit set is int(P):

τ � G(P)

dit(τ ) ⊆ P
.

Composing the two right adjoints P(U × U ) → P(U × U ) → �(U ) gives a functor
taking P ∈ P(U × U ) to GS(P) which is the partition whose dit set is int(Sc ∪ P). Its left
adjoint is obtained by composing the two left adjoints �(U ) → P(U × U ) → P(U × U )

12 For the analogy with subsets, the set difference X − Y = X ∩ Y c is obtained from X by deleting
any u ∈ X that is contained in Y , that is, {u} is locally replaced by the null set, the zero element of
the Boolean algebra of subsets of U . Similarly, in the difference indit(π)−indit(σ ) of equivalence
relations, any equivalence class B of π contained in an equivalence class C of σ is locally replaced
by the zero in the lattice of equivalence relations, that is, is discretized.

13 See Mac Lane (1971, p. 93) for the notion of an adjunction between partial orders, that is, a
covariant Galois connection.
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Fig. 2. Graph for implication σ ⇒ π .

to obtain a functor taking a partition τ to FS(τ ) = dit(τ ) ∩ S:

τ � GS(P)

FS(τ ) ⊆ P
.14

Specializing S = dit(σ ) and P = dit(π) gives Gdit(σ )(dit(π)) as the partition whose dit
set is int(dit(σ )c ∪ dit(π)) which we know from above is the partition implication σ ⇒ π ,
that is, Gdit(σ )(dit(π)) = σ ⇒ π . Using these restrictions, the adjunction gives the iff
statement characterizing the partition implication.

dit(τ ) ∩ dit(σ ) ⊆ dit(π) iff τ � σ ⇒ π.

Characterization of σ ⇒ π

Thus σ ⇒ π is the most refined partition τ such that dit(τ ) ∩ dit(σ ) ⊆ dit(π). The
arbitrary intersection of equivalence relations (indit sets) is an equivalence relation so the
arbitrary union of dit sets is a dit set, that is, the dit set of the join of the partitions whose dit
sets were in the union. Moreover, distributivity inP(U ×U ) implies that the arbitrary union
of dit sets dit(τ ) such that dit(τ ) ∩ dit(σ ) ⊆ dit(π) will also satisfy that same condition.
Hence we may construct the most refined partition τ such that dit(τ ) ∩ dit(σ ) ⊆ dit(π) by
taking the join of those partitions:

σ ⇒ π =
∨

{τ : dit(τ ) ∩ dit(σ ) ⊆ dit(π)}.
The equivalent graph-theoretic definition of the partition implication can be illustrated
using the previous example.

EXAMPLE 1.3. Let σ = {{a, b, c}, {d, e}} and π = {{a, b}, {c, d, e}} as before. In
figure 2, all the arcs in the complete graph K5 on five nodes are again labeled according to
the status of the two endpoints in the two partitions. The Boolean conditions for F(σ ⇒ π)
are “T σ and Fπ .” The arcs where those conditions hold are the solid lines. In the graph
with only the solid arcs, there are three connected components giving the blocks of the
implication: σ ⇒ π = {{a}, {b}, {c, d, e}}. Note that only the π -block {a, b} is contained
in a σ -block so σ ⇒ π is like π except that {a, b} is discretized.

14 Thanks to the referee for suggesting the simpler presentation of this adjunction (as the
composition of two adjunctions) as well as for other helpful comments and proof-simplifying
suggestions.
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Fig. 3. (u, u′′) as a common dit.

1.8. Partition negation operation. In intuitionistic logic, the negation ¬σ would be
defined as the implication σ ⇒ 0 with the consequent taken as the zero element 0, that is,
¬σ = σ ⇒ 0. In the topological interpretation using open subsets, σ would be an open
subset and ¬σ would be the interior of its complement. Adapted to partitions, these give
the same dit-set definition of the partition negation (since dit(0) = ∅):

dit(¬σ) = int(dit(σ )c) = dit(σ ⇒ 0).

It is a perhaps surprising fact that this dit set is always empty (so that ¬σ = 0) except in the
singular case where σ = 0 in which case we, of course, have ¬0 = (0 ⇒ 0) = 1.15 The
key fact is that any two partitions (aside from the blob) must have some dits in common.

THEOREM 1.4 (Common-dits theorem) Any two nonempty dit sets have some dits in
common.

Proof. Let π and σ be any two partitions on U with nonempty dit sets, that is, π �=
0 �= σ . We need to show that dit(π) ∩ dit(σ ) �= ∅. Since π is not the Blob 0, consider
two elements u and u′ distinguished by π but identified by σ [otherwise (u, u′) ∈ dit(π) ∩
dit(σ )]. Since σ is also not the blob, there must be a third element u′′ not in the same block
of σ as u and u′. But since u and u′ are in different blocks of π , the third element u′′ must
be distinguished from one or the other or both (see figure 3) in π . Hence (u, u′′) or (u′, u′′)
must be distinguished by both partitions and thus must be in dit(π) ∩ dit(σ ). �

It should be noted that the interior of the intersection dit(π) ∩ dit(σ ) could be empty,
that is, σ ∧ π = 0, even when the intersection is nonempty. It might also be useful to
consider the contrapositive form of the common-dits theorem which is about equivalence
relations. If the union of two equivalence relations is the universal equivalence relation,
that is, indit(π) ∪ indit(σ ) = U × U , then one of the equivalence relations is the universal
one, that is, indit(π) = U × U or indit(σ ) = U × U .

For any nonblob partition σ , dit(¬σ) = int(dit(σ )c) is a dit set disjoint from the
nonempty dit(σ ) so by the common-dits theorem, it has to be empty and thus ¬σ = 0.
Negation becomes more useful if we generalize by replacing the blob in the definition
¬σ = σ ⇒ 0 by an arbitrary but fixed partition π . This leads to the notion of the π -
negation of a partition σ which is just the implication σ ⇒ π with the fixed partition π
as the consequent. We added a π to the negation symbol to represent this negation relative
to π :

π -negation:
π¬σ = σ ⇒ π.

15 In graph theory, this is the result that given any disconnected (simple) graph G, its complement
Gc (set of all links not in G) is connected (Wilson, 1972, p. 30).
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Fig. 4. Graph for nand σ | τ .

The unadorned negation ¬σ is the 0-negation, that is, ¬σ = σ ⇒ 0. Using this suggestive
notation, the partition tautology that internalizes modus ponens, (σ ∧ (σ ⇒ π)) ⇒ π , is

the law of noncontradiction,
π¬(σ ∧ π¬σ), for π -negation. While it is useful to establish the

notion of partition negation, it need not be taken as a primitive operation.

1.9. Partition stroke, not-and, or nand operation. In addition to the lattice operations
of the join and meet, and the implication operation, we introduce the Sheffer stroke, not-
and, or nand operation σ | τ , with the dit-set definition:

dit(σ | τ) = int[indit(σ ) ∪ indit(τ )].

For a set-of-blocks definition consider a graph whose nodes are the elements u ∈ U . Given
σ = {C} and τ = {D}, each element u is in a unique block C ∩ D of the join σ ∨ τ . Given
elements u ∈ C ∩ D and u′ ∈ C ′ ∩ D′, u is connected by an arc or link in the graph, that
is, u ∼ u′, if C �= C ′ and D �= D′, that is, if (C ∩ D) × (C ′ ∩ D′) ⊆ dit(σ ) ∩ dit(τ ) =
[indit(σ ) ∪ indit(τ )]c. Then the nodes in each connected component of the graph are the
blocks of σ | τ . Two nodes u, u′ are connected in this graph if and only if the ordered
pair (u, u′) is in the closure (dit(σ ) ∩ dit(τ )) = [indit(σ ) ∪ indit(τ )]c, and thus they are a
distinction if and only if they are in the complement of the closure which is the interior:
int[indit(σ ) ∪ indit(τ )]. Hence this graph-theoretic definition of the nand operation is the
same as the dit-set definition.

To turn it into a set-of-blocks definition, note that when u ∼ u′ because C �= C ′ and
D �= D′ then all the elements of C ∩ D and C ′ ∩ D′ are in the same block of the nand σ | τ .
But if for any nonempty C ∩ D, there is no other block C ′ ∩ D′ of the join with C �= C ′ and
D �= D′, then the elements of C ∩ D would not even be connected with each other so they
would be singletons in the nand. Hence for the set-of-blocks definition of the nand σ | τ ,
the blocks of the nand partition are formed by taking the unions of any join blocks C ∩ D
and C ′ ∩ D′ which differ in both “components” but by taking as singletons the elements of
any C ∩ D which does not differ from any other join block in both components.

EXAMPLE 1.5. Let σ = {{a, b, c}, {d, e}} and π = {{a, b}, {c, d, e}} as before. In
figure 4, all the arcs in the complete graph K5 on five nodes are again labeled according to
the status of the two endpoints in the two partitions. The Boolean conditions for F(σ | π)
are “T σ and T π .” The arcs where those conditions hold are the solid lines. In the graph
with only the solid arcs, there are two connected components giving the blocks of the nand:
σ | π = {{a, b, d, e}, {c}}.
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EXAMPLE 1.6. If σ = {C, C ′} where C = {u} and C ′ = U − {u} and τ = {D, D′}
where D = U − {u′} and D′ = {u′}, then σ ∨ τ = {{u}, {u′}, U − {u, u′}}. Hence
u ∈ C ∩ D = {u} ∩ (U − {u′}) and u′ ∈ C ′ ∩ D′ = (U − {u}) ∩ {u′} so u ∼ u′ in the
graph for σ | τ . But the elements u′′ ∈ C ′ ∩ D = U − {u, u′} are not connected to any
other elements since C ′ ∪ D = (U − {u}) ∪ (U − {u′}) = U so they are all singletons in
the nand. Hence σ | τ = {{u, u′}, {u′′}, . . .}.

This example can be stated in more general terms. A modular partition is a partition
with at most one nonsingleton block. A nonzero partition ϕ is an atom in the lattice of
partitions �(U ) if 0 � π � ϕ implies π = 0 or π = ϕ. A nonunitary partition ϕ is
a coatom if ϕ � π � 1 implies π = ϕ or π = 1. All coatoms are modular where the
nonsingleton block is some pair {u, u′}. The example then shows that the nand of any two
distinct modular atoms is a coatom.

For subsets S, T ⊆ U , the nand subset S | T = Sc ∪ T c = (S ∩ T )c has as elements
those elements u ∈ U which are not elements of both S and T . Using the relationship
between elements of a subset and distinctions of a partition, the nand partition σ | τ has
as distinctions those pairs (u, u′) ∈ U × U − � which are, directly or indirectly, not
distinctions of both σ and τ . In the example above, (u, u′) is a distinction of both σ and τ
so it is not a distinction of σ | τ . For any third element u′′ ∈ U , then u′′ paired with any
other element of U is not a dit of both σ and τ so the pair is a distinction of σ | τ , that is,
{u′′} is a singleton in the nand partition.

A number of the relations which we are accustomed to in subset logic also hold in
partition logic. For instance, negation can be defined using the nand: σ | σ = ¬σ . In fact,
if σ � τ , then σ | τ = ¬σ . For example, since σ is always refined by τ ⇒ σ for any
τ , σ | (τ ⇒ σ) = ¬σ . The formula σ | σ = ¬σ is also a special case of the formula
(σ | τ) ∧ (σ ⇒ τ) = ¬σ derived in the next section.

In subset logic, the “and” and the nand subsets would be complements of one another
but the relationship is more subtle in partition logic. We say that two partitions ϕ and ϕ′

which refine a partition π , that is, π � ϕ, ϕ ′, are π -orthogonal if
π¬ϕ ∨ π¬ϕ′ = 1. Since

all partitions refine 0, two partitions ϕ and ϕ′ are 0-orthogonal or, simply, orthogonal if
¬ϕ ∨ ¬ϕ′ = 1. This may look odd as a criterion for orthogonality but it is classically
equivalent to the more familiar ϕ ∧ ϕ′ = 0.

LEMMA 1.7. ϕ and ϕ′ are orthogonal, that is, ¬ϕ ∨ ¬ϕ′ = 1, iff ϕ | ϕ′ = 1.

Proof. If ¬ϕ ∨ ¬ϕ′ = 1, then int(indit(ϕ)) ∪ int(indit(ϕ′)) = dit(1) = U 2 − �. By
the monotonicity of the interior operator, int(indit(ϕ)) ∪ int(indit(ϕ′)) ⊆ int(indit(ϕ) ∪
indit(ϕ′)) = dit(ϕ | ϕ′) so ϕ | ϕ′ = 1. Conversely if ϕ | ϕ′ = 1, then int(indit(ϕ) ∪
indit(ϕ′)) = dit(1) = U 2 − �. Since � ⊆ indit(ϕ), indit(ϕ′) (so that only � is removed
by the interior operator), indit(ϕ) ∪ indit(ϕ′) = U 2. It was previously noted that if the
union of two equivalence relations is the universal equivalence relation U 2, then one of the
equivalence relations must be the universal one. Hence either ϕ = 0 or ϕ′ = 0 and since
¬0 = 1, we have either way, ¬ϕ ∨ ¬ϕ′ = 1. �

Just as the unary negation operation ¬ϕ is usefully generalized by the binary operation
π¬ϕ = ϕ ⇒ π , so the binary nand operation σ | τ is usefully generalized by the ternary
operation of π -nand defined by:

dit(σ |π τ) = int(indit(σ ) ∪ indit(τ ) ∪ dit(π)).
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Then a similar argument shows that for π � ϕ, ϕ′:

ϕ and ϕ′ are π -orthogonal iff ϕ |π ϕ′ = 1.

Thus two partitions are orthogonal when if one of the partitions is nonzero, then the other
partition must be zero (i.e., at least one is zero). If ϕ and ϕ′ are orthogonal, that is, ϕ | ϕ′ =
1, then ϕ ∧ ϕ′ = 0 follows but not vice versa (see next example).

Every partition σ and its 0-negation ¬σ are orthogonal since ¬σ ∨ ¬¬σ = 1. In the
example above, the meet of σ = {{u}, U − {u}} and τ = {{u′}, U − {u′}} is σ ∧ τ = 0
and ¬0 = 1 but σ | τ �= 1 so the negation ¬(σ ∧ τ) operation is not necessarily the same
as the nand σ | τ operation. However, the “and” or meet σ ∧ τ and the “not-and” or nand
σ | τ are orthogonal; if one is nonzero, the other must be zero. Thus no pair (u, u′) can be
a dit of both and hence (σ | τ) | (σ ∧ τ) = 1 is a partition tautology. The same example
above shows that the nand σ | τ is also not the same as ¬σ ∨ ¬τ (which equals 0 in the
example). Although the three formulas are equal in subset logic, in partition logic we only
have the following refinement relations holding in general:

¬σ ∨ ¬τ � σ | τ � ¬(σ ∧ τ).

Thus only one direction ¬σ ∨ ¬τ � ¬(σ ∧ τ) holds in general so the “strong” DeMorgan
law ¬σ ∨ ¬τ = ¬(σ ∧ τ) does not hold in partition logic. However, the other “weak”

DeMorgan law holds in partition logic even for π -negation, that is,
π¬(σ ∨ τ) = π¬σ ∧ π¬τ .

EXAMPLE 1.8. The universe set U = {T om, John, J im} consists of three people and
there are two partitions: α which distinguishes people according to the first letter of their
name so that α = {{T om}, {John, J im}}, and ω which distinguishes people according
to the last letter of their name so that ω = {{T om, J im}, {John}}. Then the meet α ∧ ω
would identify people who are directly and indirectly identified by the two partitions. Tom

and John are not directly identified but are indirectly identified: T om
ω∼ J im

α∼ John so
that σ ∧ ω = 0. But since the meet is 0, the 0-orthogonal nand of the two partitions could
be nonzero, and in fact α | ω = {{T om, John}, {J im}}. Thus the fact that Tom and John
are directly distinguished by both the first and last letters of their names results in them not
being distinguished by the not-and partition.

In any dit-set definition of a partition ϕ as dit(ϕ) = int(P) for some P ⊆ U × U , two
elements u and u′ will be in the same block of ϕ if and only if they are in the closure
(Pc), that is, if there is a finite sequence of links (ui , ui+1) ∈ Pc connecting u and u′.
The question arises of there being an upper bound on the number of links required to put
two elements in the same block. In the simple case of the join σ ∨ τ where dit(σ ∨ τ) =
dit(σ )∪dit(τ ), no interior operator is needed since the union of open subsets of the closure
space U × U is open. Thus the complement (dit(σ ) ∪ dit(τ ))c = indit(σ ) ∩ indit(τ ) is
already closed (i.e., the intersection of two equivalence relations is an equivalence relation)
so one link (u, u′) ∈ indit(σ ) ∩ indit(τ ) suffices to put u and u′ into the same block of the
join σ ∨ τ . Thus for the join, one link suffices.

For the implication σ ⇒ τ , (u, u′) ∈ indit(σ ⇒ τ) if and only if (u, u′) ∈ indit(τ ),
say, u, u′ ∈ D ∈ τ , and there is no C ∈ σ such that D ⊆ C so the block D remains
whole in the implication σ ⇒ τ . But that means there is another block C ′ ∈ σ such that
D ∩ C ′ �= ∅, that is, there is an a ∈ D ∩ C ′ such that (u, a) and (a, u′) are both dits of σ
but indits of τ. Thus there is at most a two link chain connecting u and u′ where each link
is in dit(σ ) ∩ indit(τ ) = (dit(σ )c ∪ dit(τ ))c. Thus for the implication, two links suffice.



THE LOGIC OF PARTITIONS 307

Fig. 5. Four links suffice.

For the meet of two partitions, it is well known that there is no upper bound on the finite
number of links needed to connect two elements which are in the same block. For instance
on the natural numbers, take σ = {{0, 1}, {2, 3}, . . .} and τ = {{0}, {1, 2}, {3, 4}, . . .} so
that σ ∧ τ is the blob and thus any two elements are connected. But clearly there is no
upper bound on the number of links needed to connect any two elements.

For the nand operation, it is perhaps interesting that four links suffice. To show this, we
first exhibit an example where four links are required, that is, no shorter set of links would
suffice. Then we show that in general, longer chains can always be shortened to four or
fewer links.

For an example where four links are required, consider the four-link chain u, a, b, c, u′
connecting u and u′ in the nand σ | τ where σ = {{u, u′, b}, {a, c}} and τ = {{u, c}, {u′, a},
{b}}. Each link (u, a), (a, b), (b, c), and (c, u′) in the four-link chain is in the set (indit(σ )∪
indit(τ ))c = dit(σ ) ∩ dit(τ ) so (u, u′) is in its closure, that is, u and u′ are in the same
block of σ | τ = 0. And there are no shortcuts. By placing the five points on the
vertices of a pentagon, then it is easy to see that none of the shortcutting chords are in
dit(σ ) ∩ dit(τ ).

LEMMA 1.9. Four links suffice to put any two elements in the same block of any nand
σ | τ .

Proof. The proof can be formulated abstractly using sequences of ordered pairs which
can be pictured as points on the plane (see figure 5). Suppose we have a chain of ordered
pairs (x1, y1), (x2, y2),. . . , (xn, yn) where each pair differs from the previous one on both
coordinates. However if any pair differs on both coordinates with a previous pair, then
all intermediate pairs could be cut out thus shortening the chain. We want to construct a
subchain with four or less links. Since we cannot just directly connect the end points they
must agree on one coordinate such as the x coordinate. Then (x2, y2) must also agree on
one coordinate with (xn, yn) or we would just connect them and be finished with a two-link
chain. But they cannot agree on the x coordinate since it has to differ on both coordinates
from the first point (x1, y1). Hence it has to agree on the y coordinate with (xn, yn).

The third point (x3, y3) must agree with the first and last which means on the x coor-
dinate as pictured above. Then the fourth point (x4, y4) must differ from (x3, y3) on both
coordinates but must agree with the first and second points on some coordinates. Thus it
must agree with the first point on the y coordinate and with the second point on the x
coordinate. But then it will differ from the last point (xn, yn) on both coordinates so it can
be directly connected giving a four-link subchain where each successive pair differs on
both coordinates.
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To map this abstract proof into the case at hand, recall that indit(σ | τ) = [dit(σ ) ∩ dit(τ )]
so that (u, u′) is an indit of σ | τ if there is a finite sequence u = u1, u2, . . . , un =
u′ with each pair (ui , ui+1) ∈ dit(σ ) ∩ dit(τ ). Different horizontal coordinates corre-
spond to different σ blocks and different vertical coordinates correspond to different τ
blocks where only a finite number of points are needed to model the finite sequence.
The first link (u1, u2) then maps to the first line segment from (x1, y1) (the pair of co-
ordinates representing the blocks C1 ∈ σ and D1 ∈ τ containing u1 = u) to (x2, y2)
(the pair representing the different blocks C2 ∈ σ and D2 ∈ τ containing u2). The
second link (u2, u3) maps to the second line segment from (x2, y2) to (x3, y3), and so
forth. �

1.10. Sixteen binary operations on partitions. What other partition operations might
be defined? For binary operations σ ∗ τ on Boolean 0, 1 variables σ and τ , there are four
combinations of values for σ and τ , and thus there are 24 = 16 possible binary Boolean
operations: 2 × 2 → 2. Thinking in terms of subsets S, T ⊆ U instead of Boolean
propositional variables, there are the four basic disjoint regions in the general position
Venn diagram for S and T , namely S ∩ T , S ∩ T c, Sc ∩ T , and Sc ∩ T c. Then there are
again 24 = 16 subsets of U defined by including or not including each of these four basic
regions. That defines the 16 binary logical operations on subsets of U .

Now take S = dit(σ ) and T = dit(τ ) as subsets of U × U and define the 16 subsets of
U × U in the same way. Some of these such as S ∪ T = dit(σ ) ∪ dit(τ ) = dit(σ ∨ τ) will
be open and thus will be the dit sets of partitions on U . For those which are not already
open, we must apply the interior operator to get the dit set of a partition on U . This gives
16 binary operations on partitions that would naturally be called logical since they are
immediately paired with the corresponding 16 binary logical operations on subsets. We
will use the same notation for the partition operations. For instance, for subsets S, T ⊆ U ,
the conditional or implication subset is Sc∪T = S ⇒ T . When S = dit(σ ) and T = dit(τ )
as subsets of U ×U , the subset Sc ∪T is not necessarily open so we must apply the interior
operator to get the dit set defining the corresponding implication operation on partitions,
that is, int[dit(σ )c ∪ dit(τ )] = dit(σ ⇒ τ).

Alternatively, the 16 logical partition operations could be defined using the graph-
theoretic approach rather than the dit-set approach. Given two partitions σ and τ on U ,
we label each arc in the complete undirected simple graph on the node set U accord-
ing to whether or not the end points of the arc were distinctions (with labels T σ or
T τ ) or indistinctions (Fσ or Fτ ) of the partitions. Thus each arc is associated with a
row in the Boolean truth table for the two atomic variables σ and τ . For any of the
16 Boolean logical operations σ ∗ τ , we keep the arcs where σ ∗ τ was assigned a 0
or F(σ ∗ τ) in the truth table for that Boolean operation and discard the other arcs.
Then the blocks in the partition σ ∗ τ are the nodes in the connected components of
that graph. This gives the same 16 logical binary operations on partitions as the dit-set
approach.

In both subset and partition logic, there are only two nullary operations (constants), 0
and 1. With unary operations, the situation is still straightforward. There are only four
subset logical unary operations: identity and negation (or complementation) in addition
to the two nullary operations (seen as constant unary operations). These immediately
yield the partition operations of identity σ and negation ¬σ in addition to the two par-
tition constant operations 0 and 1. If these partition operations are compounded using
the logical operations such as negation, implication, join, meet, and nand, then two other
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distinct unary operations are generated: the double negation ¬¬σ and the excluded middle
operation σ ∨ ¬σ (which is also equal to ¬¬σ ⇒ σ , the direction of the usual law of
double negation that is not a partition tautology)—to make six logical unary partition
operations.

The situation for binary partition operations is considerably more complicated. If the 16
binary operations on subsets are compounded, then the result is always 1 of the 16 binary
subset operations, for example, S ∩ (S ⇒ T ) = S ∩ T . But the presence of the interior
operator significantly changes the partition case. Compounding gives many new binary
operations on partitions, for example, ¬(σ ∧ τ) and ¬σ ∨ ¬τ (noted in the analysis of
σ | τ ), and they could also be called “logical” operations.16 For our purposes here, we will
settle for being able to define the 16 binary logical operations on partitions that correspond
to the 16 logical binary subset operations. But which binary operations form a complete
set that suffices to define all those 16 operations?

1.11. Conjunctive normal form (CNF) in partition logic. The four operations, the
join, meet, implication, and nand, suffice to define the 16 binary logical partition operations
by using the partition version of conjunctive normal form—which, in turn, is based on the
following result.

LEMMA 1.10. For any subsets A, B ⊆ U × U, int[A ∩ B] = int[int(A) ∩ int(B)].

Proof. Since int(A) ⊆ A and int(B) ⊆ B, int(A)∩ int(B) ⊆ A∩ B and thus int[int(A)∩
int(B)] ⊆ int[A ∩ B]. Conversely, A ∩ B ⊆ A, B so int(A ∩ B) ⊆ int(A) ∩ int(B) and
since int(A ∩ B) is open, int[A ∩ B] ⊆ int[int(A) ∩ int(B)]. �

In the treatment of the 16 subsets defined from four basic regions S ∩ T , S ∩ T c, Sc ∩ T ,
and Sc ∩ T c, we were in effect using disjunctive normal form (DNF) to define the 15
nonempty subsets by taking the unions of the 15 combinations of those four basic regions.
But the above lemma shows that the conjunctive normal form will be more useful in par-
tition logic (since the corresponding result for the union and the interior operator does not
hold).

In the subset version of the conjunctive normal form, the 15 nonuniversal subsets are
obtained by taking the intersections of 15 combinations of the four regions: S ∪ T , S ∪ T c,
Sc ∪ T , and Sc ∪ T c. Taking S = dit(σ ) and T = dit(τ ), the interiors of these four
basic “conjuncts” are, respectively, the dit sets of: σ ∨ τ , τ ⇒ σ , σ ⇒ τ , and σ | τ .
By expressing each of the 15 nonuniversal subsets of U × U in conjunctive normal form,
applying the interior operator, and then using the lemma to distribute the interior operator
across the intersections, we express each of the 15 partition operations (aside from the
constant 1) as a meet of some combination of the join σ ∨ τ , the implications τ ⇒ σ
and σ ⇒ τ , and the nand σ | τ . The constant operation 1 can be obtained using just the
implication σ ⇒ σ or τ ⇒ τ . These results and some other easy reductions are given in
the following tables. In the first table, the interior of the subset of U ×U in the first column
yields the dit set of the binary operation given in the second column.17

16 In Boolean logic, formulas using only the implication ⇒ and 0 suffice to define all of the 16 binary
logical operations on subsets. Although beyond the scope of this paper, there are, by the author’s
calculations, 134 binary logical operations on partitions definable just with formulas using only
the implication ⇒ and 0.

17 For notation, we have followed, for the most part, Church (1956).
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15 regions conjunctive normal form Binary operation on partitions

(S ∪ T ) ∩ (Sc ∪ T ) ∩ (S ∪ T c) ∩ (Sc ∪ T c) 0
(Sc ∪ T ) ∩ (S ∪ T c) ∩ (Sc ∪ T c) σ∨τ = ¬σ ∧ ¬τ
(S ∪ T ) ∩ (S ∪ T c) ∩ (Sc ∪ T c) τ � σ = σ ∧ ¬τ

(S ∪ T c) ∩ (Sc ∪ T c) ¬τ = τ ⇒ 0
(S ∪ T ) ∩ (Sc ∪ T ) ∩ (Sc ∪ T c) σ � τ = ¬σ ∧ τ

(Sc ∪ T ) ∩ (Sc ∪ T c) ¬σ = σ ⇒ 0
(S ∪ T ) ∩ (Sc ∪ T c) σ �≡ τ

Sc ∪ T c σ | τ
(S ∪ T ) ∩ (Sc ∪ T ) ∩ (S ∪ T c) σ ∧ τ

(Sc ∪ T ) ∩ (T c ∪ S) σ ≡ τ
(S ∪ T ) ∩ (S ∪ T c) σ

S ∪ T c τ ⇒ σ
(S ∪ T ) ∩ (Sc ∪ T ) τ

Sc ∪ T σ ⇒ τ
S ∪ T σ ∨ τ

Interior of Column 1 gives partition operation in Column 2

Using the lemma, the interior is distributed across the intersections of the subset CNF to
give the partition CNF in the following table.

Binary operation Partition CNF for 15 binary operations

0 = (σ ∨ τ) ∧ (σ ⇒ τ) ∧ (τ ⇒ σ) ∧ (σ | τ)
σ∨τ = ¬σ ∧ ¬τ = (σ ⇒ τ) ∧ (τ ⇒ σ) ∧ (σ | τ)
τ � σ = σ ∧ ¬τ = (σ ∨ τ) ∧ (τ ⇒ σ) ∧ (σ | τ)

¬τ = τ ⇒ 0 = (τ ⇒ σ) ∧ (σ | τ)
σ � τ = ¬σ ∧ τ = (σ ∨ τ) ∧ (σ ⇒ τ) ∧ (σ | τ)

¬σ = σ ⇒ 0 = (σ ⇒ τ) ∧ (σ | τ)
σ �≡ τ = (σ ∨ τ) ∧ (σ | τ)
σ | τ = σ | τ
σ ∧ τ = (σ ∨ τ) ∧ (σ ⇒ τ) ∧ (τ ⇒ σ)
σ ≡ τ = (σ ⇒ τ) ∧ (τ ⇒ σ)

σ = (σ ∨ τ) ∧ (τ ⇒ σ)
τ ⇒ σ = τ ⇒ σ

τ = (σ ∨ τ) ∧ (σ ⇒ τ)
σ ⇒ τ = σ ⇒ τ
σ ∨ τ = σ ∨ τ

Distributing interior across intersections gives partition CNF

The CNF identities shows that the 15 functions, and thus all their further combinations,
could be defined in terms of the four primitive operations of join, meet, implication, and
nand.18

The 14 nonzero operations occur in natural pairs: ⇒ and�, ⇐ and�, ≡ and �≡, ∨ and
∨, and ∧ and | in addition to σ and ¬σ , and τ and ¬τ . Except in the case of the join ∨
(and, of course, σ and τ ), the second operation in the pair is not the negation of the first.

18 There are other combinations which can be taken as primitive since the inequivalence, symmetric
difference, exclusive-or, or xor σ �≡ τ can be used to define the nand operation: ((σ ∨ τ) ⇒ (σ �≡
τ)) = σ | τ .
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The relationship is not negation but 0-orthogonality. The pairs of formulas σ ⇒ τ and
σ � τ (and similarly for the other pairs) are 0-orthogonal; if one is nonzero, the other
must be zero. Later we see a different pairing of the operations by duality.

1.12. Partition algebra ���(U) on U and its dual ���(U)op. The partition lattice of
all partitions on U with the Top 1 and Bottom 0 enriched with the binary operations
of implication and nand is the partition algebra �(U ) of U . It plays the role for par-
tition logic that the Boolean algebra P(U ) of all subsets of U plays in ordinary subset
logic. Dualization in classical propositional logic—when expressed in terms of subsets—
amounts to reformulating the operations as operations on subset complements. But since
the complements are in the same Boolean algebra, Boolean duality can be expressed as a
theorem about a Boolean algebra. We have defined the lattice of partitions (sets of disjoint
and mutually exhaustive nonempty subsets of a set) as being isomorphic to the lattice
of partition relations O(U × U ) on U × U (antireflexive, symmetric, and antitransitive
relations). The complement of a partition relation is an equivalence relation (reflexive,
symmetric, and transitive relations) which is not an element in the same lattice. Hence
in partition logic, duality is naturally expressed as a relationship between the partition
algebra �(U ) (seen as the algebra of partition relations) and the dual algebra �(U )op of
equivalence relations.

Given a formula ϕ in Boolean logic, the dual formula ϕd is obtained by interchanging
0 and 1, and by interchanging each of the following pairs of operations: ⇒ and �, ∨ and
∧, ≡ and �≡, ⇐ and �, and ∨ and |, while leaving the atomic variables and negation ¬
unchanged (Church, 1956, p. 106). In partition logic, we use exactly the same definition of
dualization except that the atomic variables (and constants) will now stand for equivalence
relations rather than partitions so we will indicate this by adding the superscript “d” to the
atomic variables. However the partition formulas may be assumed to involve only ∨, ∧,
⇒, and | along with 0 and 1. Hence the dual of modus ponens ϕ = (σ ∧ (σ ⇒ τ)) ⇒ τ
is ϕd = (σ d ∨ (σ d

� τ d) � τ d). The converse nonimplication � (to use Church’s
terminology) is the difference operation (Lawvere & Rosebrugh, 2003, p. 201), that is,
σ d

� τ d is the result of subtracting σ d from τ d so it might otherwise be symbolized
as τ d − σ d (or τ d\σ d ). Then the dual to the modus ponens formula would be: ϕd =
τ d − (σ d ∨ (τ d − σ d)). This, incidentally, is the formula that would have been compared
to modus ponens (σ ∧ (σ ⇒ τ)) ⇒ τ in subset and intuitionistic logic if the lattice of
partitions had been written upside down instead of just comparing the same formulas in
subset, intuitionistic, and partition logic (a benefit of writing that lattice right side up).
Similarly the nonimplication σ d

� τ d , dual to the reverse implication σ ⇐ τ , might
otherwise by symbolized as the difference σ d −τ d (or σ d\τ d ). The difference τ d −σ d and
nor σ d∨τ d will be taken as primitive operations on equivalence relations. The difference
and nor operations on partitions (as opposed to equivalence relations) are not primitive:
σ � τ = τ ∧ ¬σ and σ∨τ = ¬σ ∧ ¬τ . The equivalence and inequivalence operations
on partitions are also not taken as primitive: σ ≡ τ = (σ ⇒ τ) ∧ (τ ⇒ σ) and σ �≡ τ =
(σ ∨ τ) ∧ (σ | τ).

The process of dualization is reversible. Starting with a formula ϕd with superscript “d”
on all atomic variables (to indicate they refer to equivalence relations instead of partitions),
dualizing means making the same interchanges of operation symbols and constants, and
erasing the “d” superscripts so that the dual of the dual is the original formula.

We have used the lower case Greek letters π , σ, . . . to stand for set-of-blocks par-
titions while the corresponding partition relations were the dit sets dit(π), dit(σ ), . . ..
The Greek letters with the superscript “d” stand for equivalence relations which take the
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form indit(π), indit(σ ), . . .. Thus atomic variables such as π dualize to πd and would be
interpreted as denoting indit sets indit(π).

The operations of the dual algebra �(U )op of equivalence relations on U could be
defined directly but it is more convenient to define them using duality from the partition
operations.

1. The top of the dual algebra, usually denoted 1̂, is 0d = indit(0) = U × U , the
universal equivalence relation that identifies everything. The bottom of the dual
algebra, usually denoted 0̂, is 1d = indit(1) = �, the diagonal where each element
of U is only identified with itself.

2. Given any equivalence relations indit(π) and indit(σ ) on U , their meet ∧ is defined
via duality as the indit set of the join of the two corresponding partitions: indit(π)∧
indit(σ ) = indit(π ∨ σ) = indit(π) ∩ indit(σ ). Using the superscript-d notation,
this is: πd ∧ σ d = (π ∨ σ)d = indit(π ∨ σ).

3. Similarly the join of two equivalence relations is defined via duality as: indit(π) ∨
indit(σ ) = indit(π ∧ σ) = {indit(π) ∪ indit(σ )}, so that using the superscript-d
notation: πd ∨ σ d = (π ∧ σ)d = indit(π ∧ σ).

4. The difference of two equivalence relations is defined via duality as: indit(π) −
indit(σ ) = indit(σ ⇒ π) = {dit(σ ) ∩ indit(π)}, which in the other notation is:
πd − σ d = (σ ⇒ π)d = indit(σ ⇒ π).

5. The not-or or nor operation on equivalence relations is defined via duality as:
indit(π)∨ indit(σ ) = indit(π | σ) = {(indit(π) ∪ indit(σ ))c}, which gives: πd∨σ d

= (π | σ)d = indit(π | σ).

That completes the definition of the dual algebra �(U )op of equivalence relations on U
with the Top 1̂, Bottom 0̂, and the four primitive operations of meet, join, difference, and
nor.

The dualization operation ϕ �−→ ϕd is a purely syntactic operation on formulas, but
in the partition algebra �(U ) and equivalence relation algebra �(U )op we reason seman-
tically about partitions and equivalence relations on U . Given a compound formula ϕ in
the language of the partition algebra, it would be interpreted by interpreting its atomic
variables as denoting partitions on U and then applying the partition operations (join,
meet, implication, and nand) to arrive at an interpretation of ϕ. Such an interpretation
automatically supplies an interpretation of the dual formula ϕd . If α was an atomic variable
of ϕ and was interpreted as denoting a partition on U , then αd is interpreted as denoting
the equivalence relation indit(α). Then the equivalence relation operations (meet, join,
difference, and nor) are applied to arrive at an equivalence relation interpretation of the
formula ϕd . The relationship between the two interpretations is very simple.

PROPOSITION 1.11. ϕd = indit(ϕ).

Proof. The proof uses induction over the complexity of the formulas [where complexity
is defined in the standard way as in propositional logic (Fitting, 1969)]. If ϕ is one of the
constants 0 or 1, then the proposition holds since: 0d = 1̂ = indit(0) and 1d = 0̂ =
indit(1). If ϕ = α is atomic, then it is true by the definition: σ d = indit(σ ). If ϕ is a
compound formula then the main connective in ϕ is one of the four primitive partition
operations and the main connective in ϕd is one of the four primitive equivalence relation
operations. Consider the case: ϕ = π ∧ σ so that ϕd = πd ∨ σ d . By the induction
hypothesis, πd = indit(π) and σ d = indit(σ ), and by the definition of the equivalence
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relation join: ϕd = πd ∨ σ d = indit(π) ∨ indit(σ ) = {indit(π) ∪ indit(σ )} = indit(ϕ).
The other three cases proceed in a similar manner. �

COROLLARY 1.12 The map ϕ �−→ indit(ϕ) is a dual isomorphism: �(U ) → �(U )op

between the partition algebra and the dual equivalence relation algebra.

Proof. Clearly the mapping is a set isomorphism since each partition ϕ on U is uniquely
determined by its dit set dit(ϕ), and thus by its complement indit(ϕ). By “dual isomor-
phism,” we mean that each operation in the partition algebra is mapped to the dual oper-
ation in the equivalence relation algebra. Suppose ϕ = σ ⇒ π so that ϕd = πd − σ d .
By the proposition, this means that indit(ϕ) = indit(π) − indit(σ ) (where we must be
careful to note that “−” is the difference operation on equivalence relations which is the
closure of the set-difference operation indit(π) ∩ indit(σ )c on subsets of U × U ) so that
ϕ �−→ indit(ϕ) maps the partition operation of implication to the equivalence relation
operation of difference. The other operations are treated in a similar manner. �

The previous result int[A ∩ B] = int[int(A) ∩ int(B)] for A, B ⊆ U × U could also

be expressed using the closure operation as [A ∪ B] = [A ∪ B] and thus the conjunctive
normal form treatment of the 15 binary operations on partitions in terms of the operations
of ∨, ∧, ⇒, and | dualizes to the disjunctive normal form treatment of the 15 (dual) binary
operations on equivalence relations in terms of the respective dual operations ∧, ∨, −, and
∨, which are the primitive operations in the algebra of equivalence relations �(U )op.

The previous two tables giving the CNF treatment of the 15 partition operations
dualize to give two similar tables for the DNF treatment of the 15 nonzero operations
on equivalence relations. In the following table, let S′ = indit(σ ) and T ′ = indit(τ ) where
()c is complementation in U × U . In the table, we have also taken the liberty of writing
the “converse nonimplication” operation as the difference operation on both equivalence
relations and partitions: τ d − σ d = σ d

� τ d and τ − σ = σ � τ = τ ∧ ¬σ .

15 regions disjunctive normal form Binary operations on
equivalence relations

Dual to

S′c ∩ T ′c σ d∨τ d σ | τ

S′ ∩ T ′c σ d − τ d τ ⇒ σ

(S′ ∩ T ′c) ∪ (S′c ∩ T ′c) ¬τ d ¬τ

S′c ∩ T ′ τ d − σ d σ ⇒ τ

(S′c ∩ T ′) ∪ (S′c ∩ T ′c) ¬σ d ¬σ

(S′c ∩ T ′) ∪ (S′ ∩ T ′c) σ d �≡ τ d σ ≡ τ

(S′c ∩ T ′) ∪ (S′c ∩ T ′c) ∪ (S′ ∩ T ′c) σ d | τ d σ∨τ

S′ ∩ T ′ σ d ∧ τ d σ ∨ τ

(S′ ∩ T ′) ∪ (S′c ∩ T ′c) σ d ≡ τ d σ �≡ τ

(S′ ∩ T ′) ∪ (S′ ∩ T ′c) σ d σ

(S′ ∩ T ′) ∪ (S′ ∩ T ′c) ∪ (S′c ∩ T ′c) τ d ⇒ σ d σ − τ

(S′ ∩ T ′) ∪ (S′c ∩ T ′) τ d τ

(S′c ∩ T ′) ∪ (S′c ∩ T ′c) ∪ (S′ ∩ T ′) σ d ⇒ τ d τ − σ

(S′ ∩ T ′) ∪ (S′ ∩ T ′c) ∪ (S′c ∩ T ′) σ d ∨ τ d σ ∧ τ

(S′ ∩ T ′) ∪ (S′ ∩ T ′c) ∪ (S′c ∩ T ′) ∪ (S′c ∩ T ′c) 1̂ 0
Closure of Column 1 gives equivalence relation binary operation in Column 2
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For instance, the CNF expression for the partition inequivalence or symmetric difference
is: σ �≡ τ = (σ ∨ τ) ∧ (σ | τ) so that:

dit(σ �≡ τ) = int[int(dit(σ ) ∪ dit(τ )) ∩ int(dit(σ )c ∪ dit(τ )c)]

= int[(dit(σ ) ∪ dit(τ )) ∩ (dit(σ )c ∪ dit(τ )c)].

Taking complements yields:

indit(σ �≡ τ) = [(indit(σ ) ∩ indit(τ )) ∪ (indit(σ )c ∩ indit(τ )c)]

= [(indit(σ ) ∩ indit(τ )) ∪ (indit(σ )c ∩ indit(τ )c)]

= [(σ d ∧ τ d) ∪ (σ d∨τ d)]

= (σ d ∧ τ d) ∨ (σ d∨τ d)

= σ d ≡ τ d .

Thus the equivalence σ d ≡ τ d of equivalence relations has the disjunctive normal form:
σ d ≡ τ d = (σ d ∧ τ d) ∨ (σ d∨τ d) in the “dual” logic of equivalence relations. The
disjunctive normal forms for the 15 operations on equivalence relations is given in the
following table.

Binary operation Equivalence relation DNF for 15 binary operations

σ d∨τ d = σ d∨τ d

σ d − τ d = σ d − τ d

¬τ d = (σ d − τ d) ∨ (σ d∨τ d)

τ d − σ d = τ d − σ d

¬σ d = (τ d − σ d) ∨ (σ d∨τ d)

σ d �≡ τ d = (τ d − σ d) ∨ (σ d − τ d)

σ d | τ d = (τ d − σ d) ∨ (σ d∨τ d) ∨ (σ d − τ d)

σ d ∧ τ d = σ d ∧ τ d

σ d ≡ τ d = (σ d ∧ τ d) ∨ (σ d∨τ d)

σ d = (σ d ∧ τ d) ∨ (σ d − τ d)

τ d ⇒ σ d = (σ d ∧ τ d) ∨ (σ d − τ d) ∨ (σ d∨τ d)

τ d = (σ d ∧ τ d) ∨ (τ d − σ d)

σ d ⇒ τ d = (σ d ∧ τ d) ∨ (τ d − σ d) ∨ (σ d∨τ d)

σ d ∨ τ d = (σ d ∧ τ d) ∨ (σ d − τ d) ∨ (τ d − σ d)

1̂ = (σ d ∧ τ d) ∨ (σ d − τ d) ∨ (τ d − σ d) ∨ (σ d∨τ d)

Distributing closure across unions gives equivalence relation DNF

These DNF identities give the expression of the nonprimitive binary operations on equiv-
alence relations, for example, ≡, �≡, |,and ⇒, in terms of the primitive operations. The
constant 0̂ may be defined as σ d − σ d dual to the definition of 1 as σ ⇒ σ .

In referring to the dual logic of equivalence relations, we must keep distinct the different
notions of duality. Partition logic is dual to subset logic in the sense of the category-
theoretic duality between monomorphisms and epimorphisms (or between subsets and
quotient sets). But equivalence relation logic is only dual to partition logic in the sense
of complementation—analogous to the duality between Heyting algebras and co-Heyting
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algebras, or between open subsets and closed subsets of a topological space. Since the
complement of an open set is a closed set that is not necessarily open, complementation
duality for partition logic and intuitionistic propositional logic is a duality between two
types of algebras (partition algebras and equivalence relation algebras in the one case and
Heyting and co-Heyting algebras in the other case). But the complement of a subset is
another subset so complementation duality for subset logic is a duality within a Boolean
algebra.

1.13. Subset and partition tautologies. For present purposes, we may take the for-
mulas of classical propositional logic (i.e., subset logic) as using the binary operations of
∨, ∧, ⇒, and | along with the constants 0 and 1 so that we have exactly the same well-
formed formulas in subset logic and partition logic. A truth-table tautology is a formula
that always evaluates to 1 in the Boolean algebra P(1) regardless of the assignments of 0
and 1 to the atomic variables. A subset tautology is a formula that always evaluates to 1
(the universe set U ) in the Boolean algebra P(U ) regardless of the subsets assigned to the
atomic variables.

PROPOSITION 1.13. Subset tautologies = truth-table tautologies.

Proof. Since 1 is a special case of U , all subset tautologies are truth-table tautologies.
To see that all truth-table tautologies are subset tautologies, we reinterpret the columns in
a truth table as giving the truth and falsity of the set-membership statements for the logical
subset operations. For instance, if σ and τ are interpreted as subsets of a universe U , then
σ ⇒ τ is the subset σ c ∪ τ so that u ∈ (σ ⇒ τ) is assigned a 1 (representing truth) iff
u �∈ σ or u ∈ τ , that is, u ∈ σ is assigned a 0 or u ∈ τ is assigned a 1. The truth table for
the modus ponens tautology would then be rewritten with the new column labels.

u ∈ σ u ∈ τ u ∈ (σ ⇒ τ) u ∈ (σ ∧ (σ ⇒ τ)) u ∈ ((σ ∧ (σ ⇒ τ)) ⇒ τ)

1 1 1 1 1
1 0 0 0 1
0 1 1 0 1
0 0 1 0 1

Truth table reinterpreted as giving set-membership conditions

Given a formula that is a truth-table tautology, we assign any subsets of any given U to
the atomic variables. For any specific element u ∈ U , it will be either a member or a
nonmember of each of those subsets so one of the cases (rows) in the reinterpreted truth
table will apply. Since the truth table operations give the set-membership conditions for
the corresponding logical subset operations (illustrated in the example above), and since,
by assumption, the final column under the formula is all 1’s, the arbitrary element u of U
is a member of the subset which interprets the truth-table tautologous formula. Hence that
subset must be U and thus the formula is a subset tautology. �

A partition tautology is a formula that always evaluates to 1 (the discrete partition) in
the partition algebra �(U ) regardless of the partitions assigned to the atomic variables.19

It is also useful to define a weak partition tautology as a formula that never evaluates to
0 (the indiscrete partition) regardless of the partitions assigned to the atomic variables. Of
course, any partition tautology is a weak partition tautology. Moreover, it is easily seen
that:

19 Needless to say, the constants 0 and 1 are always assigned the bottom and top, respectively, in
any evaluation or interpretation of a formula in either P(U ) or �(U ).



316 DAVID ELLERMAN

PROPOSITION 1.14. ϕ is a weak partition tautology iff ¬¬ϕ is a partition tautology.

An immediate question is the relationship of partition tautologies and weak partition tau-
tologies to the classical subset tautologies as well as to the valid formulas of intuitionistic
propositional logic (where formulas are assumed to be written in the same language).

There is a sense in which results in partition logic can be trivially seen as a generalization
of results in ordinary subset logic. This reduction principle is based on the observation that
any partition logic result holding for all U will hold when restricted to any two element
universe |U | = 2. There is an isomorphism between the partition algebra �(2) on the
two-element set and the Boolean algebra P(1) on the one-element set. There are only two
partitions, the Bottom 0 and Top 1 on U where |U | = 2. Moreover, the partition operations
of join, meet, implication, and nand in this special case satisfy the truth tables for the
corresponding Boolean operations on subsets (using 0 and 1 in the usual manner in the truth
tables). For instance, in �(U ) where |U | = 2, we can only substitute 0 or 1 for the atomic
variables in σ ⇒ τ . The result is 0 in the case where σ = 1 and τ = 0, and the result is 1
in the other three cases. But that is just the truth table for the Boolean implication operation
in P(1). Similarly for the other operations so there is a BA isomorphism: �(2) ∼= P(1).
Hence if a partition logic result holds for all U , then it holds for a two-element U where
the partition operations on the Partitions 0 and 1 are isomorphic to the Boolean operations
on the Subsets 0 and 1 (where 0 and 1 in the Boolean case stand for the null subset and the
universe set of a one-element universe). But if a formula always evaluates to 1 on the one-
element universe, that is, if it is a truth-table tautology, then it is a subset tautology. Thus
we might say that partition logic restricted to a two-element universe is Boolean logic:

�(2) ∼= P(1).

Reduction principle

For instance, if ϕ is a weak partition tautology, for example, ϕ = σ ∨¬σ , then it will never
evaluate to 0 in any �(U ) where it is always assumed |U | ≥ 2. For |U | = 2, there are only
two Partitions 0 and 1, so never evaluating to 0 means always evaluating to the Partition 1.
By the reduction principle, the Boolean operations in P(1) would always evaluate to the
Subset 1 so the formula is a truth-table tautology and thus a subset tautology. This proves
the following proposition.

PROPOSITION 1.15. All weak partition tautologies are subset tautologies.

COROLLARY 1.16 All partition tautologies are subset tautologies.

The converse is not true with Peirce’s law, ((σ ⇒ π) ⇒ σ) ⇒ σ , accumulation,
σ ⇒ (π ⇒ (σ ∧ π)), and distributivity, ((π ∨ σ) ∧ (π ∨ τ)) ⇒ (π ∨ (σ ∧ τ)), being
examples of subset tautologies that are not partition tautologies.

There is no inclusion either way between partition tautologies and the valid formulas of
intuitionistic propositional logic. In view of the complex nature of the partition meet, it is
not surprising that a formula such as the accumulation formula, σ ⇒ (π ⇒ (π ∧ σ)), is
valid in both Boolean and intuitionistic logic but not in partition logic. The (“nonweak”)
law of excluded middle, σ∨¬σ , is a weak partition tautology, and the weak law of excluded
middle, ¬σ ∨¬¬σ , is a (“nonweak”) partition tautology that is not intuitionistically valid.

In the dual algebra �(U )op of equivalence relations, the bottom is the smallest equiv-
alence relation 0̂ = � = indit(1) containing only the diagonal pairs (u, u). Dual to
the notion of a partition tautology is the notion of an equivalence relation contradiction
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which is a formula (with the atomic variables written with the “d” superscript) that always
evaluates to the bottom 0̂ = � = 1d of �(U )op regardless of the equivalence relations
substituted for the atomic variables. Similarly, a formula (with the atomic variables written
with the “d” superscript) is a weak equivalence relation contradiction if it never evaluates
to the top 1̂ = U × U = 0d of �(U )op. We then have the following duality theorem.

PROPOSITION 1.17 (PRINCIPLE OF DUALITY FOR PARTITION LOGIC). Given a for-
mula ϕ, ϕ is a (weak) partition tautology iff ϕd is a (resp. weak) equivalence relation
contradiction.

Proof. Using the dual isomorphism �(U ) → �(U )op, a partition formula ϕ evaluates
to the top of �(U ), that is, dit(ϕ) = dit(1) = U × U − � when any partitions are
substituted for the atomic variables of ϕ iff ϕd evaluates to the bottom of �(U )op, that is,
1d = dit(1)c = indit(1) = 0̂ = �, when any equivalence relations are substituted for the
atomic variables of ϕd . Similarly for the weak notions. �

Using the reduction principle, restricting the above proposition and its related concepts
to |U | = 2 would yield the usual Boolean duality principle (Church, 1956, p. 107) that ϕ is
a truth-table tautology iff ϕd is a truth-table contradiction (where the weak or “nonweak”
notions coincide in the Boolean case and where �(2) ∼= P(1) ∼= �(2)op).

In the Boolean case, if a formula ϕ is not a subset tautology, then there is a nonempty
universe set U and an assignment of subsets of U to the atomic variables of ϕ so that ϕ
does not evaluate to 1 (the universe set U ). Such a model showing that ϕ is not a tautology
is called a countermodel for ϕ. It is a remarkable aspect of the Boolean logic of subsets that
to determine subset tautologies, it suffices to restrict the universe set U to a one-element
set and to consider only truth-table tautologies. If ϕ has a subset countermodel, then it has
a countermodel using the subsets of a one-element set.20

The analogous question can be posed for partition logic. Is there a finite number n so
that if ϕ always evaluates to 1 for any partitions on U with |U | ≤ n, then ϕ is a partition
tautology? For instance, if ϕ is not a partition tautology and is also not a subset tautology,
then it suffices to take n = 2 since �(2) ∼= P(1) so a truth-table countermodel in P(1) also
provides a partition countermodel in �(2). Hence the question is only open for formulas ϕ
which are subset tautologies but not partition tautologies. A standard device answers this
question in the negative.

PROPOSITION 1.18. There is no fixed n such that if any ϕ has no partition countermodel
on any universe U with |U | ≤ n, then ϕ has no partition countermodel, that is, is a
partition tautology.

Proof. Consider any fixed n ≥ 2. We use the standard device of a “universal disjunction
of equations” (Grätzer, 2003, p. 316) to construct a formula ωn that evaluates to 1 for
any substitutions of partitions on U with |U | ≤ n and yet the formula is not a partition
tautology. Let Bn be the Bell number, the number of partitions on a set U with |U | = n.
Take the atomic variables to be πi for i = 0, 1, . . . , Bn so that there are Bn + 1 atomic
variables. Let ωn be the join of all the equivalences between distinct atomic variables:

ωn =
∨

{πi ≡ π j : 0 ≤ i < j ≤ Bn}.

20 The drawback of the coextensiveness of truth-table tautologies and general subset tautologies is
that it is easier to take the specific propositional interpretation of Boolean logic as the whole
subject matter of the logic.
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Fig. 6. B-slots in π -regular partition.

Then for any substitution of partitions on U where |U | ≤ n for the atomic variables, there
is, by the pigeonhole principle, some “disjunct” πi ≡ π j = (πi ⇒ π j )∧(π j ⇒ πi ) which
has the same partition substituted for the two variables so the disjunct evaluates to 1 and
thus the join ωn evaluates to 1. Thus ωn evaluates to 1 for any substitutions of partitions on
any U where |U | ≤ n. To see that ωn is not a partition tautology, take U = {0, 1, . . . , Bn}
and let πi be the atomic partition which has i as a singleton and all the other elements of
U as a block, that is, πi = {{0, 1, . . . , i − 1, i + 1, . . . , Bn}, {i}}. Then πi ⇒ π j = π j and
π j ∧ πi = 0 so that ωn = 0 for that substitution and thus ωn is not even a weak partition
tautology. �

To see that the ωn are subset tautologies, consider n = 2, so that B2 = 2 and ω2 =
(π0 ≡ π1) ∨ (π0 ≡ π2) ∨ (π1 ≡ π2). Thus ω2 is a truth-table tautology and hence any
larger join ωn for n > 2 is also a truth-table tautology and thus a subset tautology.

There is no upper bound n so that if any formula has a countermodel, then it has a coun-
termodel with |U | ≤ n. However, it seems likely to the author that if a partition formula
has a countermodel, then it has a finite countermodel (i.e., the finite model property) but
that question remains open.

1.14. Boolean subalgebras Bπππ of ���(U) for any partition πππ . In any Heyting algebra,
the elements of the form ¬σ = σ ⇒ 0 for some σ are the regular elements. They form
a Boolean algebra but it is not a subalgebra since the join of two regular elements is not
necessarily regular (so one must take the double negation of the join to have the Boolean
algebra join). In the topological interpretation, the regular elements of the Heyting algebra
of open subsets are the regular open sets (the regular open sets are obtained as the interior of
the closure of a subset) and the union of two regular open subsets is open but not necessarily
regular open.

Following the analogy, we define a partition as being π -regular if it can be obtained as
the implication σ ⇒ π for some partitions σ and π . Intuitively, a π -regular partition is
like π except that some blocks may have been discretized (see figure 6). Let

Bπ = {σ ⇒ π : for some σ ∈ �(U )}
be the subset of π -regular partitions with the induced partial ordering of refinement. The
top is still 1 but the bottom is π = 1 ⇒ π itself. The implication partition σ ⇒ π can
be interpreted as a Boolean probe for containment between blocks. If B ⊆ C for some
C ∈ σ , then the probe finds containment and this is indicated by setting the π -block B
locally equal to 1, that is,by discretizing B, and otherwise B stays locally like 0, that is,
stays as a whole block (or “mini-blob”) B. Whenever the refinement relation σ � π holds,
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then all the nonsingleton blocks B ∈ π are discretized in σ ⇒ π (and the singleton blocks
are already discrete) so that σ ⇒ π = 1 (and vice versa).

The partition operations of meet and join operate on the blocks of π -regular partitions
in a completely Boolean manner. Since every π -regular partition is like π except that some
blocks may be set locally to 1 while the others remain locally like 0, the meet of two
π -regular partitions, say σ ⇒ π and τ ⇒ π , will have no interaction between distinct
π -blocks. Each block of the meet will be “truth-functionally” determined by whatever is
in the B-slot of the two constituents. If either of the B’s remains locally equal to 0, then
the whole block B fills the B-slot of the meet, that is, B is locally equal to 0 in the meet

(σ ⇒ π) ∧ (τ ⇒ π) = π¬τ ∧ π¬σ . But if both B’s were discretized in the constituents,
that is, both are set locally to 1, then the blocks in that B-slot of the meet are the singletons
from B, that is, the discretized B or B set locally to 1. That local pattern of 0’s and 1’s is
precisely the truth table for the Boolean meet.

If πns is the set of nonsingleton blocks of the partition π , then the π -regular partitions
are in one-to-one correspondence with the subsets of πns , each of which can be represented
by its characteristic function χ : πns → 2 = {0, 1} which takes each nonsingleton block
of π to its local assignment. Thus for a π -regular partition with the form σ ⇒ π , χ(σ ⇒
π) : πns → 2 takes a nonsingleton block B ∈ π to 1 if B is discretized in σ ⇒ π and
otherwise to 0.

The argument just given shows that the characteristic function for the meet of two π -
regular partitions is obtained by the component-wise Boolean meets of “conjuncts”:

χ((σ ⇒ π) ∧ (τ ⇒ π)) = χ(σ ⇒ π) ∧ χ(τ ⇒ π).

In a similar manner, the blocks in the join of two π -regular partitions, σ ⇒ π and τ ⇒ π ,
would be the intersections of what is in the B-slots. If B was discretized (set locally to 1)
in either of the constituents, then B would be discretized in the join (τ ⇒ π)∨(σ ⇒ π) =
π¬τ ∨ π¬σ (since the intersection of a discretized B with a whole B is still the discretized
B). But if both B’s were still whole (set locally to 0) then their intersection would still be
the whole block B. This pattern of 0’s and 1’s is precisely the truth table for the Boolean
join or disjunction. In terms of the characteristic functions of local assignments:

χ((τ ⇒ π) ∨ (σ ⇒ π)) = χ(τ ⇒ π) ∨ χ(σ ⇒ π).

For the implication (σ ⇒ π) ⇒ (τ ⇒ π) between two π -regular partitions, the result
would have B remaining whole, that is, being set to 0, only in the case where B was whole
in the consequent partition τ ⇒ π but discretized in the antecedent partition σ ⇒ π ;
otherwise B is discretized, that is, set to 1. This pattern of 0’s and 1’s is precisely the truth
table for the ordinary Boolean implication. In terms of the characteristic functions:

χ((σ ⇒ π) ⇒ (τ ⇒ π)) = χ(σ ⇒ π) ⇒ χ(τ ⇒ π).

To show that Bπ is a Boolean algebra, we must define negation inside of Bπ . The negation
of a π -regular element σ ⇒ π would be its implication to the bottom element which

in Bπ is π itself. Thus the negation of σ ⇒ π = π¬σ is just the iterated implication:

(σ ⇒ π) ⇒ π = π¬π¬σ , the double π -negation. It is easily seen that this just “flips” the B-
slots to the opposite state. The B’s set (locally) to 1 in σ ⇒ π are flipped back to (locally)
0 in (σ ⇒ π) ⇒ π , and the B’s left whole in σ ⇒ π are flipped to 1 or discretized in
(σ ⇒ π) ⇒ π . This pattern of 0’s and 1’s is just the truth table for the Boolean negation.



320 DAVID ELLERMAN

In terms of the characteristic functions,

χ((σ ⇒ π) ⇒ π) = ¬χ(σ ⇒ π).

Thus it is easily seen that the set of π -regular elements Bπ is a Boolean algebra, called
the Boolean core of the upper interval [π, 1] = {σ ∈ �(U ) : π � σ � 1}, since it is
isomorphic to the power set Boolean algebra P(πns) of the set πns (when the subsets are
represented by their characteristic functions).

PROPOSITION 1.19. Bπ
∼= P(πns).

We previously saw that the partition lattice �(U ) could be represented by the lattice of
open subsets dit(π) of the product U × U (when taken as a closure space). The represen-
tation of the partition lattice by the open subsets of the closure space U × U continues to
hold when the lattice is enriched with the implication and nand operations.

�(U ) ∼= O(U × U )

Representation of algebra of partitions �(U )

as the algebra of open subsets O(U × U )

Now we can see the dual representation of the Boolean algebra of subsetsP(U ) by a certain
Boolean algebra modeled using partition operations. Start with the dual constructions of
subsets indit(π) of the product U × U and the partitions �(S) on the coproduct U

⊎
U .

For the dual representation of P(U ) we consider the partition algebra �(U
⊎

U ) on
the coproduct and the Boolean core B�, or B�(U

⊎
U ) to make the underlying universe

explicit, associated with the diagonal partition �(U ) = �(∅c) consisting of all the pairs
{u, u∗} for u ∈ U . Just as we previously took the complement of indit(π) to arrive
at the partition relations dit(π) = indit(π)c, and we now consider the �-complements
�¬�(S) = �(Sc) which are the subset corelations. The �-regular partitions of �(U

⊎
U )

are precisely the subset corelations �(Sc). The subset corelation �(Sc) locally assigns
{u, u∗} ∈ � to 1 (i.e., discretizes it) if u ∈ S and locally assigns {u, u∗} ∈ � to 0 (i.e.,
leaves it whole) if u ∈ Sc. Rather than associate each partition π with the partition relation
dit(π) on the product U × U , we now associate each subset S ∈ P(U ) with the subset
corelation �(Sc) on the coproduct U

⊎
U to get the dual representation:

P(U ) ∼= B�(U
⊎

U )

Dual representation of the Boolean algebra of subsets P(U )

as the BA of subset corelations B�(U
⊎

U ).

The universe sets U are assumed to have two or more elements to avoid the degenerate
case of a singleton universe where 0 = 1, that is, the indiscrete and discrete partitions are
the same. But in partitions π , singleton blocks cannot be avoided and the same problem
emerges locally. For a singleton block B, being locally like 0 (i.e., remaining whole) and
being locally like 1 (being discretized) are the same. Hence the singletons of π play no
role in the Boolean algebras Bπ .

We previously saw another Boolean algebra B(π) associated with every partition π on
a set U , and the singletons will play a role in connecting the two BAs. For each partition
π on U , B(π) ⊆ P(U ) is the complete subalgebra generated by the blocks of π as the
atoms so that all the elements of B(π) are formed as the arbitrary unions and intersections
of blocks of π . Since each element of B(π) is the union of a set of blocks of π , it is
isomorphic to the power set BA of the set of blocks that make up π , that is, B(π) ∼= P(π).
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Since Bπ
∼= P(πns) is isomorphic to the power set BA of the set of nonsingleton blocks

of π , and since the introduction of each singleton {u} will have the effect of doubling the
elements of P(πns) (with or without the singleton), we can reach P(π) from P(πns) by
taking the direct product with the two element BA 2 for each singleton in π . Thus we have
the following result which relates the two BAs associated with each partition π .

PROPOSITION 1.20. B(π) ∼= Bπ × ∏
{u}∈π 2.

1.15. Transforming subset tautologies into partition tautologies. Unlike the case of
the Boolean algebra of regular elements in a Heyting algebra, the Boolean core Bπ is a
subalgebra of the partition algebra �(U ) for the “Boolean” operations of join, meet, and
implication (but not nand), that is, the Boolean operations in Bπ are the partition operations
from the partition algebra �(U ). The BA Bπ even has the same Top 1 as the partition
algebra; only the bottoms are different, that is, π in Bπ and 0 in �(U ).

Since the Boolean core Bπ of the interval [π, 1] and the whole partition algebra �(U )
have the same Top 1 and the same operations of join, meet, and implication, we immedi-
ately have a way to transform any subset tautology into a partition tautology. But we must
be careful about the connectives used in the subset tautology. The partition operations of the
join, meet, and implication are the same as the Boolean operations in the Boolean core Bπ .

But the negation in that BA is not the partition negation ¬ but the π -negation
π¬. Similarly,

the nand operation in the Boolean algebra Bπ is not the partition nand | but the π -nand
defined by the ternary partition operation: dit(σ |π τ) = int[indit(σ ) ∪ indit(τ ) ∪ dit(π)]
which agrees with the usual nand when π = 0. But the nand operation in the BA Bπ can be
defined in terms of the other BA operations so we may assume that the subset tautology is
written without a nand operation |. Similarly we may assume that negations ¬σ are written
as σ ⇒ 0 so that no negation signs ¬ occur in the partition tautology.

Given any propositional formula using the connectives of ∨, ∧, ⇒, and the constants of
0 and 1, its single π -negation transform is obtained by replacing each atomic variable σ

by its single π -negation
π¬σ = σ ⇒ π and by replacing the constant 0 by π . The binary

operations ∨, ∧, and ⇒ as well as the constant 1 all remain the same. For instance, the
single π -negation transform of the excluded middle formula σ ∨ ¬σ = σ ∨ (σ ⇒ 0) is
the weak excluded middle formula for π -negation:

(σ ⇒ π) ∨ ((σ ⇒ π) ⇒ π) = π¬σ ∨ π¬π¬σ.

A formula that is a subset tautology will always evaluate to 1 in a Boolean algebra re-
gardless of what elements of the Boolean algebra are assigned to the atomic variables. The
single π -negation transformation maps any formula into a formula for an element of the
Boolean core Bπ . If the original formula with the atomic variables σ , τ ,. . . was a subset
tautology, then the single π -negation transform of the formula will evaluate to 1 in Bπ for
any partitions (π -regular or not) assigned to the original atomic variables σ , τ , . . . with π
fixed. But this is true for any π so the single π -negation transform of any subset tautology
will evaluate to 1 for any partitions assigned to the atomic variables π , σ , τ ,. . . . Thus it is
a partition tautology.

PROPOSITION 1.21. The single π -negation transform of any subset tautology is a par-
tition tautology.

For example, since the law of excluded middle, σ ∨ ¬σ , is a subset tautology, its single

π -negation transform,
π¬σ ∨ π¬π¬σ , is a partition tautology. This particular example is also
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intuitively obvious since the blocks B that were not discretized in
π¬σ are discretized in the

double π -negation
π¬π¬σ so all the nonsingleton blocks are discretized in

π¬σ ∨ π¬π¬σ (and
the singleton blocks were already “discretized”) so it is a partition tautology. This formula
is also an example of a partition tautology that is not a valid formula of intuitionistic logic
(either for π = 0 or in general).

We can similarly define the double π -negation transform of a formula as the formula

where each atomic variable σ is replaced by its double π -negation
π¬π¬σ and by replacing

the constant 0 by π . By the same argument, the double π -negation transform of any subset
tautology is a partition tautology so there are at least two ways to transform any classical
subset tautology into a partition tautology.

PROPOSITION 1.22. The double π -negation transform of any subset tautology is a
partition tautology.

The double π -negation transform of excluded middle, σ ∨¬σ , is the partition tautology
π¬π¬σ ∨ π¬π¬π¬σ . Since the π -negation has the effect of flipping the π -blocks B back and
forth being locally equal to 0 or 1 (i.e., from being whole to being discretized), it is clear

that
π¬σ = π¬π¬π¬σ so the formula

π¬π¬σ ∨ π¬π¬π¬σ simplifies to
π¬π¬σ ∨ π¬σ .

There is also a partition analogue of the Gödel transform (Gödel, 1933) that produces
an intuitionistic validity from each subset tautology. For any classical formula ϕ in the
language of ∨, ∧, and ⇒ as well as 0 and 1, we define the Gödel π -transform ϕ

g
π of the

formula as follows:

• If ϕ is atomic, then ϕ
g
π = ϕ ∨π ; if ϕ = 0, then ϕ

g
π = π , and if ϕ = 1, then ϕ

g
π = 1;

• If ϕ = σ ∨ τ , then ϕ
g
π = σ

g
π ∨ τ

g
π ;

• If ϕ = σ ⇒ τ , then ϕ
g
π = σ

g
π ⇒ τ

g
π ; and

• if ϕ = σ ∧ τ , then ϕ
g
π = π¬π¬σ

g
π ∧ π¬π¬τ

g
π .

When π = 0, then we write ϕ
g
0 = ϕg .

LEMMA 1.23. ϕ is a subset tautology iff ϕg is a weak partition tautology iff ¬¬ϕg is a
partition tautology.

Proof. The idea of the proof is that the partition operations on the Gödel 0-transform ϕg

mimic the Boolean 0, 1-operations on ϕ if we associate the partition interpretation σ g = 0
with the Boolean σ = 0 and σ g �= 0 with the Boolean σ = 1. We proceed by induction
over the complexity of the formula ϕ where the induction hypothesis is that: ϕ = 1 in the
Boolean case iff ϕg �= 0 in the partition case, which could also be stated as: ϕ = 0 in the
Boolean case iff ϕg = 0 in the partition case.

1. If ϕ is atomic, the Boolean assignment ϕ = 0 (the Boolean truth value 0) is
associated with the partition assignment of ϕ = 0 (the indiscrete partition) and
for atomic ϕ, ϕ = ϕ ∨ 0 = ϕg so the hypothesis holds in the base case.

2. For the join in the Boolean case, ϕ = σ ∨ τ = 1 iff σ = 1 or τ = 1. In the partition
case, ϕg = σ g ∨ τ g �= 0 iff σ g �= 0 or τ g �= 0, so by the induction hypothesis,
ϕ = σ ∨ τ = 1 iff σ = 1 or τ = 1 iff σ g �= 0 or τ g �= 0 iff ϕg = σ g ∨ τ g �= 0.

3. For the implication in the Boolean case, ϕ = σ ⇒ τ = 0 iff σ = 1 and τ = 0. In
the partition case, ϕg = σ g ⇒ τ g = 0 iff σ g �= 0 and τ g = 0. Hence using the
induction hypothesis, ϕ = σ ⇒ τ = 1 iff σ = 0 or τ = 1 iff σ g = 0 or τ g �= 0 iff
ϕg = σ g ⇒ τ g �= 0.
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4. For the meet in the Boolean case, ϕ = σ ∧ τ = 1 iff σ = 1 = τ . In the partition
case, ϕg = ¬¬σ g ∧ ¬¬τ g = 1 iff ¬¬σ g = 1 = ¬¬τ g iff σ g �= 0 �= τ g . By
the induction hypothesis, ϕ = σ ∧ τ = 1 iff σ = 1 = τ iff σ g �= 0 �= τ g iff
ϕg = ¬¬σ g ∧ ¬¬τ g = 1 iff ϕg = ¬¬σ g ∧ ¬¬τ g �= 0.

Thus ϕ is a subset tautology iff under any Boolean interpretation, ϕ = 1 iff for any
partition interpretation, ϕg �= 0 iff ϕg is a weak partition tautology iff ¬¬ϕg is a partition
tautology. �

In this case of π = 0, the negation ¬σ = σ ⇒ 0 is unchanged and, for atomic variables
ϕ, ϕ ∨ 0 = ϕ so atomic variables are left unchanged in the Gödel 0-transform. Hence
any classical formula ϕ expressed in the language of ¬, ∨, and ⇒ (excluding the meet ∧)
would be unchanged by the Gödel 0-transform.

COROLLARY 1.24 For any formula ϕ in the language of ¬, ∨, and ⇒ along with 0 and
1, ϕ is a subset tautology iff ϕ is a weak partition tautology iff ¬¬ϕ is a partition tautology.

For instance, the excluded middle subset tautology σ ∨¬σ is a weak partition tautology
and ¬¬(σ ∨ ¬σ) is a partition tautology.

The lemma generalizes to any π in the following form.

PROPOSITION 1.25. ϕ is a subset tautology iff
π¬π¬ϕ

g
π is a partition tautology.

Proof. For any fixed partition π on a universe set U , the interpretation of the Gödel
π -transform ϕ

g
π is in the upper interval [π, 1] ⊆ �(U ). The key to the generalization is the

standard result that the upper interval [π, 1] can be represented as the product of the sets
�(B) where B is a nonsingleton block of π :

[π, 1] ∼=
∏

{�(B) : B ∈ π , B nonsingleton}.21

Once we establish that the Gödel π -transform ϕ
g
π can be obtained, using the isomorphism,

by computing the Gödel 0-transform ϕg “component-wise” in �(B), then we can apply
the lemma component-wise to obtain the result.

We use induction over the complexity of ϕ with the hypothesis: ϕ
g
π has a block B ∈ π

iff ϕ
g
0 = ϕg is equal to the zero 0B of �(B).

1. Given a partition π on U , any interpretation of an atomic ϕ as a partition on U
can be cut down to each nonsingleton block B ∈ π to yield a partition on B. Then
ϕ

g
π = ϕ ∨ π has a block B ∈ π iff ϕ

g
0 = ϕg is equal to the zero 0B of �(B).

2. If ϕ = σ ∨ τ , then a block of ϕ
g
π = σ

g
π ∨ τ

g
π is B iff B is a block of both σ

g
π and τ

g
π

iff σ g = 0B = τ g in �(B) iff ϕg = σ g ∨ τ g = 0B in �(B).

3. If ϕ = σ ⇒ τ , then ϕ
g
π = σ

g
π ⇒ τ

g
π has a block B ∈ π iff σ

g
π does not have the

block B and τ
g
π has the block B iff σ g is not equal to 0B and τ g is equal to 0B in

�(B) iff ϕg = σ g ⇒ τ g = 0B in �(B).

4. If ϕ = σ ∧ τ , then ϕ
g
π = π¬π¬σ

g
π ∧ π¬π¬τ

g
π has a block B ∈ π iff both σ

g
π and τ

g
π have

a block B iff σ g = 0B = τ g in �(B) iff ϕg = ¬¬σ g ∧ ¬¬τ g = 0B in �(B).

21 Since the partition lattice is conventionally written upside down, the usual result is stated in terms
of the interval below π (Grätzer, 2003, p.252).
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Hence applying the lemma component-wise, ϕ is a subset tautology iff ϕg never evaluates

to 0B in �(B) iff B is never a block of ϕ
g
π iff every block B ∈ π is discretized in

π¬π¬ϕ
g
π ,

that is,
π¬π¬ϕ

g
π is a partition tautology. �

Thus the Gödel π -transform of excluded middle ϕ = σ ∨ (σ ⇒ 0) = σ ∨ ¬σ is

ϕ
g
π = (σ ∨ π) ∨ ((σ ∨ π) ⇒ π) = (σ ∨ π) ∨ π¬(σ ∨ π) and

π¬π¬
[
(σ ∨ π) ∨ π¬(σ ∨ π)

]
is a partition tautology. Note that the single π -negation transform, the double π -negation
transform, and the Gödel π -transform all gave different formulas starting with the classical
excluded middle tautology.

1.16. Some partition results. Before turning to the proof theory of partition logic, we
might mention a few interesting results. For many purposes, the structure of the partition
algebras �(U ) is best analyzed by analyzing the upper intervals [π, 1] for any partition
π . Partition lattices are the “standard” examples of nondistributive lattices, but one can
do much better than simply say a partition lattice is nondistributive. The Boolean core
of each interval [π, 1] is, of course, distributive since it is a Boolean algebra using the
meet and join operations of the partition lattice. Moreover, each partition in the interval
[π, 1] distributes across the Boolean core. To see this, note that one of these distributivity
results is essentially due to Oystein Ore. Ore (1942) did much of the path-breaking work
on partitions. He defined two partitions as being associable if each block in their meet
is a block in one (or both) of the partitions.22 Although Ore did not consider π -regular
partitions, any two π -regular partitions are associable. He showed that any partition joined
with the meet of two associable partitions will distribute across the meet (Ore, 1942,
p. 585). Hence we have the following result for any partitions ϕ, σ , τ , and π .

LEMMA 1.26 (ORE’S DISTRIBUTIVITY THEOREM). ϕ∨
(

π¬σ ∧ π¬τ

)
=

(
ϕ ∨ π¬σ

)
∧(

ϕ ∨ π¬τ

)
.

Ore’s theorem does not assume that ϕ is in the interval [π, 1] but we can interchange
join and meet if we restrict ϕ to the interval.

LEMMA 1.27 (“DUAL” TO ORE’S THEOREM). If ϕ ∈ [π, 1], then ϕ ∧
(

π¬σ ∨ π¬τ

)
=(

ϕ ∧ π¬σ

)
∨

(
ϕ ∧ π¬τ

)
.

PROPOSITION 1.28 (DISTRIBUTIVITY OVER THE BOOLEAN CORE). If π � ϕ,

ϕ ∨
(

π¬σ ∧ π¬τ

)
=

(
ϕ ∨ π¬σ

)
∧

(
ϕ ∨ π¬τ

)

ϕ ∧
(

π¬σ ∨ π¬τ

)
=

(
ϕ ∧ π¬σ

)
∨

(
ϕ ∧ π¬τ

)
.

Distributivity over the Boolean core allows certain results based on subset distribu-
tivity to be “transferred” to partitions. For instance, for arbitrary subsets S, T of U , the

22 Ore actually dealt with the join of equivalence relations but we are using the opposite presentation.
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conjunctive normal form expression for the null set ∅ is:

(S ∪ T ) ∩ (S ∪ T c) ∩ (Sc ∪ T ) ∩ (Sc ∪ T c) = ∅
so for any subset P of U , we can distribute the union P = P ∪ ∅ across the intersections
to obtain the CNF decomposition of P using subsets S, T of U :

P = (S ∪ T ∪ P) ∩ (S ∪ T c ∪ P) ∩ (Sc ∪ T ∪ P) ∩ (Sc ∪ T c ∪ P).

Similarly for arbitrary partitions σ, τ on U , the conjunctive normal form expression for the
bottom π of the Boolean core Bπ is:(

π¬π¬σ ∨ π¬π¬τ

)
∧

(
π¬π¬σ ∨ π¬τ

)
∧

(
π¬σ ∨ π¬π¬τ

)
∧

(
π¬σ ∨ π¬τ

)
= π

so for any ϕ ∈ [π, 1], we can distribute the join ϕ = ϕ ∨ π across the meets to obtain the:

COROLLARY 1.29 (CNF DECOMPOSITION IDENTITY) For any ϕ ∈ [π, 1] and any
partitions σ, τ on U:

ϕ =
(

π¬π¬σ ∨ π¬π¬τ ∨ ϕ

)
∧

(
π¬π¬σ ∨ π¬τ ∨ ϕ

)
∧

(
π¬σ ∨ π¬π¬τ ∨ ϕ

)
∧

(
π¬σ ∨ π¬τ ∨ ϕ

)
.

Dually, for arbitrary subsets S, T of U , the disjunctive normal form expression for the
universe set U is:

(S ∩ T ) ∪ (S ∩ T c) ∪ (Sc ∩ T ) ∪ (Sc ∩ T c) = U

so for any subset P of U , we can distribute the intersection P = P ∩ U across the unions
to obtain the DNF decomposition of P using subsets S, T of U :

P = (S ∩ T ∩ P) ∪ (S ∩ T c ∩ P) ∪ (Sc ∩ T ∩ P) ∪ (Sc ∩ T c ∩ P).

Similarly for arbitrary partitions σ, τ on U , the disjunctive normal form expression for the
Top 1 of the Boolean core Bπ is:(

π¬π¬σ ∧ π¬π¬τ

)
∨

(
π¬π¬σ ∧ π¬τ

)
∨

(
π¬σ ∧ π¬π¬τ

)
∨

(
π¬σ ∧ π¬τ

)
= 1

so for any ϕ ∈ [π, 1], we can distribute the meet ϕ = ϕ ∧ 1 across the joins to obtain the:

COROLLARY 1.30 (DNF DECOMPOSITION IDENTITY) For any ϕ ∈ [π, 1] and any
partitions σ, τ on U:

ϕ =
(

π¬π¬σ ∧ π¬π¬τ ∧ ϕ

)
∨

(
π¬π¬σ ∧ π¬τ ∧ ϕ

)
∨

(
π¬σ ∧ π¬π¬τ ∧ ϕ

)
∨

(
π¬σ ∧ π¬τ ∧ ϕ

)
.

Since the CNF and DNF decomposition identities for any ϕ ∈ [π, 1] hold for arbitrary
partitions σ, τ on U , they can be used as engines to produce other identities by the clever
choice of σ and τ so that simplifications will apply.

For instance, Lawvere (1986, 1991), has explored two interesting formulas in the context
of co-Heyting algebras (e.g., the closed subsets of a topological space) but both formulas
are also true in the partition algebras �(U ). Since Lawvere was working in a co-Heyting
algebra, his suggestive terminology would be more fitting in the algebra of equivalence
relations (represented by the closed subsets in the nontopological closure space U × U ).
Lawvere uses the “difference from 1” negation that in the algebra of equivalence relations
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would be (¬σ)d = (σ ⇒ 0)d = 0d − σ d where 0d = 1̂ is the top or “one” of that algebra,
and that is dual to the “implication to 0,” that is, ¬σ = σ ⇒ 0, in the partition algebra.
Moreover, we will relativize the negation using an arbitrary π in place of 0.

Lawvere defines the “boundary” of an element as its meet with its negation, so dualizing
and using π -negation, we define the π -coboundary of a partition as the partition obtained
from the excluded middle formula using π -negation:

∂πσ = σ ∨ π¬σ

π -coboundary of a partition σ

Lawvere’s boundary was “nowhere dense” in the sense that its double negation was the zero
element. In the dual, the π -coboundary is π -dense in the sense that its double π -negation

is 1. The Gödel π -transform of the excluded middle tautology is
π¬π¬[(σ ∨ π) ∨ π¬σ ], and

since (σ ∨ π) ∨ π¬σ = σ ∨ π¬σ , we have:

π¬π¬∂πσ = π¬π¬
(

σ ∨ π¬σ

)
= 1.

Lawvere defined the “core” of an element as its double negation but we may extend

this to the double π -negation
π¬π¬σ . Lawvere then shows that each element is equal to its

boundary joined with its core. In the opposite presentation, this result is: (σ∨¬σ)∧¬¬σ =
σ . Generalizing from 0 to any π then gives the following result in any �(U ).

PROPOSITION 1.31 (LAWVERE’S BOUNDARY + CORE LAW FOR PARTITIONS). ∂πσ ∧
π¬π¬σ = σ ∨ π .

Proof. This is easily proved directly from Ore’s distributivity theorem using some basic

identities such as:
π¬σ ∧ π¬π¬σ = π and σ � π¬π¬σ so that σ ∨ π¬π¬σ = π¬π¬σ . Then using

Ore’s theorem:

σ ∨ π = σ ∨
(

π¬σ ∧ π¬π¬σ

)
=

(
σ ∨ π¬σ

)
∧

(
σ ∨ π¬π¬σ

)
= ∂πσ ∧ π¬π¬σ.

Alternatively, one could take ϕ = σ ∨ π and τ = σ in the CNF decomposition of ϕ

and simplify using the identities along with π � π¬σ,
π¬π¬σ so that π ∨ π¬σ = π¬σ and

π ∨ π¬π¬σ = π¬π¬σ . �
Lawvere also shows that the Leibniz rule for taking the derivative of the product of

functions, that is, ( f g)′ = f (g′) + ( f ′)g, applies in, say, the co-Heyting algebra of closed
subsets of a topological space using the notion of boundary in place of the derivative. The
Leibniz rule holds in the dual algebra of equivalence relations using the dual notion of π -
boundary, and the dual of the Leibniz rule holds in the partition algebras �(U ) using the
notion of π -coboundary.

PROPOSITION 1.32 (CO-LEIBNIZ RULE FOR PARTITIONS). ∂π (σ ∨ τ) = (∂πσ ∨ τ) ∧
(σ ∨ ∂πτ).

Proof. This result is an easy consequence of Ore’s theorem and the (weak) DeMorgan

law for π -negation,
π¬(σ ∨ τ) = π¬σ ∧ π¬τ , that holds in partition logic. Alternatively, the

result can be obtained by taking ϕ = ∂π (σ ∨ τ) in the CNF decomposition identity and
simplifying. �
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§2. Correctness and completeness for partition logic.

2.1. Beth-style tableaus for partition logic.

2.1.1. Classical, intuitionistic, and partition “forcing” models It is a familiar fact
from classical and intuitionistic logic that logics might be syntactically presented in a
number of ways: Hilbert-style axiom systems, Beth-style tableaus, natural deduction sys-
tems, or Gentzen-style sequent systems. For partition logic, it seems that the Beth-style
tableaus provide the easiest and most transparent approach so they will be exclusively used
here.

Beth-style tableaus are often called “semantic” since the rules, in effect, try to construct
a model for a formula at the syntactic level. For each of the connectives, it will be useful to
consider the corresponding classical and intuitionistic tableaus for purposes of comparison.
This requires presenting an appropriate form of the classical and intuitionistic tableaus
adapted to the subset interpretation. As remarked before, classical and intuitionistic logic
are to be interpreted as being about subsets (open subsets in the intuitionistic case). The
rules for the connectives govern when the subsets contain or don’t contain a generic el-
ement u. Then the partition case is motivated by elements–distinctions analogy with the
generic element u replaced by a generic pair (u, u′) of distinct elements. The conditions
governing when subsets contain elements are replaced by the conditions governing when
partitions make distinctions.

Tableaus with signed formulas T σ or Fσ will be used (Smullyan, 1995). But each
signed formula must be accompanied by a generic element or generic pair as in “u : T σ”
or “(u, u′) : T σ .” In the classical or intuitionistic case, u : T σ would be interpreted as
saying that the subsets represented by σ contains the element u while u : Fσ would mean
that σ (i.e., the subset it represents) does not contain u. Similarly, (u, u′) : T σ means
that the partition represented by σ makes the distinction (u, u′), that is, u and u′ are in
distinct blocks of σ , and (u, u′) : Fσ would mean that u and u′ are in the same block
of σ .

For classical “propositional” or Boolean logic, the subsets in the intended interpretation
are the subsets of any nonempty universe set U . For intuitionistic “propositional” logic,
the intended interpretation is known as a Kripke structure or intuitionistic forcing model
(Fitting, 1969). The universe U is endowed with a partial ordering ≤ and the relevant
subsets are the up-closed subsets where S ⊆ U is up-closed if u ∈ S and u ≤ u′ implies
that u′ ∈ S. These subsets satisfy the conditions for being the open sets of a topology on
U . Ordinarily one has a forcing relation (|�) between the points of U and the unsigned
formulas. However, signed formulas will be used here to facilitate the connection to the
tableaus using signed formulas:

u |� ϕ will be written u : T ϕ and u �|� ϕ is written u : Fϕ.

A Kripke structure satisfies the structural rule for any T -formula ϕ, ∀u′ ≥ u, if u : T ϕ
then u′ : T ϕ so that all T -sets Tϕ = {u| u : T ϕ} are up-closed (i.e., open). The T -
conditions for the connectives are given below while the F-conditions are obtained by
contraposition.

u : T (π ∨ σ) iff u : T π or u : T σ ;
u : T (π ∧ σ) iff u : T π and u : T σ ;
u : T (σ ⇒ π) iff ∀u′ ≥ u, u′ : Fσ or u′ : T π ; and
u : T (σ | π) iff ∀u′ ≥ u, u′ : Fσ or u′ : Fπ .
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Ordinarily, Kripke structures are defined using negation as a primitive connective but we
can define ¬σ = σ | σ so that setting π = σ in the condition for T (σ | π) gives the
derived condition for the negation:

u : T (¬σ) iff ∀u′ ≥ u, u′ : Fσ .

Kripke structures make explicit certain features which are left implicit in classical logic but
which must be explicit in partition logic so they are useful as an expository bridge. It was
emphasized from the outset that classical “propositional” logic should be seen as being
about the subsets of a universe set U and that the “truth table” rules for the connectives
are really the subset membership conditions for a generic element u. Since the classical
operations on subsets do not require ever “leaving” the base point u, say, to some other
point u′, all explicit reference to u is dropped. The definitions can all be interpreted as
being about the Subsets 0 and 1 of a one point set {u} which, in turn, can be interpreted as
falsity and truth for propositions. But once we have the notion of Kripke structures, then
we can see that classical propositional logic arises, as it were, when the partial ordering on
U is discrete which gives the discrete topology where all subsets are open subsets.

In a Kripke structure, the atomic variables are, in effect, interpreted as T -sets (open
subsets) and the conditions for the Kripke structure just give the membership conditions
for the T -sets of compound formulas since: u ∈ Tϕ iff u : T ϕ. Thus a classical model for
classical “propositional” logic would be a discrete Kripke structure, that is, a nonempty
universe set U together with the “forcing” or membership conditions:

u : T (π ∨ σ) iff u : T π or u : T σ ;
u : T (π ∧ σ) iff u : T π and u : T σ ;
u : T (σ ⇒ π) iff u : Fσ or u : T π ; and
u : T (σ | π) iff u : Fσ or u : Fπ .

These conditions for a classical model of propositional logic are just disguised versions
of the usual truth tables but they make explicit the subset interpretation of the logic. Each
formula ϕ would be interpreted in a model by a subset Tϕ = {u| u : T ϕ}, and the rules
could be restated as membership conditions for a generic element, for example, u ∈ Tπ∨σ

iff u ∈ Tπ or u ∈ Tσ , and so forth.
In the usual treatment of Kripke structures, a formula ϕ is intuitionistically valid if it is

forced at every point in any Kripke structure. But this is equivalent to saying that for any
interpretation of the atomic variables of ϕ as open subsets of the model, the whole formula
evaluates to the universe set U . In the discrete or classical case, it means that a formula
is a classical or subset tautology if regardless of the subsets of U assigned to the atomic
variables of the formula, the formula evaluates to the universe set U (for any nonempty U ).

We now have sufficient motivation to define the analogous partition forcing models. We
start with a universe set U with two or more elements. The points in the classical and
Kripke structures are replaced by the pairs (u, u′) of distinct points from U . Instead of
using an explicit forcing relation between pairs and formulas, we will again use signed
formulas so that:

(u, u′) |� ϕ is written as (u, u′) : T ϕ, and (u, u′) �|� ϕ is written as (u, u′) : Fϕ.

Unlike the points u or u′, the pairs (u, u′) have an internal structure; a pair (u, u′) can be
reversed to (u′, u) and pairs can be connected in triangles as in (u, u′), (u, a), and (a, u′) or
in longer chains. Hence a partition forcing model has two structural conditions reflecting
the symmetry and antitransitivity of partition relations:
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if (u, u′) : T ϕ, then (u′, u) : T ϕ;
if (u, u′) : T ϕ, then for any other a, (u, a) : T ϕ or (a, u′) : T ϕ.

No rule is needed to enforce the antireflexivity of partition relations since the notation
always assumes that (u, u′) is a pair of distinct elements.

The unstructured universe set U still determines the complete undirected graph K (U )
on U which has a link (u, u′) between any two distinct points. A u, u′-chain is a finite
sequence of links, (u1, u2),(u2, u3),. . . ,(un−1, un), with u = u1 and u′ = un as the end-
points. In particular, the base pair (u, u′) is a one-link u, u′-chain, and any third element
a gives the two-link u, u′-chain (u, a) and (a, u′). Recall that the Boolean condition for
any signed compound formula π ∗ σ is the disjunction or conjunction of the pair of signed
formulas that hold in a classical model for the constituents π and σ where ∗ is any binary
operation.

Now the “forcing conditions” for a partition forcing model can be stated for the T -signed
formulas (with the F-rules obtained by contraposition).

(u, u′) : T (π ∨ σ) iff (u, u′) : T π or (u, u′) : T σ (i.e., the Boolean condition holds at
the base pair);

(u, u′) : T (σ ⇒ π) iff for any one- or two-link u, u′-chain, the Boolean condition (i.e.,
Fσ or T π ) holds on some chain link;

(u, u′) : T (π ∧σ) iff for any u, u′-chain, the Boolean condition (i.e., T π and T σ ) holds
on some chain link; and

(u, u′) : T (σ | π) iff for any u, u′-chain, the Boolean condition (i.e., Fσ or Fπ ) holds
on some chain link.

The T -sets are Tϕ = {(u, u′)| (u, u′) : T ϕ}, and a partition validity would be a for-
mula whose T -set consisted of all pairs (u, u′) of distinct elements in all partition forcing
models.

These partition forcing models have been defined so that one can see the analogies
between Kripke structures (and classical structures as the discrete special case). But we
have met the partition forcing models before; they are just a different presentation of the
dit-set representation of the partition algebras �(U ):

Partition forcing model = dit-set representation of �(U ).

The T -sets are the dit sets since (u, u′) : T ϕ is the same as (u, u′) ∈ dit(ϕ) so that
Tϕ = dit(ϕ).

The presentation of the dit-set representation as a “partition forcing model” neverthe-
less brings out a number of analogies between the distinguishing-cut and falsifying-chain
results in partition and related results in intuitionistic and classical logic. In a Kripke
structure, the order structural condition is that if T ϕ holds at a point u, then it holds at any
higher point u′ ≥ u. In a partition forcing model, the antitransitivity structure condition is
that if T ϕ holds at any pair (u, u′), then it holds at some link on any u, u′-chain. Moreover,
the conditions for the connectives provide a stronger version of the analogy. Let ∗ be any
operation such as ∨, ⇒, ∧, or |.

Partition forcing model

σ ∗ π distinguishes
(
u, u′), i.e.,

(
u, u′) : T (σ ∗ π)

iff ∀ u, u′-chains, the Boolean conditions for T (σ ∗ π)
hold at some link on the chain.
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σ ∗ π identifies
(
u, u′), i.e.,

(
u, u′) : F (σ ∗ π)

iff ∃ u, u′-chain, with the Boolean conditions for F (σ ∗ π)
holding at every link.

–
Intuitionistic forcing model

σ ∗ π contains u, i.e., u : T (σ ∗ π)
iff ∀ u′ ≥ u, the Boolean conditions for T (σ ∗ π) hold at u′.

σ ∗ π does not contain u, i.e., u : F (σ ∗ π)
iff ∃ u′ ≥ u, such that the Boolean conditions for F (σ ∗ π)

hold at u′.23

–
Classical forcing model

σ ∗ π contains u, i.e., u : T (σ ∗ π)
iff the Boolean conditions for T (σ ∗ π) hold at u.

σ ∗ π does not contain u, i.e., u : F (σ ∗ π)
iff the Boolean conditions for F (σ ∗ π) hold at u.

Some pains have been taken to emphasize the analogies between the Kripke structure
model and the classical and partition “forcing” models. But the classical and partition mod-
els are just a fancy way to describe, respectively, the membership conditions for subsets of
a set U and the distinction conditions for partitions on a set U . Moreover, ordinary subset
logic and partition logic are at the same mathematical level in the sense that both start with
an unstructured set U. The subsets of a set and the partitions on a set can both be described
without assuming any additional structure. In the intuitionistic case, either a topology or
a partial order (which induces the topology of up-closed subsets as the open subsets) is
assumed on the universe set U .24

2.1.2. Tableau structural rules In general, the intuitionistic and partition F-rules will
have a similar form. For any connective ∗, the intuitionistic rule is that u : F(π ∗ σ) iff
∃u′ ≥ u such that the Boolean condition for F(π ∗σ) holds at u′, while the partition rule is
that (u, u′) : F(π ∗ σ) iff ∃u, u′-chain such that the Boolean condition for F(π ∗ σ) holds
at every link on the chain.

By the same token, we could formulate the intuitionistic and partition T -rules as con-
trapositives. For the intuitionistic T ∗ rule, u : T (π ∗ σ) holds iff ∀u′ ≥ u, the Boolean
condition for T (π ∗ σ) holds at u′, and the partition rule is that (u, u′) : T (π ∗ σ) iff
∀u, u′-chains, there is a link on the chain where the Boolean condition for T (π ∗ σ) holds
on that link.

But the T -rules are written in a simplified way where the Boolean condition for T (π ∗σ)
holds at the base, and then is transmitted to a new base with that Boolean condition also
holding there. For instance, the intuitionistic T -rule for π ∗σ will be given in the simplified
form as u : T (π ∗ σ) implies the Boolean condition for T (π ∗ σ) holds at u, together
with a T -transmitting rule so any T ’s are transmitted to higher points in the ordering.

23 The chain-cut results in partition logic have an even closer analogy in the intuitionistic case if one
uses the Beth semantics of paths and bars in partially ordered sets, see (van Dalen, 2001, p. 237)
or (Restall, 2000, p. 276).

24 Starting with Kripke structures as models for intuitionistic and modal logics, there has recently
been a vast proliferation of logics modeled by sets with orderings or closure operations along with
a variety of compatibility and accessibility relations on the sets; see Restall (2000) for a survey.
In contrast to this profusion of logics, partition logic, like classical subset logic, is modeled using
only unstructured sets U .
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Similarly in the partition case, we have used the simplified rule where (u, u′) : T (π ∗ σ)
implies the Boolean condition for T (π ∗ σ) also holds at (u, u′) and then the following
T -antitransitivity rule transmits any T ’s to some link in any u, u′-chain.

The two T -transmitting structural rules for the intuitionistic and partition cases are as
follows. The T -antitransitivity rule splits into two alternatives given by the vertical line |.
Context should suffice to avoid confusion between the vertical line | separating branches
in the tableau tree and the Sheffer stroke | of the nand operation.

u : T ϕ

∀a > u, a : T ϕ

(u, u′) : T ϕ

∀a, (u, a) : T ϕ|(a, u′) : T ϕ
Intuitionistic T -transmitting rule Partition T -antitransitivity rule

An easy corollary implies that a T ϕ holding at (u, u′) is transmitted to some link in any
u, u′-chain.

The T -transmitting rules can also be contraposited to derive “F-reflecting” rules.

∃a > u, a : Fϕ

u : Fϕ

∃a, (u, a) : Fϕ and (a, u′) : Fϕ

(u, u′) : Fϕ
Intuitionistic F-reflecting rule Partition F-transitivity rule

Thus if Fϕ holds at each link on any u, u′-chain, then (u, u′) : Fϕ follows.
Partition relations and their complementary equivalence relations are symmetric. Since

we are using the ordered pairs (u, u′) rather than the unordered pairs {u, u′}, we need rules
to enforce that symmetry for the ordered pairs.

(u, u′) : T ϕ

(u′, u) : T ϕ

(u, u′) : Fϕ

(u′, u) : Fϕ
Partition T symmetric rule Partition F symmetric rule

Equivalence relations are reflexive and partition relations are antireflexive but we don’t
need rules to enforce that since we have stipulated that the ordered pairs (u, u′) in the rules
are always of distinct elements.

2.1.3. Tableaus for the partition join The tableau rules are given, for comparison pur-
poses, for the three logics: subset, intuitionistic, and partition. The terms u, u′, a, b, . . . , c
are now elements in the syntactic machinery of the tableau rules with the intended inter-
pretations that have been already given; u : T ϕ would be interpreted as u is a member of
the set that interprets ϕ in the classical and intuitionistic rules while (u, u′) : T ϕ would
be interpreted as (u, u′) is a distinction of the partition that interprets ϕ, and similarly for
the F-formulas. The four operations of ∨, ∧, ⇒, and | will be taken as primitive in all the
logics with the constant 1 defined as σ ⇒ σ for any σ and 0 defined as 1 | 1.

In general, the syntactic eliminative T rules give the left-to-right implication in the
“forcing” models described above, and the F rules are obtained by contrapositing the
implication in the other direction. To compare the tableaus for these three logics, we start
with the join where the eliminative tableaus are the most alike.

u : F(π ∨ σ)

u : Fπ, Fσ

u : F(π ∨ σ)

u : Fπ, Fσ

(u, u′) : F(π ∨ σ)

(u, u′) : Fπ, Fσ

Classical F∨ rule Intuitionistic F∨ rule Partition F∨ rule

The T ∨ rules use the notion of a splitting of alternatives which is indicated by a vertical
line.
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u : T (π ∨ σ)

u : T π |u : T σ

u : T (π ∨ σ)

u : T π |u : T σ

(u, u′) : T (π ∨ σ)

(u, u′) : T π |(u, u′) : T σ

Classical T ∨ rule Intuitionistic T ∨ rule Partition T ∨ rule

The close analogies between the classical and intuitionistic rules on the one hand and
the partition rules on the other hand are all by virtue of turning the lattice of partitions right
side up.

2.1.4. Tableaus for the partition implication The complications arise in the F rules so
we begin with the T rules.

u : T (σ ⇒ π)

u : Fσ |u : T π

u : T (σ ⇒ π)

u : Fσ |u : T π

(u, u′) : T (σ ⇒ π)

(u, u′) : Fσ |(u, u′) : T π

Classical T ⇒ rule Intuitionistic T ⇒ rule Partition T ⇒ rule

The classical rules never leave the base point u so u is usually left implicit. In the intu-
itionistic F ⇒ rule, a new element a may be introduced. Since the Beth-style tableau rules,
in effect, try to construct a model of a formula using syntactic machinery, the ordering
between the points in a Kripke structure must already be introduced as an ordering between
elements. In particular, in the intuitionistic F ⇒ rule, the new element a introduced in the
consequence of the rule is higher in the ordering of elements than the base point used in
the premise of the rule. In other treatments of the intuitionistic rule F ⇒ as in Fitting
(1969), the elements such as u and a are also left implicit but the rules that require leaving
the base point to move higher in the ordering (i.e., the F ⇒ and F¬ rules) are indicated
by dropping any other F-formulas in the premise and keeping only the T -formulas since
only the T -formulas are transmitted to points higher in the ordering. We will not fully
develop our version of the intuitionistic tableaus but we are presenting them to bring out
the analogies with the partition tableaus.

In the partition F ⇒ we may introduce a new element a but there is no ordering on
the elements. There is always the notion of a chain of pairs of elements, and the partition
F ⇒ rule says that the Boolean condition for F(σ ⇒ π) holds on each link of the chain
(u, a), (a, u′).

u : F(σ ⇒ π)

u : T σ, Fπ

u : F(σ ⇒ π)

∃a ≥ u, a : T σ, Fπ

Classical F ⇒ rule Intuitionistic F ⇒ rule

(u, u′) : F(σ ⇒ π)

∃u, u′-chain (one or two links) with T σ, Fπ on each link
Partition F ⇒ rule

Since this is the first partition tableau rule that might introduce a new element, we have to
be more explicit about how the tableau rules will be used here. We are given some partition
formula ϕ and we begin a tableau for ϕ with the statement (u0, u1) : Fϕ. Since a tableau
can branch like an upside-down tree, this initial statement (u0, u1) : Fϕ is the root of the
tree. The application of the tableau rules attempts to construct a partition on some model
set U containing u0 and u1 where (u0, u1) : Fϕ holds, that is, to construct a countermodel
for ϕ. The universe set starts at U0 = {u0, u1}, and each application of a rule introducing
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one or more new elements will take the developing model from some Un to Un+1 which is
Un plus the new elements.25 Each Un might be called a stage of the developing model.

New elements should be introduced only as a last resort. Since new element might be
introduced only by F-rules, before introducing new elements to make a falsifying chain, we
need to first check that a falsifying chain could not be formed using the existing elements.
Given the premise (u, u′) : F(σ ⇒ π), the “base pair” (u, u′) might be a one-link
falsifying chain if (u, u′) : T σ, Fπ , or the falsifying chain might be constructed using
an element a ∈ Un of the evolving universe set at that stage. For instance, we might have
already derived (u, u′) : Fσ, Fπ so the base pair was not a one-link falsifying chain, but
there might be an element a ∈ Un in the evolving universe set at that stage and on that
branch of the tableau where, say, (u, a) : Fπ held. Then the F-transitivity rule given
below would yield (a, u′) : Fπ . If we then initiated a new branch with the assumption
(u, a) : T σ , then the T -antitransitivity rule given below would imply (a, u′) : T σ and
we would have a falsifying chain for (u, u′) : F(σ ⇒ π) without introducing any new
elements. Such a falsifying chain using existing elements might be called a back-chain.
Thus there are a finite number of options to establish a falsifying back-chain before taking
the “last option” of introducing a new element and thus a new stage in the developing
countermodel. Each of these options may create a branch in the tree. Since each Un is
a finite set, there are only a finite number of possible back-chains (including the one-
link back-chain of the base pair) so only a finite number of branches might be created by
applying the rule.

We know from the previous falsifying-chain result that when the atomic variables of
some formula σ ∗ π are interpreted as partitions on some universe set U , then F(σ ∗ π)
will hold at some pair (u, u′) iff there is a falsifying chain with the Boolean conditions for
F(σ ∗π) holding at each link on the chain. The F ⇒ rule gives us the syntactic version of
that semantic theorem in the following sense. Each branch resulting from applying the rule
to (u, u′) : F(σ ⇒ π) will have the statements for a falsifying chain either at the base pair
(u, u′) : T σ, Fπ or on a two-link falsifying chain (u, a), (a, u′) : T σ, Fπ which might be
a back-chain if a ∈ Un or a new chain if a is a new element that yields Un+1 = Un ∪ {a}.
For the operations of the meet ∧ and nand |, the falsifying chains could have more than
two links and thus involve two or more elements other than the base pair (u, u′). In that
case, the possibility arises of mixed chains using some existing elements in Un and some
new elements.

We also know from the distinguishing cut result that when the atomic variables of some
formula σ ∗ π are interpreted as partitions on some universe set U , then T (σ ∗ π) will
hold at some pair (u, u′) iff for every u, u′-chain, there is a link (a, b) where the Boolean
conditions for T (σ ∗ π) hold. The T -rules together with the T -antitransitivity rule ensure
that the corresponding formulas are derived in the developing branch of a tableau. For
instance, in the present case of the implication (u, u′) : T (σ ⇒ τ), the T -antitransitivity
rule implies that for any u, u′-chain using the elements of Un , there is a link (a, b) where
T (σ ⇒ π) holds and then the T ⇒ rule implies that either (a, b) : Fσ or (a, b) : T π
holds—which are the Boolean conditions for T (σ ⇒ π) holding at (a, b).

Similar remarks apply to all the T ∗ and F∗ rules where ∗ is ∨, ⇒, ∧, or |.

25 It may be useful to keep in mind the analogies with the development of models in classical first-
order logic using tableaus (Smullyan, 1995). We are from the outset seeing the new “constants”
being introduced as elements in a potential model (in a manner reminiscent of the Löwenheim-
Skolem theorem in classical first-order logic).
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2.1.5. Tableaus for the partition meet All three of the T ∧ rules are rather standard.

u : T (π ∧ σ)

u : T π, T σ

u : T (π ∧ σ)

u : T π, T σ

(u, u′) : T (π ∧ σ)

(u, u′) : T π, T σ
Classical T ∧ rule Intuitionistic T ∧ rule Partition T ∧ rule

The classical and intuitionistic rules for F∧ are standard while the partition F∧ is
complicated since it involves a chain of elements with the Boolean condition, Fπ or Fσ ,
holding on each link. In the eliminative rule for the universal quantifier in classical first-
order logic, we go from a premise u : (∀x)ϕ(x) to a conclusion of either u : ϕ(a) where
a is a constant in the developing model or u : ϕ(x ′) where x ′ is a variable that can latter
be replaced by a constant. In the partition F∧ rule, we have a similar situation when there
is no falsifying back-chain so we need to introduce new elements to be strung together to
make a falsifying chain. How many new elements should be introduced? In each branch
of a tableau, we may eventually arrive at a contradiction in the form (a, b) : T σ, Fσ at
some pair in which case the branch would close. Along that branch, no countermodel can
be constructed so the branch is terminated. But a branch might be “falsely” terminated if
we don’t introduce enough new links in the falsifying chain of the F∧ rule. For instance,
suppose we also had (u, u′) : T φ1, T φ2, T φ3 in the branch and any two of these formulas
holding at the same pair would give rise to a contradiction. Then if we had only introduced
one new element to give the two-link falsifying chain (u, a) : Fσ and (a, u′) : Fπ , then the
T -antitransitivity rule would have to “transmit” two of the three formulas T φ1, T φ2, T φ3
to one of the links in the chain and we would seem to have a closure of the branch. But
we could just as well have introduced two new elements a and b so we had a falsifying
chain of the three links (u, a), (a, b), (b, u′) and then each of the three formulas could
be transmitted to a different link avoiding the contradiction. A crude upper bound on the
number of necessary links is the number of subformulas of the formula ϕ in the root of the
tree.

Hence when a branch closes, we must be sure that it would still close regardless of the
length of the falsifying chain introduced in the F∧ rule. This can be done by ensuring
that any falsifying chain from the F∧ rule in a closed branch could have been treated as
a “variable” or generic chain so that whenever some T φi holding at (u, u′) is transmitted
to the chain, then it must have its “own” link and must not be forced to unnecessarily
share a link with some other T φ j . If a branch does not close, then we need to construct a
countermodel from the elements introduced in that branch (see the Satisfaction Theorem
below) so we need to have introduced specific elements in an open branch.

In the F∧ rule, the elements a, b, . . . , c form a u, u′-chain, (u, a), (a, b), . . . , (c, u′).

u : F(σ ∧ π)

u : Fσ |u : Fπ

u : F(σ ∧ π)

u : Fσ |u : Fπ
Classical F∧ rule Intuitionistic F∧ rule

(u, u′) : F(σ ∧ π)

∃a, b, . . . , c so the u, u′-chain has Fσor Fπ on each link
Partition F∧ rule

By the F-transitivity rule, two consecutive Fσ links could be shorted to one Fσ link so
we may assume that the links of the falsifying chain are alternating. As in the case of the
F ⇒ rule, the falsifying chain might be a back-chain established using the elements of the
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current stage Un without introducing new elements or a mixed chain with some old and
some new elements. When new assumptions are made to have a falsifying back-chain, that
creates a new branch. When new elements are introduced and T -formulas are transmitted
to the links, then each way this could be done is a new branch. The possibilities quickly
multiply but they are always finite at each stage.

2.1.6. Tableaus for the partition nand All three of the T | rules are rather standard.

u : T (π | σ)

u : Fπ |u : Fσ

u : T (π | σ)

u : Fπ |u : Fσ

(u, u′) : T (π | σ)

(u, u′) : Fπ |(u, u′) : Fσ
Classical T | rule Intuitionistic T | rule Partition T | rule

In the “intuitionistic” F | rule (which we have invented since the nand operation is not
ordinarily used in intuitionistic logic), a new element a is introduced so that a ≥ u in the
partial ordering of elements so that the Boolean condition for F(π | σ), that is, T π, T σ ,
holds at that point. In the F | rule for partitions we already know that four links suffice in
a falsifying chain so we only need to introduce at most three new elements a, b, c to form
the falsifying u, u′-chain where the same Boolean conditions hold at each link.

u : F(π | σ)

u : T π, T σ

u : F(π | σ)

∃a ≥ u, a : T π, T σ
Classical F | rule Intuitionistic F | rule

(u, u′) : F(π | σ)

∃u, u′-chain (at most four links) with T π, T σ on each link
Partition F | rule

As before, the falsifying chain could be a back-chain. For the option where new elements
are introduced, at most three elements need to be introduced since four links suffice in any
falsifying chain for the nand π | σ .

2.1.7. Examples of proofs and countermodels using the F∧ rule Starting with the
assumption that a “root” formula ϕ does not distinguish a generic pair (u0, u1), that is,
(u0, u1) : Fϕ, the tableau rules for the connectives (as opposed to the structural rules)
eliminate the main connective of a formula at each step. If all branches terminate with
a contradiction such as T σ, Fσ at some pair, then the tableau constitutes a proof of the
formula ϕ, that is, ϕ is a theorem of the tableau system. If a branch arrives at atomic signed
formulas without any contradiction but where all the possible rules have been applied, then
the open tableau branch will give a model of (u0, u1) : Fϕ, that is, a countermodel to ϕ
being a partition tautology.

The F∧ rule will be illustrated by developing tableaus for two related formulas, ϕ1 =
(σ ∧ (σ ⇒ π)) ⇒ (σ ∧ π) and ϕ2 = σ ⇒ ((σ ⇒ π) ⇒ (σ ∧ π)), where both
formulas are subset tautologies but only the first is a partition tautology. To save space,
we have ignored the base pair and back-chain branches for F ⇒ and F∧ since we show
that the branches with new multiple-link falsifying chains close. Hence the base pair and
back-chain branches would, a fortiori, close since they allow even fewer possibilities to
avoid contradictions. When a formula appears on a branch with both signs, for example,
(u0, b) : Fσ, T σ , then the branch closes as indicated with an X.
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1 (u0, u1) : F[(σ ∧ (σ ⇒ π)) ⇒ (σ ∧ π)] Rules used
2 ∃a, (u0, a), (a, u1) : T (σ ∧ (σ ⇒ π)), F(σ ∧ π) F ⇒

Continuing the analysis at (u0, a)
3 ∃b, c, (b, c) : Fσ, T (σ ∧ (σ ⇒ π)) | cont. F∧ and T -antitrans.

(b, c) : Fπ, T (σ ∧ (σ ⇒ π)) F∧ and T -antitrans.
4 (b, c) : T σ, T (σ ⇒ π) X | (b, c) : T σ, T (σ ⇒ π) T ∧ both branches
5 X | (b, c) : FσX || (b, c) : T π X T ⇒

Closed tableau for: (σ ∧ (σ ⇒ π)) ⇒ (σ ∧ π)

In the second line, there was only one T -formula T (σ ∧ (σ ⇒ π)) to transmit to a link in
the falsifying chain for F(σ ∧π) so a two-link chain would suffice to give T (σ ∧(σ ⇒ π))
the alternatives of going to a Fσ link (the left-hand alternative) or to a Fπ link (the right-
hand alternative). But we use the example to illustrate a generic u0, a-chain with a link
(b, c) in the chain. No matter how long the chain is, there are only two alternatives created
since T (σ ∧ (σ ⇒ π)) is either transmitted to an Fσ link (the left branch) or to a Fπ
link (the right branch). In the last line, two vertical lines | | were used to indicate a second
branching in the right-hand branch. The use of multiple vertical lines helps one to keep
track of the level of branching in the tree.

In the second row of the above tableau, the same Boolean conditions would hold on
(a, u1) as hold on (u0, a). They are related by an “and” and are not alternatives. Hence if
contradictions can be obtained on all branches resulting from analyzing (u0, a)—as indeed
happened—then one does not need any more analysis on (a, u1).

When a tableau has an open branch, a branch where the formulas have been “atomized”
with no contradictions appearing and all the rules have been exhausted, then we will see
that a countermodel can be constructed using the branch. If the formula is not a subset
tautology, then one can stick entirely to the original base pair since there is a countermodel
with |U | = 2. But if the formula is a subset tautology but not a partition tautology, then
a multiple-link falsifying chain is required at some point. For the formula σ ⇒ ((σ ⇒
π) ⇒ (σ ∧ π)), which is a subset but not partition tautology, there is an open branch
where a multiple-link falsifying chain was only used for the F∧ rule.

1 (u0, u1) : F[σ ⇒ ((σ ⇒ π) ⇒ (σ ∧ π))] Rules used
2 (u0, u1) : T σ, F((σ ⇒ π) ⇒ (σ ∧ π)) F ⇒ (base pair)
3 (u0, u1) : T σ, T (σ ⇒ π), F(σ ∧ π) F ⇒ (base pair)
4 (u0, u1) : T π | (u0, u1) : Fσ X T ⇒
5 ∃a, (u0, a) : Fσ, T (σ ⇒ π) and (a, u1) : Fπ, T σ || ...| X F∧ and T -antitrans.
6 (u0, a) : T π ||| (u0, a) : Fσ || ...| X T ⇒

Simple tableau for σ ⇒ ((σ ⇒ π) ⇒ (σ ∧ π)) with an open branch.

Taking the left branches at the three splittings, which terminates with (u0, a) : T π , we
can use the atomic signed formulas on each branch to construct a “countermodel,” namely
a model where (u0, u1) : F[σ ⇒ ((σ ⇒ π) ⇒ (σ ∧π))] holds so that the formula cannot
be a partition tautology.

But to construct the model, the branch needs to be “completed” by applying the elimina-
tive rules to any signed compound formulas in the branch until signed atomic formulas are
reached, and by assigning signed atomic variables to any remaining branches in a manner
consistent with T -antitransitivity and F-transitivity (symmetry is assumed as a matter of
course).

How does one know if this is always possible? If an assignment of signed atomic
variables to the other pairs was not possible given the signed formulas that already have
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to hold at the pairs, then either there is some contradiction that could be derived using
the rules so the branch was not really open, or the rules are incomplete (so that one has
a partition tautology where the rules were unable to close all the branches)—the latter
possibility being ruled out by the satisfaction theorem below. In the case at hand, there
is already a consistent assignment of signed atomic variables to all the links, that is,
(u0, u1) : T σ, T π , (u0, a) : Fσ, T π , and (a, u1) : T σ, Fπ . This immediately generates
the partitions σ = {{u0, a}, {u1}} and π = {{u0}, {u1, a}}. Then σ ∧ π = 0, σ ⇒ π = π ,
(σ ⇒ π) ⇒ (σ ∧ π) = 0, and the whole formula σ ⇒ ((σ ⇒ π) ⇒ (σ ∧ π)) then also
evaluates to 0 which gives a model for (u0, u1) : F[σ ⇒ ((σ ⇒ π) ⇒ (σ ∧ π))] and thus
a countermodel to that formula being a partition tautology.

Thus the two similar subset tautologies, (σ ∧ (σ ⇒ π)) ⇒ (σ ∧ π) and σ ⇒ ((σ ⇒
π) ⇒ (σ ∧ π)), give rather different results for partitions since only the first formula is a
partition tautology. The difference in the two cases was that for the first formula, we had
T (σ ∧ (σ ⇒ π)) being transmitted to some link in the falsifying chain for F(σ ∧ π),
where a contradiction would then arise. But in the second formula, it was the pair of T -
formulas, T σ, T (σ ⇒ π), which were being transmitted so there was no necessity that
they be transmitted to the same link in the falsifying chain. By spreading them out with
T σ going to a Fπ link and T (σ ⇒ π) going to a Fσ link, no contradiction arose and in
fact a countermodel could be constructed.

2.1.8. Tableaus for partition negation It may be useful to also have tableau rules for
negation which can be derived from the other rules. Since we are only taking the four
operations ∨, ∧, ⇒, and | as primitive, we could define the constant 1 as σ ⇒ σ for any
atomic variable σ and we could define 0 as 1 | 1. Then we could define negation (as in
intuitionistic logic) as ¬σ = σ ⇒ 0. But since we have the nand operation, it is far simpler
to equivalently define negation as: ¬σ = σ | σ . Then the tableau rules for negation are
just a special case of the rules for the nand.

u : T (¬σ)

u : Fσ

u : T (¬σ)

u : Fσ

(u, u′) : T (¬σ)

(u, u′) : Fσ
Classical T ¬ rule Intuitionistic T ¬ rule Partition T ¬ rule

We know for the nand that four links suffice in any falsifying chain for F(π | σ), and it
can easily be shown the only two links suffice if σ = π . The same holds if we had defined
the negation as the implication to 0.

u : F(¬σ)

u : T σ

u : F(¬σ)

∃a ≥ u, a : T σ
Classical F¬ rule Intuitionistic F¬ rule

(u, u′) : F(¬σ)

∃ u, u′-chain (one or two links) with T σ on each link.
Partition F¬ rule

The T (¬σ) rule is an example of a T -formula implying an F-formula. In any such
case, the F-formula has to hold everywhere. If we consider any other a ∈ Un , then by the
T -antitransitivity rule, (u, u′) : T (¬σ) implies either (u, a) : T (¬σ) or (a, u′) : T (¬σ).
Whichever one holds, it implies that Fσ holds on the link which together with (u, u′) : Fσ
implies that Fσ holds on the other link by F-transitivity. Similarly for any other b ∈ Un ,
and then (a, b) : Fσ follows from (u, a), (u, b) : Fσ by F-transitivity where (a, b) is any
link in the complete graph K (Un).
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2.1.9. Possibility of infinite open branches: the Devil’s tableau In the usual treatment
of intuitionistic tableaus (Fitting, 1969), the elements of the developing potential coun-
termodel are left implicit and another device is used to construct a countermodel when a
tableau does not close. However, in the partition tableaus we have treated the pairs (u, u′)
quite explicitly. But then we need the T -antitransitivity and F-transitivity rules which do
not reduce the complexity of formulas. The cost is that we do not have the usual proof
of the finiteness of tableaus based on the fact that each of the nonstructural rules for the
connectives reduces the complexity of formulas so each branch must terminate after a finite
number of steps in either a contradiction or in an open branch. That argument is unavailable
due to the two complexity-preserving rules.

Moreover, the T -antitransitivity rule leads to the possibility of cycles that can introduce
an infinite sequence of stages: U0 ⊆ . . . ⊆ Un ⊆ Un+1 ⊆ . . .. The F-transitivity rule
never forces the introduction of new elements. If we had a chain (u, a), (a, b), . . . , (c, u′)
of elements in Un with Fσ holding at each link with falsifying chains in Un , then we can
simply hook the chains together to give a falsifying chain for (u, u′) : Fσ , the conclusion
of the F-transitivity rule. Hence the F-transitivity rule would never force new elements to
be added to Un .

But we have seen that T (¬ϕ) implies Fϕ, and for an appropriate ϕ, the Fϕ might
imply new elements yield a falsifying chain. And then the cycle repeats itself. The formula
σ ⇒ (π ⇒ (σ ∧ π)) is a subset tautology that is not a partition tautology. But is it a weak
partition tautology so that its double negation would be a partition tautology? That tableau
would have the following infinite branch.

(u0, u1) : F(¬¬(σ ⇒ (π ⇒ (σ ∧ π)))) Rules used
(u0, u1) : T (¬(σ ⇒ (π ⇒ (σ ∧ π)))) F¬ (base pair)

(u0, u1) : F(σ ⇒ (π ⇒ (σ ∧ π))) T ¬
∃u2, (u0, u2), (u2, u1) : T σ, F(π ⇒ (σ ∧ π)) F ⇒

(u0, u2) : T π, F(σ ∧ π) F ⇒ (base pair)
(u0, u1) : T π T -antitrans.

(u0, u1) : Fσ and (u2, u1) : Fπ F∧ back-chain u0, u1, u2
(u0, u2) : T (¬(σ ⇒ (π ⇒ (σ ∧ π)))) T -antitrans.

(u0, u2) : F(σ ⇒ (π ⇒ (σ ∧ π))) T ¬
∃u3, (u0, u3), (u3, u2) : T σ, F(π ⇒ (σ ∧ π)) F ⇒

(u0, u3) : T (¬(σ ⇒ (π ⇒ (σ ∧ π)))) T -antitrans.
Cycle repeats. . .

Infinite open branch in tableau

This tableau adds a single new element at each stage: U0 = {u0, u1} ⊆ U1 = {u0, u1,
u2} ⊆ . . . so the universe set associated with the infinite branch is the union U = ⋃

Un .
For the branch to be finished, then at each stage, each rule needs to be applied wherever
possible. For instance, at the end of Stage 1 (the double line in the table), the F-transitivity
rule could be applied to derive (u2, u1) : F(σ ⇒ (π ⇒ (σ ∧ π))) and (u0, u1) : F(π ⇒
(σ ∧ π)) but the status of σ on (u0, u1) is undetermined.

To construct the countermodel, the partitions are defined on U by using all the atomic
F-statements so that a and b are in the same block of the α if (a, b) : Fα occurred at some
finite stage. If for two elements u, u′ ∈ U , the formula (u, u′) : Fα never occurs at any
stage, then those two elements would be in separate blocks of α. Otherwise, there would
have been a finite u, u′-chain where (a, b) : Fα holds at each link (a, b) in the chain. But



THE LOGIC OF PARTITIONS 339

then at some finite stage, all the links and the statements (a, b) : Fα would be present so
(u, u′) : Fα would be implied by the F-transitivity rule at that stage.

By the satisfaction theorem proven below, this will provide a countermodel for ¬¬(σ ⇒
(π ⇒ (σ ∧ π))). But the tableau construction of an infinite model does not show the
absence of any finite models. Indeed, the above tableau could have been stopped at the
double line, the end of the first stage. For instance, the formula (u0, u2) : F(σ ⇒ (π ⇒
(σ ∧ π))) was used to introduce a new element u3 and to move to another stage. But that
formula is already satisfied at its base pair (u0, u2) so the introduction of a new element
was unnecessary. If we stop at the double line (after applying some more rules to “finish”
that stage), the model on U1 = {u0, u1, u2} given by the atomic F-statements is: σ =
{{u0, u1}, {u2}} and π = {{u0}, {u1, u2}} which, in this case, provides a countermodel for
¬¬(σ ⇒ (π ⇒ (σ ∧ π))). This shows, incidentally, that σ ⇒ (π ⇒ (σ ∧ π)) is not even
a weak partition tautology.

It is easy to see why this sort of an infinite branch generated by a simple cycle was
unnecessary. On the links of the chain introduced by the new element a, the Boolean
conditions for F(σ ⇒ (π ⇒ (σ ∧π))) had to hold. But when T (¬(σ ⇒ (π ⇒ (σ ∧π))))
was sent to one of the links and F(σ ⇒ (π ⇒ (σ ∧ π))) again derived, then its Boolean
conditions would hold at that link so it was unnecessary to introduce a new element.

There is a much more devilish pattern that can generate an infinite branch, a pattern
we might call the “Devil’s tableau.” The idea is to take two formulas with complementary
Boolean conditions, such as F(σ ∧ π) and F(σ | π), where one or both might introduce
new elements. Thus one or the other of the formulas would not have their Boolean condi-
tions satisfied at the base pair. In the following Devil’s tableau, we develop an infinite open
branch taking the set of elements being introduced as the natural numbers N.

(0, 1) : F(¬¬[(σ ∧ τ) ∨ (σ | τ)]) Rules used
(0, 1) : T (¬[(σ ∧ τ) ∨ (σ | τ)]) F¬

(0, 1) : F[(σ ∧ τ) ∨ (σ | τ)] T ¬
(0, 1) : F(σ ∧ τ), F(σ | τ) F∨

(0, 1) : T σ, T τ F | (base pair)
∃2, (0, 2) : Fσ and (1, 2) : Fτ F∧

(0, 2) : F(σ ∧ τ), F(σ | τ) T -antitrans. etc.
∃3, (0, 3), (2, 3) : T σ, T τ F |
(0, 3) : F(σ ∧ τ), F(σ | τ) T -antitrans. etc.

∃4, (0, 4) : Fσ and (3, 4) : Fτ F∧
(0, 4) : F(σ ∧ τ), F(σ | τ) T -antitrans. etc.

∃5, (0, 5), (4, 5) : T σ, T τ F |
. . .

Infinite open branch of a Devil’s tableau

The even stages U0 = {0, 1}, U2 = {0, 1, 2, 3}, . . . use F∧ to introduce a new element
and the odd stages use F | to introduce a new element. This generates the pattern

(0, even) : Fσ and (even − 1, even) : Fτ and (0, even − 1) : T σ, T τ

(0, odd), (odd − 1, odd) : T σ, T τ and (0, odd − 1) = (0, even) : Fσ.

The union of the stages Un = {0, 1, . . . , n+1} is the natural numbersN and the partitions
defined by the atomic F-statements are:

σ = {{0, 2, 4, 6, . . .}, {1}, {3}, {5}, . . .}
τ = {{0}, {1, 2}, {3, 4}, {5, 6}, . . .}.
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This is indeed a model since σ ∧ τ = 0 = σ | τ . The fact that σ ∧ τ = 0 is easily seen
since σ identifies all the even numbers and τ identifies each odd number with its successor
even number. To see that σ | τ = 0, consider its graph which will have links n ∼ m
whenever n and m are distinguished by both partitions. Thus in that graph even ∼ even +1
(= odd) and odd ∼ odd + 2 so there is a finite chain connecting any n, m ∈ N.

By alternating between the two potentially element-introducing F-formulas, F(σ ∧ τ)
and F(σ | τ), the Devil’s tableau avoids having both formulas satisfied at the base pair at
the same time. But there is still the possibility that both formulas could be satisfied by back-
chains at the same time—so that there would be no need to introduce any new constants and
the branch could be terminated there. Indeed, that is the case with this Devil’s tableau. If we
stop the tableau at the double line where the stage is U3 = {0, 1, 2, 3, 4}, then the partitions
are: σ = {{0, 2, 4}, {1}, {3}} and τ = {{0}, {1, 2}, {3, 4}} and σ ∧ τ = 0 = σ | τ as well.
Hence in this case, the consideration of back-chains gives a finite tableau that provides a
finite countermodel, but the question of whether there is always a finite countermodel is left
open along with the related question of the decidability of the set of partition tautologies.
The necessity of considering back-chains in order to have a finite open branch of the Devil’s
tableau shows why back-chains are included in the “∃u, u′-chain” clause in the conclusions
of the element-introducing F rules.

2.1.10. More proofs and countermodels using tableaus A few more examples may be
helpful. The partition tautology π ⇒ (σ ⇒ π) provides a simple example. But even for
this example, tableau trees expand rapidly without shortcuts and symmetry arguments.

(u0, u1) : F[π ⇒ (σ ⇒ π)] Rules used:
(u0, u1) : T π, F(σ ⇒ π) | F ⇒

∃a (u0, a), (a, u1) : T π, F(σ ⇒ π) and (u0, u1) : Fπ F ⇒, F-trans.
(continuing with the right branch)

. . . | (u0, a) : T σ, FπX || ∃b, (u0, b), (b, a) : T σ, Fπ and (u0, a) : FπX F ⇒, F-trans.
(right branch closed so picking up the left branch)

(u0, u1) : T π, F(σ ⇒ π) | X || X
(u0, u1) : T σ, FπX || cont. F ⇒

∃a, (u0, a), (a, u1) : T σ, Fπ and (u0, u1) : Fπ X | X | | X F ⇒, F-trans.
Closed tableau for: π ⇒ (σ ⇒ π)

Taking the leftmost branches, we stay at the base pair (u0, u1) and have essentially the
classical closing tableau since this formula is a subset tautology. Since the other element-
introducing branches also close, the formula is a partition tautology (assuming the correct-
ness theorem proved below).

Peirce’s law, ((σ ⇒ π) ⇒ σ) ⇒ σ , is a good example of nonclosing tableau which
must generate a model where the formula does not distinguish some pair.

(u0, u1) : F[((σ ⇒ π) ⇒ σ) ⇒ σ ] Rules used
(u0, u1) : T [((σ ⇒ π) ⇒ σ)], Fσ F ⇒ (base)

(u0, u1) : F(σ ⇒ π) | (u0, u1) : T σ X T ⇒
∃a, (u0, a), (a, u1) : T σ, Fπ and (u0, u1) : Fπ | X F ⇒, F-trans.

(u0, a) : T [((σ ⇒ π) ⇒ σ)]| X T -antitrans.
(u0, a) : F(σ ⇒ π) || (u0, a) : T σ | X T ⇒

Nonclosed tableau for: ((σ ⇒ π) ⇒ σ) ⇒ σ

The branch terminating with (u0, a) : T σ in the last row is an open branch (atomic
formulas with no contradiction) so it may be used to generate of model of F[((σ ⇒ π)
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Fig. 7. Branch-closing lemma.

⇒ σ) ⇒ σ ], that is, a countermodel to Peirce’s law being a partition tautology. To generate
the model, we need to fill out the atomic signed formulas on all the links but that is
already done on the indicated branch. The universe set is the three elements used in the
tableau: U = {u0, u1, a}. The partition σ has (u0, u1) : Fσ while T σ holds at (u0, a) and
(a, u1). Thus σ = {{u0, u1}, {a}}. The partition π has Fπ on all links so π is the blob:
π = {{u0, u1, a}} = 0. The compound partitions are then: σ ⇒ π = π = 0 (since no
nonsingleton block of π is contained in a block of σ ), (σ ⇒ π) ⇒ σ = 1 (since all blocks
of σ are contained in the blob), and finally ((σ ⇒ π) ⇒ σ) ⇒ σ = σ (since 1 ⇒ σ = σ )
so that (u0, u1) : F[((σ ⇒ π) ⇒ σ) ⇒ σ ] holds and Peirce’s law is not a partition
tautology.

Essentially the same argument as in the common-dits theorem yields a powerful result
that can be used to close branches of a tableau. It gives conditions under which a contra-
diction has to exist on some link without forcing one to work through all the possibilities
on subbranches to show they close.

LEMMA 2.33 (BRANCH-CLOSING LEMMA). Suppose (a, b) : T τ, Fπ and (c, d) :
T ϕ, Fπ where there is a chain connecting the two links that has Fπ holding at each link
on the chain. Then there exists a link where T τ, T ϕ, Fπ all hold on the link.

Proof. The Fπ -chain needs to connect a or b with c or d. If it connects, say, a and c,
then by F-transitivity, (a, c) : Fπ . Then we have the following situation regarding those
four points (see figure 7).
By F-transitivity again, Fπ has to hold at all the links connecting the four points. Consider
the triangle formed by a, b, and c. By T -antitransitivity, T τ has to hold on either (a, c)
or (b, c). Case 1. If T τ holds on (a, c), then by considering the triangle formed by a, c,
and d , then T τ has to hold at (a, d) or (c, d). If it holds at (c, d), then we are finished
so suppose it holds on (a, d). But since T ϕ holds on (c, d), by T -antitransitivity again,
T ϕ has to hold at either (a, c) or (a, d) and we are finished in either case. Case 2. If T τ
holds on (b, c), then we repeat the same argument but for the triangle formed by b, c,
and d . �

The principal use of the branch-closing lemma is when, on a branch of a tableau, we
have signed formulas T σ, Fπ on one link, T (σ ⇒ π), Fπ on another link, with a chain
connecting the two links with Fπ holding on each link of the chain. Then by the branch-
closing lemma, there exists a link where T σ, T (σ ⇒ π), Fπ all hold and thus the branch
closes since there is a contradiction on that link regardless of whether T (σ ⇒ π) is
developed as Fσ or T π by the T ⇒ rule.

The single π -negation transform,
π¬σ ∨ π¬π¬σ , of the law of excluded middle, σ ∨¬σ , is

an example of a partition tautology that is not an intuitionistic validity. It is the π -negation
version of ¬σ ∨ ¬¬σ , the weak law of excluded middle. The tableau proof of the formula
is also an example of using the branch-closing lemma.
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(u0, u1) : F[(σ ⇒ π) ∨ ((σ ⇒ π) ⇒ π)] Rules used
(u0, u1) : F(σ ⇒ π), F[(σ ⇒ π) ⇒ π] F∨

(u0, u1) : T σ, Fπ | ∃a, (u0, a), (a, u1) : T σ, Fπ and (u0, u1) : Fπ F ⇒, F-trans.
. . . | ∃b, (u0, b), (b, u1) : T (σ ⇒ π), Fπ and (u0, u1) : Fπ F ⇒, F-trans.
. . . | Fπ holds on chain u0, u1, a, b so (u0, a) : T σ (cont.)

and (u0, b) : T (σ ⇒ π) collide with Fπ . X B-C lemma

Closed tableau for:
π¬σ ∨ π¬π¬σ

The branch with both falsifying chains allows maximal freedom from contradiction but
it still closes (by the branch-closing lemma) so the left branch starting with a base pair
application of F ⇒ would, a fortiori, close.

To see why this formula is not intuitionistically valid, we could develop its intuitionistic
tableau. In the partition case, we have used repeatedly the fact that when F(σ ⇒ π) is
satisfied by a falsifying chain, then F-transitivity implies that Fπ has to hold at the base
pair. A similar result holds in the intuitionistic case. By the F ⇒ rule, u : F(σ ⇒ π)
implies that the Boolean condition T σ, Fπ has to hold at some higher point a ≥ u. But if
u : T π held, then the structural rule would imply that T π had to hold at all higher points
(contradicting a : Fπ ), so u : Fπ must hold.

u : F[(σ ⇒ π) ∨ ((σ ⇒ π) ⇒ π)] Rules used
u : F(σ ⇒ π), F[(σ ⇒ π) ⇒ π ] F∨

∃a ≥ u, a : T σ, Fπ and ∃b ≥ u, b : T (σ ⇒ π), Fπ F ⇒ twice
b : Fσ | b : T π X T ⇒

Open intuitionistic tableau for:
π¬σ ∨ π¬π¬σ

As with partition tableaus, a model can be constructed from an open branch of an intuition-
istic tableau. There are three points in U = {u, a, b} and the partial ordering is given by
u ≤ a and u ≤ b. Then Fπ holds at all points so π is modeled by the empty set ∅. T σ
holds at a but cannot hold at b and thus cannot hold at u. Hence σ is modeled by the up-
closed set {a}. The sets formed by the connectives are then: σ ⇒ π = int(σ c ∪ π) = {b}
and ((σ ⇒ π) ⇒ π) = int({b}c ∪ π) = {a} so that: (σ ⇒ π) ∨ ((σ ⇒ π) ⇒ π) =
{b} ∪ {a} = {a, b} �= U and we have a model for u : F[(σ ⇒ π) ∨ ((σ ⇒ π) ⇒ π)].

The reason why the intuitionistic tableau does not close is that once u branches to the
two points a and b, those branches in the ordered set U do not need to interact so the
“conflict” between the two branches in the ordering never gives a contradiction to close the
tableau. However in partition logic, for any two links, there is always a direct connection so
the conflict becomes a contradiction. For instance, in the partition tableau for this formula,
the potential conflict at the two separate links (u0, a) : T σ, Fπ and (b, u1) : T (σ ⇒
π), Fπ is connected by the link (u0, u1) : Fπ so the branch-closing lemma brings out the
contradiction.

2.2. Correctness theorem for partition tableaus. A tableau for ϕ, that is, a tableau
with the root (u0, u1) : Fϕ, closes if all the possible branches terminate with a contra-
diction (a, b) : T π, Fπ at some pair (a, b) for some subformula π . But this definition
requires special attention to the F∧ rule. If a branch does not close with a contradiction,
then the branch should generate a countermodel which requires any element-introducing
use of the F∧ rule to introduce specific elements in the falsifying chain. But if a branch
is to close with a contradiction for each alternative, then it is not enough to have it close



THE LOGIC OF PARTITIONS 343

from some finite set of specific falsifying chains since there is an infinite set of possible
finite falsifying chains (and the F∧ rule would not have the finite-branching property).
This is why some special attention is required in a tableau that uses the F∧ and that closes.
The F∧ rule is interpreted as only introducing a generic finite chain of finite length, and
the links in the chain only become specific when the T -antitransitivity rule transmits a
T -formula to some link. By taking it to be the shortest falsifying chain we could ensure
that the links are alternating. Thus if (u, u′) : F(σ ∧ π), then the links would alternate
between Fσ, T π and T σ, Fπ . If there were, say, three other T -formulas, T φ1, T φ2, and
T φ3, holding at (u, u′), then each T φi could be transmitted to either a Fσ link or a Fπ
link (and always to different Fσ or Fπ links from the other T φ j formulas).26 Hence there
are only 23 = 8 branches generated by the F∧ that would ultimately need to close for the
tableau to close.

The correctness theorem for tableaus asserts that if the tableau for Fϕ closes, then ϕ
is a partition tautology, and the completeness theorem proves the reverse. The strategy of
the proof of the correctness theorem is to show that if there is an interpretation in �(U )
of the premise of a tableau rule, then there is an interpretation of the conclusion. Hence if
the tableau closes, then since there can be no interpretation of the conclusions that close a
tableau, there can be no interpretation of the beginning of the tableau, (u0, u1) : Fϕ and
thus ϕ is a partition tautology.

An interpretation or model of the formulas has a universe set U with two or more
elements, interprets the atomic variables as partitions on U , and interprets the operation
symbols ∨, ∧, ⇒, and | as those operations in the partition algebra �(U ). When conve-
nient, we use the dit-set representation of �(U ) so the variables and formula would refer
to dit sets or partition relations rather than set-of-blocks partitions. Statements like B ∈ π
are interpreted in the obvious manner without pedantically saying that B is a block in the
partition interpreting the symbol “π” and so forth. We are also already accustomed to using
statements like “T ϕ holds at (u, u′)” as saying that (u, u′) is a distinction of the partition
interpreting ϕ, and similarly for F statements.

THEOREM 2.34 (CORRECTNESS OF PARTITION TABLEAUS) If the tableau for Fϕ
closes, then ϕ is a partition tautology.

Proof. We assume that we have an interpretation of the formulas in a universe set U
where the premises of the rules hold, and then we show that one of the possible conclusions
holds.

All the T rules can be handled in a uniform way. Where ∗ is ∨, ∧, ⇒, or |, if T (σ ∗ π)
holds at (u, u′), then the Boolean conditions for T (σ ∗ π) must hold at some link on
any u, u′-chain which means they must hold at the one-link chain (u, u′) which are the
conclusions in the four T rules.

All the F rules have the general form that the premise (u, u′) : F(σ ∗ π) implies the
existence of a u, u′-chain where the Boolean conditions for F(σ ∗ π) hold at every link of
the chain. The assumption is that at a certain stage where the set of elements or “constants”
is Un , then the elements u and u′ of Un are interpreted in U and there are partitions on
U interpreting the atomic variables so that F(σ ∗ π) holds at u, u′ ∈ Un . Then by the
falsifying-chain result, there is a finite u, u′-chain of elements of U where the Boolean

26 If a branch would close when the T φi formulas were spread out on different links, then it would,
a fortiori, close when some of the formulas were bunched together on the same type of link of the
falsifying chain, so those alternatives may be ignored.
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conditions for F(σ ∗ π) hold at each link. In terms of Un , that falsifying chain could be a
back-chain, a mixed chain, or a chain of new elements linking u and u′. Thus by adding a
finite number of new elements of U to Un if necessary to have Un+1, one of the alternatives
of the F∗ rule is the set of assignments to the links of that chain that hold in the model
on U .

The structural rules are also correct by similar reasoning. In any interpretation, (u, u′) :
T ϕ means that (u, u′) ∈ dit(ϕ) which is a partition relation and thus antitransitive so the
conclusion of the T antitransitivity rule holds. If (u, a), (a, u′) : Fϕ, then (u, a), (a, u′) ∈
indit(ϕ) which is an equivalence relation so its transitivity gives the conclusion of the F
transitivity rule. In any interpretation, both dit sets and indit sets are symmetric so if the
premise holds, then the conclusion holds in each of the symmetry rules.

Hence if the premise in any of the rules has an interpretation, then so does one of
the alternatives in the conclusion. Since the conclusions of the closed branches have no
interpretation, a closed tableau for Fϕ implies there is no interpretation for the premise of
(u0, u1) : Fϕ so that (u0, u1) : T ϕ holds for any pair in any interpretation and thus ϕ is a
partition tautology. �

2.3. Completeness theorem for partition tableaus.

2.3.1. Completing a tableau The correctness theorem shows that if all branches in the
tableau with the root (u0, u1) : Fϕ close, then ϕ is a partition tautology. The goal now is
to prove the converse: if ϕ is a partition tautology, then there is a tableau for Fϕ where all
branches close, that is, ϕ is a theorem of the tableau system. It would be equivalent to prove
the contrapositive that if there was an open branch (i.e., a branch that could not be closed),
then the branch would provide a countermodel to ϕ, that is, a model for (u0, u1) : Fϕ.

A branch of a tableau is closed if for some pair (a, b) and some formula π , both (a, b) :
T π and (a, b) : Fπ occur on the branch. In terms of stages, a closed branch must close
at some finite stage and the branch terminates at that stage. If a tableau with the root
(u0, u1) : Fϕ is closed in the sense that all branches are closed, then, since all rules are
finitely branching (using the generic falsifying chain in the F∧ rule which only branches
for the finite number of possible ways that T -formulas T φi could be transmitted to the
chain), a closed tableau is finite and thus constitutes a tableau proof of ϕ.

A branch of a tableau is complete at stage n with the universe set Un if all applications
of the rules that can be made have been made. There are two types of rules, the connective
rules for the four connectives and the structural rules (T -antitransitivity, F-transitivity, and
the symmetry rules). When a connective rule with a premise (u, u′) : Fφ or (u, u′) : T φ
has been used then it can be checked (�) once. But the same premise could also be used
in the premise for many structural rules so a premise would get a second check mark
when all the structural rules have been applied at that stage. In the order of applying rules
systematically, the structural rules and the non-element-introducing rules should be used
first and should involve only elements from the universe set Un at that stage. Then the
potentially element-introducing rules (F ⇒, F∧, and F |) are used. Then any applicable
rules may need to be applied again if any new formulas (a, b) : Fφ or (a, b) : T φ were
introduced for old elements a, b ∈ Un . This cycling over the rules at each stage terminates
after a finite number of steps since there are a finite number of elements in each Un and we
are not yet considering any new elements introduced into the next stage. No infinite regress
(like in the Devil’s tableau) is possible since we are only considering formulas at pairs of
elements of the given finite stage.

Being “complete” is defined stage by stage since when new elements are introduced,
there is a new stage and new applications of the structural rules of T -antitransitivity and
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F-transitivity to premises of former stages may occur. Thus at each new stage, the second
check mark on the old formulas is erased until all the new applications using pairs involving
new elements have been used. For instance, the premise (u, u′) : T φ might be checked a
second time when applied to all a ∈ Un to yield (u, a) : T φ or (a, u′) : T φ but then could
be applied again using new b ∈ Un+1.

When a stage is complete but new elements were introduced, then the same process
continues at the next stage. If a stage is completed with no new elements introduced, then
the branch is complete (with no further stages). A branch of the tableau is complete when it
is complete at each of its stages. A tableau is completed if every branch is either complete
or closed.

2.3.2. Satisfaction and completeness theorems A completed tableau that is not closed
must have at least one open complete branch.

THEOREM 2.35 (SATISFACTION THEOREM) An open complete branch of a partition
tableau with the root formula (u0, u1) : Fϕ gives a model where the root formula is
satisfied, that is, (u0, u1) ∈ indit(ϕ) in the model.

Proof. An open complete branch of a tableau will be used to define a model on a set
U . If the complete open branch terminated at the stage Un , then take U = Un . Otherwise,
there is an infinite sequence of stages U0 ⊆ U1 ⊆ . . . and U = ⋃

nUn . The partitions
on U are defined by the formulas (a, b) : Fα occurring in the branch for the atomic
variables α occurring in the root formula ϕ. Using the graph machinery, these atomic F-
formulas occurring in the branch define the links of a graph on the node set U , and the
blocks of the partition α are the sets of nodes in the connected components of the graph.
This defines the partitions interpreting the atomic variables of ϕ and then the partition
operations of �(U ) will give an interpretation of ϕ using partitions on U . We need to
show that (u0, u1) ∈ indit(ϕ) under that interpretation.

The proof is by induction over the complexity of the subformulas of ϕ. The basis step
is that every signed atomic formula which occurs in the branch is true in the model. If
(u, u′) : Fα occurs in the branch then it is true by definition in the model, that is, (u, u′) ∈
indit(α). If (u, u′) : T α occurs in the branch but does not hold in the model, that is,
(u, u′) ∈ indit(α), then using the graph constructed for α and using the falsifying-chain
result, there is a finite u, u′-chain with (ui , ui+1) : Fα holding at each link. Moreover, there
is a finite stage Un where all these formulas would have occurred. But completeness at that
stage would then imply, by using the F -transitivity rule, that the formula (u, u′) : Fα held
at that stage which would contradict (u, u′) : T α holding at some stage on the complete
open branch. Hence if (u, u′) : T α did occur in the open branch, then (u, u′) ∈ dit(α) in
the model.

The induction steps can be efficiently treated using the graph machinery. Suppose (u, u′) :
T (σ ∗π) occurs in the complete open branch. In order for (u, u′) ∈ dit(σ ∗π) in the model
on U , then for every finite u, u′-chain in U , the Boolean conditions for T (σ ∗π) must hold
at some link in the chain. Suppose not, so there is a u, u′-chain where the complementary
Boolean conditions for F(σ ∗ π) hold at each link. There is a finite stage Un of the branch
in which all the elements of that chain have appeared and where (u, u′) : T (σ ∗ π) also
occurs. But then by the completeness of applying the T -antitransitivity at that stage, there
is a link (ui , ui+1) in the chain where (ui , ui+1) : T (σ ∗ π) holds. Then by completeness
and the connective rule for T (σ ∗π), the formulas for the Boolean conditions for T (σ ∗π)
holding at (ui , ui+1) would be in the branch at that stage as well. But they are formulas of
lower complexity than σ ∗ π , so by the induction hypothesis, those formulas must hold in
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the model which contradicts the complementary Boolean conditions holding at all links of
that chain in the model. Hence (u, u′) ∈ dit(σ ∗ π) holds in the model.

Suppose (u, u′) : F(σ ∗ π) occurs at some stage Un in the open branch. Then by
completeness and the connective rule for F(σ ∗ π), there is a finite u, u′-chain in Un+1 (or
in Un if no new elements were introduced) where the formulas for the Boolean conditions
for F(σ ∗π) occur at each link in the chain. But all those formulas are of lower complexity
than σ ∗ π so by the induction hypothesis, they are true in the model on U , which in turn
implies that (u, u′) ∈ indit(σ ∗ π) in that model.

Since the formula (u0, u1) : Fϕ occurs in every branch, the open complete branch
supplies a model where (u0, u1) ∈ indit(ϕ). �

THEOREM 2.36 (COMPLETENESS THEOREM FOR PARTITION TABLEAUS) If ϕ is a
partition tautology, then any completed tableau beginning with (u0, u1) : Fϕ must close,
and thus every partition tautology is provable by the tableau method.

Proof. If a completed tableau beginning with (u0, u1) : Fϕ had a complete open
branch, then by the satisfaction theorem there would be an interpretation where (u0, u1) ∈
indit(ϕ) and thus ϕ is not a partition tautology. Hence if ϕ is a partition tautology, then any
completed tableau beginning with (u0, u1) : Fϕ must close so that ϕ is a theorem by the
tableau method. �

§3. Concluding remarks. The view of “propositional” logic as being about subsets
goes back to the beginning of modern logic in Boole and DeMorgan.

The algebra of logic has its beginning in 1847, in the publications of
Boole and De Morgan. This concerned itself at first with an algebra
or calculus of classes, to which a similar algebra of relations was later
added. Though it was foreshadowed in Boole’s treatment of “Secondary
Propositions,” a true propositional calculus perhaps first appeared from
this point of view in the work of Hugh MacColl, beginning in 1877.
(Church, 1956, pp. 155–156)

Indeed, in Boole’s treatment of “Secondary Propositions,” he noted that propositions
could be substituted for subsets and the same laws would hold.

But while the laws and processes of the method remain unchanged, the
rule of interpretation must be adapted to new conditions. Instead of classes
of things, we shall have to substitute propositions, and for the relations
of classes and individuals, we shall have to consider the connexions of
propositions or of events. (Boole, 1854, p. 162)

The key mathematical fact that allowed the specific propositional interpretation of
Boolean logic to eventually overshadow the general subset interpretation is that the logical
operations on subsets can be modeled using just the Subsets 0 and 1 of the one element set.
As Boole himself emphasized:

We may in fact lay aside the logical interpretation of the symbols in the
given equation; convert them into quantitative symbols, susceptible only
of the values 0 and 1; perform upon them as such all the requisite pro-
cesses of solution; and finally restore them to their logical interpretation.
(Boole, 1854, p. 70)
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In more recent times, the subset interpretation of Boolean logic has been reempha-
sized by categorical logic in the topos of sets and by the Kripke structure and topological
interpretations of intuitionistic “propositional” logic. Boolean logic works with the subsets
of an unstructured universe set U and those interpretations of intuitionistic logic add struc-
ture to the universe set U to define a topology (e.g., the up-closed subsets from a partial
ordering on the universe set) so that the relevant subsets for the interpretation are the open
subsets. Boolean logic can then be seen as the special case with the discrete topology
on U so that all subsets are open and the intuitionistic operations reduce to the Boolean
ones.

Partition logic, like Boolean logic, starts with an unstructured universe set U (two or
more elements). The subsets of the power set Boolean algebra P(U ) and the partitions of
the partition algebra �(U ) are both defined simply on the basis of the set U . Thus subset
logic and partition logic are at the same mathematical level, and are based on the dual
concepts of subsets and partitions. Partition logic provides a dual semantics for Boolean
logic formulas, a semantics based on the distinctions of partitions rather than the elements
of subsets.

One can go further with the subsets–partitions and elements–distinctions duality. Prob-
ability theory can be seen as a conceptual continuation of subset logic. Probability theory
conceptually starts with the finite case where the probability is the ratio of the number
of elements in a subset (“event”) to the size of the finite universe U (“sample space”) of
equiprobable outcomes. This conceptual continuation from subset logic to finite probabil-
ity theory was there from the beginning in Boole. Quoting Poisson, Boole defined “the
measure of the probability of an event [as] the ratio of the number of cases favourable
to that event, to the total number of cases favourable and unfavourable, and all equally
possible.” (Boole, 1854, p. 253)

What arises from the analogous continuation of partition logic? Replacing elements
and subsets with distinctions and partitions yields a logical information theory where the
logical entropy of a partition is defined as the ratio of the number of distinctions of the
partition to the size of the finite closure space U ×U . The resulting logical information the-
ory provides a logical–conceptual foundation for Shannon’s information theory (Ellerman,
2009).

Finally, we might speculate about why it has taken so long for partition logic to be
developed. The subset interpretation dates back to the beginning of modern logic in the
mid-nineteenth century. The subset–partition duality is at least as old as category theory
(mid-twentieth century) and in any case has long been evident in the interplay of sub-
objects and quotient objects throughout algebra and in the subset–partition analogies of
combinatorial theory. There seems to be a cluster of reasons for the delay.

From the side of logic, we have already noted that the propositional interpretation of
Boolean logic has all but eclipsed the general subset interpretation so that most noncategory-
theoretic treatments of logic give only the propositional interpretation.

Moreover, the progression from “propositional” logic to “quantification theory” is based
on the specific propositional interpretation of Boolean logic where the propositions are
quantified formulas. Tarski’s semantics developed as model theory has been very success-
ful in applications. Model theory interprets open formulas and atomic relations as subsets
of an n-fold product U n of some underlying universe set, and then closed formulas are
propositions which are either true or false. But Lawvere’s development of categorical logic
brings out the general setting in the category of sets. Given a set map f : V → U between
two universe sets, the two quantifiers are given as left and right adjoints mapping subsets
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of V to subsets of U .27 In the special case of classical quantification theory, quantifying
over a variable in effect takes the set map as the projection U n → U n−1 that leaves out the
variable so that the subset quantifiers carry subsets of U n to subsets of U n−1. When n = 1,
quantifying over the single variable is usually interpreted as turning an open single-variable
formula into a closed formula or proposition which is true or false, but the interpretation
in categorical logic is mapping subsets of U 1 to subsets of U 0 = 1 where the subsets of 1
behave like the usual propositional truth values.

The propositional special case has been so important that the general case of subset logic
(not to mention subset quantifier morphisms) has been rather neglected. The part has been
taken as the whole. The point here is that since propositions do not have a dual notion of
partitions, the idea of a dual logic of partitions does not arise in the conventional treatment
of Boolean logic as “propositional” logic. Indeed, one might wager that the dual interplay
of subsets and quotient sets is sufficiently well known so that if Boolean logic had been
commonly understood as subset logic, then partition logic would not be far behind. In that
sense, the hegemony of the propositional interpretation of subset logic seems to be the
principal reason for the late development of partition logic.

From the partition side, it has long been known that partitions form a lattice just like
subsets. But the “lattice of partitions” was traditionally defined “upside down” as (isomor-
phic to) the lattice of equivalence relations rather than its opposite. However, the element–
distinction duality makes it clear that the lattice of partitions should use the partial ordering
given by the set of distinctions (dit set) of a partition rather than its set of indistinctions (just
as the lattice of subsets uses the partial ordering given by the set of elements of a subset
rather than its set of nonelements). This is what allowed the direct comparison of formulas
in subset, intuitionistic, and partition logic as well as the proof-theoretic parallels between
the tableaus for the three logics.

Another reason is that (at least to our knowledge) the implication, nand, and other new
binary operations on partitions (aside from the join and meet) have not been previously
studied. In a recent paper in a commemorative volume for Gian-Carlo Rota, the three
authors remark that in spite of the importance of equivalence relations, only the operations
of join and meet have been studied.

Equivalence relations are so ubiquitous in everyday life that we often for-
get about their proactive existence. Much is still unknown about equiv-
alence relations. Were this situation remedied, the theory of equivalence
relations could initiate a chain reaction generating new insights and dis-
coveries in many fields dependent upon it.

This paper springs from a simple acknowledgement: the only opera-
tions on the family of equivalence relations fully studied, understood and
deployed are the binary join ∨ and meet ∧ operations. (Britz et al., 2001,
p. 445)

Yet the new operations, particularly the implication, are crucial to the whole develop-
ment. The only partition tautologies with only lattice operations are trivialities such as 1
and 1∨π . Without the nonlattice operations, one can always study identities in the partition

27 The technical details are not relevant to our point here since this paper does not deal with
“quantifier” morphisms for partition logic. The categorical logic treatment of the subset
quantifiers is covered in Mac Lane (1971), Lawvere & Rosebrugh (2003), Awodey (2006), and
Mac Lane & Moerdijk (1992).
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lattice such as π � π ∨ σ (which corresponds to the tautology π ⇒ π ∨ σ ). But it has
been shown (Whitman, 1946) that partition lattices are so versatile that any formula in
the language of lattices (i.e., without the implication or other nonlattice operations) that is
an identity in all partition lattices (or lattices of equivalence relations) is actually a general
lattice-theoretic identity. Hence the logic taking models in all partition algebras �(U ) only
became interesting by moving beyond the lattice operations on partitions.

Throughout his career, Gian-Carlo Rota emphasized the analogies between the Boolean
lattice of subsets of a set and the lattice of equivalence relations on a set. Partition logic,
with the heavy emphasis on the analogies with subset logic, should be seen as a contin-
uation of that Rota program. The closest earlier work in the vein of the partition logic
tableaus was indeed by Rota and colleagues [Finberg et al. (1996) and Haiman (1985)],
but it used the lattice of equivalence relations and did not define the partition implication
(which would be the difference operation on equivalence relations) or other nonlattice
operations. It was restricted to the important class of commuting equivalence relations
(Dubreil & Dubreil-Jacotin, 1939) where identities hold which are not general lattice-
theoretic identities.

In sum, the subset interpretation of Boolean logic (so the subset–partition duality would
come into play), the turning of the lattice of partitions right side up, and the introduction
of the nonlattice operations (particularly the implication) were all important in the devel-
opment of partition logic.
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Gödel, K. (1933). Zur intuitionistischen arithmetik und zahlentheorie. Ergebnisse eines

mathematischen Kolloquiums, 4, 34–38.
Haiman, M. (1985). Proof theory for linear lattices. Advances in Mathematics, 58, 209–

242.



350 DAVID ELLERMAN

Kung, J. P., Rota, G.-C., & Yan, C. H. (2009). Combinatorics: The Rota Way. New York:
Cambridge University Press.

Lawvere, F. W. (1986). Introduction. In Lawvere, F. W., and Schanuel, S, editors.
Categories in Continuum Physics (Buffalo 1982) LNM 1174. Berlin: Springer-Verlag,
pp. 1–16.

Lawvere, F. W. (1991). Intrinsic co-Heyting boundaries and the Leibniz rule in certain
toposes. In Carboni, A., Pedicchio, M., and Rosolini, G., editors. Category Theory
(Como 1990) LNM 1488. Berlin: Springer-Verlag, pp. 279–297.

Lawvere, F. W., & Rosebrugh, R. (2003). Sets for Mathematics. Cambridge: Cambridge
University Press.

Lawvere, F. W., & Schanuel, S. (1997). Conceptual Mathematics: A First Introduction to
Categories. New York: Cambridge University Press.

Mac Lane, S. (1971). Categories for the Working Mathematician. New York: Verlag.
Mac Lane, S., & Moerdijk, I. (1992). Sheaves in Geometry and Logic: A First Introduction

to Topos Theory. New York: Springer.
Ore, O. (1942). Theory of equivalence relations. Duke Mathematical Journal, 9, 573–627.
Restall, G. (2000). An Introduction to Substructural Logics. London: Routledge.
Rockafellar, R. (1984). Network Flows and Monotropic Optimization. New York: John

Wiley.
Smullyan, R. M. (1995). First-Order Logic. New York: Dover.
Stanley, R. P. (1997). Enumerative Combinatorics, Vol. 1. New York: Cambridge

University Press.
van Dalen, D. (2001). Intuitionistic logic. In Goble, L., editor. The Blackwell Guide to

Philosophical Logic. Oxford: Blackwell, pp. 224–257.
Whitman, P. (1946). Lattices, equivalence relations, and subgroups. Bulletin of the

American Mathematical Society, 52, 507–522.
Wilson, R. J. (1972). Introduction to Graph Theory. London: Longman.

DEPARTMENT OF PHILOSOPHY
UNIVERSITY OF CALIFORNIA/RIVERSIDE

4044 MT. VERNON AVE.
RIVERSIDE, CA 92507

E-mail: david@ellerman.org




