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SHEAVES OF STRUCTURES
AND GENERALIZED ULTRAPRODUCTS*

David P. ELLERMAN

Department of Economics, Boston University, Boston, Mass., U.S.A.

Received 1 May 1974

Introduction

Classical ultraproducts are constructed from indexed sets of structures,
i.e., from sheaves of structures on discrete spaces. We generalize the con-
struction so that the initial datum can be an arbitrary sheaf of structures.
Boolean ultrapowers are obtained in the special case where the initial
sheaf is a constant sheaf.

In Part I, we review the relevant information about sheaves on topo-
logical spaces. In Part II, we define notions of forcing and weak forcing
in the stalks of any sheaf. From any sheaf of structures P on a space /,
we construct a sheaf PO on the spectrum of prime filters of the pseudo-
Boolean algebra (pBa) of opens of . The “prime stalk theorem” is a
Lo¥-type theorem that characterizes the formulas weakly forced in any
stalk of PO at a prime filter.

In Part 111, we construct a sheaf P* on the Stone space of the com-
plete Boolean algebra of regular opens of I The stalks of P* are called
the ultrastalks of P, and they are the generalized ultraproducts. With
each ultrafilter in the cBa (i.e., each point in the Stone space) there cor-
responds a maximal filter in the pBa, and the corresponding stalks of P*
and P9 are isomorphic, thereby yielding two constructions of the gener-
alized ultraproducts. The “‘ultrastalk theorem” generalizes the ¥Y.0$ ultra-
product theorem by characterizing truth in the stalks of P* (or, equiv-
alently, in the stalks of P9 at maximal filters). In Part IV, a few exten-
sions and applications are outlined.

The primary purpose of this paper is to familarize the working model

* This is an updated and revised version of our dissertation [3] written at Boston University
with Professor Rohit Parikh as advisor.
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theorist with the concrete machinery of sheaves of relational structures
(i.e., generalized relational structures) and with the “‘ultrastalk”™ con-
struction. The “ultrastalk” construction was originally obtained by
directly generalizing the sheaf-theoretic construction of ultraproducts,
but similar results could probably be obtained by concretely rendering
the ‘“‘generalized ultraproducts’ used by Lawvere and Tierney in their
theory of topoi [11].
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Part I. SHEAVES

Let I be a topological space, let u, u’, etc. be open subsets of 1, and
let O(J) be the inclusion partial order of the open sets of I A presheaf
of sets (resp., a presheaf of relational structures of type u) is a functor

P: 022, Ens (P: o), M)

from the opposite of the inclusion ordering to the category Ens of sets
and functions (to the category M, of relational structures of type p and
homomorphisms). For opens u' C u, the map p% : P(u) - P(u') is called
arestriction map.

If (1, P) is a presheaf of sets and i € I, then the sets P(u) for u > i and
the restriction maps between them form a direct system of sets. The
direct limit 11m usiP(u) = P; is called the stalk of P at i. The direct limit
is formed by Tirst taking the disjoint union ¥, ; P(u) and then taking
equivalence classes according to the following equivalence relation: if
I € uy N uy,a; € P(uy), and a, € P(u,), then a, ~ a, iff there is an open
usist uCuyNu,andp¥ (a,)= p“ (a,). The canonical maps
p" : P(u) > P;, which take an element a € P(u) to its equivalence class
a € P;, commute with the restriction maps of the direct system in the
sense that if i € 4’ C u, then p* = p*'o p,. Furthermore, the canonical
maps p enjoy the universality property that given any set of maps
{P(u)_-> A : u> i} which also commute with the restriction maps, there
isaunique map f: P; > A s.t. f* =fo p¥ for all u 5 i. This universality
property is represented by the following diagram (where all triangles
commute).

P(u)

If (I, P) is a presheaf of structures, then the stalk P; is constructed by
taking the direct limit in the category Mu of structures and homomor-
phisms. The underlying set of P; is the same as above, and if R(xy, ..., x,,)
is an atomic relation and by, ..., b,, are equivalence classes in P;, then
P;ER(by, ..., by) iffdu siand I ay, ..., a, € P(u) s.t. p*(a;) = by, for
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k=1, .., nand P(u) =R(a,, ..., a,). Intuitively, an atomic relation holds
in the direct limit P; iff it must hold in order for the canonical maps

p* : P(u) > P, to be homomorphisms. The direct limit P; enjoys the same
universality property as above except that it is formulated in the cate-
gory of structures (of type ) and homomorphisms.

A presheaf of sets (I, P) is a sheaf of sets if the following two condi-
tions hold (where » and s are in the customarily unmentioned index set
of an open cover):

Condition (1): for any open u, any open cover {u, } of u, and any
a, b € P(u), ifp’ljr(a) = p’ljr(b) for all u, in the cover, thena = b;

Condition (2): for any open u and any open cover {u,} of u, if {a,}
is a set of elements s.t. a, € P(u,) and, for any pair u, and u, in the
COVer, Py, (@,) = PSny (a;), then there is an element a € P(u) s.t. a
restricts to each q, (i.e., pj; (a) = a, for every u, in the cover). By condi-
tion (1), the element @ which exists in condition (2) is unique. Since
the empty set @ is covered by the empty cover, P() is always a singleton.

If (Z, P) is a presheaf of relational structures (of the given type u here-
after fixed and unmentioned), then it is a sheaf of relational structures
if conditions (1) and (2) hold as well as:

Condition (3): for any open u, any open cover {u,} of 4, and any
atomic relation R(xy, ..., x,,), if ay, ..., a,, € P(u) are such that for every
u, in the cover P(u,) E R(p’ljr (ay), ..., pzr (a,)), then P(u) F R(ay, ..., a,).

If (Z, P) and (J, Q) are presheaves of sets, then a morphism
(f,©): U P)=(J, Q) consists of a continuous function f: /= J and a
natural transformation ® : Q = P(f~1(-)) between the two functors on
O(J)°P, Thus © is a set of functions

G)U
{QWw) — P(f~1(v)) : v e OWJ)P}

s.t. if v’ C v are opens inJ, then the following diagram commutes:

[S]
Q) ———— P(f~ ()

v 7o
q, Pfal(u,)
(2]
QW) ———— P(f~ ")) .

If (I, P) and (J, Q) are presheaves of structures, then the above notion
only defincs a morphism between them as presheaves of sets. A mor-
phism between them as presheaves of structures would be the same ex-
cept that the ©, functions would be homomorphisms.
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A morphism (f, ) : (I, P) = (J, Q) induces maps between the stalks
of Q and the stalks of P. For any i € I, the set of maps

e
{Q(w) —= P(f~ ) == P;: v > f(i)}

commute with the restriction maps in the direct system for Q. so, by
the universality property, there is a unique map @f: Qf(z) > P; s.t. for
all v > f(i) the following diagram commutes:

[S]
Q@) ————— P(f ()

1
Qf(l) P

Given a sheaf of sets (I, P), a subpresheaf R of P is a subfunctor
R : Q)25 Ens, i.e., for all u € O(I)°°, R(u) C P(u) and if ' C u, then
ph, restricted to the subset R(u) is the restriction map r%:. A subsheaf R
of P is a subpresheaf which is a sheaf. Thus a subpresheaf R is a subsheaf
if for any u, the property on P(u) of belonging to the subset R(u) is a
property of local character in the sense that if for any i € u, there is an
open u; s.t. i € u; C u and PZ,-(“) € R(u;), thena € R(u) (i.e., if R holds
of a € P(u) locally, then R holds of a).

The notion of a sheaf of structures can be expressed using only the
notions of sheaves and subsheaves of sets. If (/, P) is a presheaf of struc-
tures, then each atomic n-ary relation R defines a subpresheaf (called its
graph) of the presheaf of sets (1, P7), i.e.,

R(u) = {ay, ..., a) € P"(u) = P(w)": P(u) F R(ay, ..., a,)} .

If (1, P) satisfies conditions (1) and (2) (i.e., is at least a sheaf of sets),
then condition (3) simply says that the graph presheaves of all the
atomic relations are sheaves. Thus we may say that a sheaf of relational
structures of the given similarity type is a sheaf of sets (/, P) together
with a subsheaf R C P”" for every n-ary atomic relation (i.e., the usual
definition of relational structure with ‘“‘sheaf of sets’ and “subsheaf of
sets” substituted respectively for “set’” and ‘“‘subset’). When I = 1, the
one point space, this reduces to the usual notion of a relational structure,
so a sheaf of structures can be viewed as a generalized relational struc-
ture.

Let Sh(7) be the category whose objects are sheaves of sets on / with



168 D.P. Ellerman, Sheaves of structures and generalized ultraproducts

natural transformations as morphisms. Note that if P, P, € Sh(]), then
a morphism © : Py > P, could be construed as a sheaf morphism (as pre-
viously defined) (f, ©) : (/, P,) = (], P)) in the opposite direction, where
[ is the identity map on /. Lawvere [11] and Tierney have shown that the
sheaf §2 of germs of open subsets of 7 functions as a “subobject classifier”
in Sh(Z) just as Condition (2) does in the (special) case of Ens (= Sh(1)).
That is, if P € Sh(/) then the subsheaves of P are in one-to-one corre-
spondence with the morphisms P ~ . For u open in I, () is the set
of open subsets of u, and if uy C u, are opens, then the restriction map
$2(uy) = §2(uy) takes u C uy to u N uy C uy. If R is a subsheaf of P, then
its characteristic morphism_(also denoted by) R : P - § is defined as

R = {P(u)—li’—> S (u): u € O(I)°P},

where for a € P(u),
R (@=U{u'Ccu: pY (a) € R(u)} .

Conversely, given a morphism R : P> €2, the corresponding subsheaf R
is defined by

R() = {a € P(w): R (a) =u}.

If (1, P) is a sheaf of structures, then each n-ary atomic relation R deter-
mines a subsheaf of P# and thus a characteristic morphism denoted
FR : P" > Q. The values of this morphism are the “truth values”

EFR,(a,...a)=U{u Cu: Pu") ER(py(a), ..., pi(a,)}

={i€u: P, #R(ﬁ, v @},

wherea,, ..., a, € P(u).

Before turning to examples of sheaves, we shall mention a condition
sometimes used in constructing sheaves. Let P’ be a “presheaf” of sets
defined only on a basis B for the topology on I P' can be canonically
extended to a presheaf P on all opens of I by defining Pug) = 11m P'(w),
where the (generalized inverse) limit is over all u C ug withu € B (the
restriction maps are defined using the universality property of limits).
This canonical extension P is a sheaf iff P’ satisfies the following basis
condition: for every u € B and every cover {u,} of u, where each u, € B,
if there is a set {a,} where a, € P'(u,) s.t. any a, and a, have the same
restrictions to P'(«') for any ', where ' € B and u' c u, N ug, then
there is a unique @ € P'(u) Wthh restricts to all the a, [12]
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A sheaf of structures on a discrete space will be called a discrete sheaf.
If {A,};c; is an indexed set of structures, then we have the discrete
sheaf (1, P) where P(u) = Il;c, A; Then P; = A; so the indexed set of
structures can be recovered from the correspondmg discrete sheaf. Also
if (1, P) is a discrete sheaf, then {P,;};; is, of course, an indexed set of
structures, and for any u C I, P(u) = II,c, P;. Thus an indexed set of
structures (part of the data in the ultraproduct construction) ‘is’ a dis-
crete sheaf of structures.

Another simple but important type of sheaf can be constructed from
a structure 4 and a space / (not necessarily discrete). Then we define a
sheaf A on I by A(u) = {u——» A: fis continuous} for u open in I (where
the discrete topology is on 4 the underlying set of A). If R is an n-ary
atomic relation and fy, ..., f,, € A(u), then A(u) E R(f}, ..., f,,) if for all
i€u AER(f@D), ..., f,(i). Such sheaves are called constant sheaves
because all the stalks 4; are isomorphic copies of A.

This construction can be generalized to the case where 4 is a pseudo-
Boolean-valued or Boolean-valued structure. Let I be a topological space,
let O(1) be the complete pseudo-Boolean algebra (cpBa) of opens in I
(see [15]), and let Reg(/) be the complete Boolean algebra (cBa) of
regular opens in I A pseudo-Boolean-valued structure (resp., Boolean-
valued structure) A over I consists of: (1) a set A, (2) for each n-ary
atomic relation R in the similarity type other than equality, a map
R:A" > O() (R : A™ > Reg(])), and (3) a binary relation
E: A2 O() (E : A? > Reg(])) s.t. the pseudo-Boolean (Boolean)
truth-values of the statements which say that F is an equivalence relation
and that the atomic relations are substitutive w.r.t. £ are all dense sub-
sets of / (are all equal to I). The “interior of the closure’” map
IC : O(I) = Reg(!) canonically associates a Boolean-valued structure over
I with each pseudo-Boolean-valued structure over I (its ‘“‘Booleanization”).
The maps E R, : P(u)" ~ O(u) = (u) which constitute the characteristic
morphisms for the graph subsheaves associated with the atomic relations
show that any value P(u) of a sheaf of structures can be viewed as a
pseudo-Boolean-valued (and thus a Boolean-valued) structure (over u).
Given a pseudo-Boolean-valued or Boolean-valued structure 4 over J,
one can obtain a sheaf of structures in the following manner. Let (1, A)
be the same sheaf of underlying sets as was defined before, and if R is
any atomic n-ary relation (including F) and f}, ..., f,, € A(u), then
A(u) BER(fy, ..., f) if foralli € u, i € R(f1(D), ..., f,(1)). The stalks A4;
are all set isomorphic to the underlying set of 4 but the structure varies
from stalk to stalk.
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A Kripke structure is a functor P : (I, <) » M, where (I, <) is a pre-
order (reflexive and transitive) and where all the homomorphisms
P(i < i') are inclusions. It is convenient to work with the broader notion
of a functorP : ([ <)~ M# where the homomorphisms P(i < i') are not
necessarily inclusions. We topologize / by taking as opens the sets which
are order-closed upwards (i.e., u is open iff if i € w and i < i’, then i’ € u).
The sets u; = {i' € I i < i’} form a basis for this topology and the func-
tor P defines a ‘presheaf” on this basis (P(«;) = P(i)) which canonically
extends to a presheaf of structures P on the space /. Furthermore, every
set u; in this basis is supercompact (i.e., every open cover contains a
singleton subcover [15]). By the basis condition, any ‘presheaf” defined
on a supercompact basis canonically extends to form a sheaf. The orig-
inal values of the functor P(i) are now recovered as the stalks P; (indeed,
the direct system for P; is trivial since u; is the smallest open containing i
so P(i) = P(u;) = P,). It is interesting to note that, by this construction,
one can obtain a sheaf of structures from an arbitrary presheaf of struc-
tures in two different ways. Firstly, a presheaf of structures on / is a
functor P : O(1)°P > M# so the construction yields a sheaf of structures
on the space O(/)°? (with the above defined order-closed topology).
Secondly, there is a natural preorder defined on any space [, i.e.,i < i’
if i is in the closure of the singleton {i'}. If P is a presheaf of structures
on/ and i < i', then since any open containing i also contains i’ there
is a canonically induced homomorphism P; > P;: (by the universality
property of direct limits). That yields an appropriate functor on the
preorder and then the above construction yields a sheaf of structures
on the new space / retopologized with the (richer) order-closed topology.
The standard “‘sheaf of sections’ construction allows one to construct
a sheaf of structures on the original space / from a presheaf of structures
on /, but we will not discuss it here.

The above examples indicate that the notion of a sheaf of relational
structures is a sufficiently rich concept of a generalized relational struc-
ture to accomodate many other generalized structures used by model
theorists such as indexed sets of structures, Boolean-valued structures,
and Kripke structures. For more information about sheaves see [7, 8,

12 or 17].
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Part II. FORCING IN SHEAVES

If (I, P) is a sheaf of structures, then each atomic n-ary relation
R(xy, ..., x,,) defines a subsheaf = R of P". However, an arbitrary n-ary
formula ¢(x, ..., x,,) does not similarly define a subsheaf or even a sub-
presheaf of P”, The concept of forcing is naturally motivated in the
sheaf-theoretical context by this need to appropriately modify the
notion of truth or satisfaction so that a subsheaf of P" can be associated
with an arbitrary n-ary formula.

Let (/, P) be a sheaf of structures, let «, be an open subset of /, and
let u, u', etc. denote (non-empty) open subsets of #,. We will assume
(like Abraham Robinson [16]) that formulas are built up from atomic
formulas by using only the connectives of negation, conjunction, and
disjunction as well as existential quantification. Let ¢(x, ..., x,,) be an
n-ary formula and let a,, ..., a,, € P(ug). The notion of (strong) forcing
(notation: ") will be specified by defining the characteristic morphism
H- ¢ : P" > Q for the subsheaf H- ¢ of P” to be associated with the
formula. The value H- ¢, (), ..., a,) of the map

H- Pu, P(uy)" » Qu, = O(uy)

will be called the forcing-value of the sentence ¢(ay, ..., a,). The in-
tuitive idea is to define the forcing-values of atomic sentences as their
truth-values, and then compute the forcing-values of non-atomic sen-
tences in the complete pseudo-Boolean algebra of opens O(uy) = Q(uy).
Let “int” be the interior operator.

(1) ¢ =R atomic:

H- «puo(al, s @)= F=Ruo(al, @) .
D=y vx:

H- «puo(al, v a,) = He wuo(al, @)U xuo(al, v ay) .
BGe=vax

H- «puo(al, e @)= H- wuo(al, e @) 0 H- xuo(al, s @)
D=1y

H- ‘Puo(al' oy @) = int (u, — H—wuo(al, s @)
(De=Ax)y:

¢, (@ ..a)= U U Ky (apoap),..).

uCuy acPu)
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For any n-ary formula p(x;, ..., x,)), the above definitions determine
the characteristic morphism H- ¢ : P" > Q. Forcing by the structures
P(uy) is defined by

P(uy) H-y(ay, ..., a,) iff H—apuo(al, s @)= U

The subsheaf associated with a formula is the subsheaf determined by
the forcing-graph of the formula, i.e.,

Houy) = {ay, ..., a,) € PMuy): Pug) H-(ay, ..., a,)} .

Our results below will focus on the following notion of forcing in stalks:
fori€ ugy, P; H-(ay, ..., a,) iffi € H—¢u0(a1, ..., @,). Then we have

H—gpuo(al, o a)={i€uy P, H_‘p(ﬂ’ a_n)} .

Abraham Robinson’s concept of (infinite) forcing [16], defined in
terms of a class of structures Z, generalizes the concept of forcing in
Kripke structures [6] which only involves a set of structures. When =
is a set {P;};,c; indexed by I, then a partial ordering can be defined on
I(i.e., i <i'iff P;is a substructure of P ) which immediately yields a
Kripke structure. Let (/, P) be the sheaf of structures constructed (as
above) from the Kripke structure. Then, for sentences expressed using
our basic notation, Robinson-forcing by the structure P;, Kripke struc-
ture forcing by the point i, sheaf forcing by the stalk P;, and sheaf
forcing by the value P(u;) all agree.

For u € O(), the unary operation of pseudo-complementation is
defined by —u = int (/ — u) (where the binary operation also denoted
by “—” is set difference). The notion of weak-forcing or wforcing
(notation: H-*) is determined by the following definition of the
wforcing-values:

H—*¢u (ay ..., a, )=——(H—gpu @ ....a)) Nuy,

where ay, ..., a, € P(ugy). The wforcing-value H-* Pu, (ay, ..., a,) is a regu-
lar open subset of the subspace u,. Forp =R atomlc the wforcmg-value
is the ‘regularization’ (relative to ugy) of the truth-value ER 0(al, ey ),
and for non-atomic sentences the wforcing-values are obtained by com-
puting in the complete Boolean algebra Reg(u) of regular open subsets
of the subspace u,. In explicit terms, the following relationships hold
(and they are an alternative means of defining the wforcing-values):
(De=R:

0, @y a)=——[FR, (@) ... a1 Ny,
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De=yvyx
H-* *Puo(...) =— —[K* wuo(...) U K X“o("')] Ny .
3e=v¥ax
H—*«puo(...) = H-* ¥y ()N H-* Xy () -
(D p="1y:
", () =int (g — -y, ().
(5) o =3x) ¥:

* —
H_ wuo(alx IEP) an) -

=_ *[ u .y =y, (a p%a,), ..., pZ°(a,,))] Nu, .

uCu, acP(u

As with (strong) forcing, the wforcing-values define the characteristic
morphism H-* ¢ : P" > £ which in turn determines the subsheaf:

K p(uy) = {Kay, ...,a,) € P (uy): H=* gpuo(al, s @) =g}
Then wforcing by a value of the sheaf P(u) is defined by:

P(uy) H*v(a,, .., a,) iff H* «puo(al, @) = U
And wforcing by a stalk P; is defined by:

P, H—*_ «p(ﬁ, ﬂ) iff ieH* «puo(al, s @)
Then

H-* «puo(al, @) ={i€ugy P H—*«p(a_l, _a_n)} .
As usual, a sentence is wforced iff its double negation is forced.

Let O(J) be the complete pseudo-Boolean algebra (cpBa) of open

subsets of . A filter F (i.e., a proper filter F % O(])) is prime if
uVUu' € Fimpliesu € Foru' € F for any u, u' € O(I). Let Pr(J) be
the set of (proper) prime filters of O(J) with the following topology:
the basic opens are the sets X(u) = {F€ Pr(J): u € F} foru € O().
Pr(7) is the prime spectrum of O(I) (see [15]). The mapn : I > Pr(J)
which takes i to F; = {u € O(]): i € u} (the principal prime filter gener-
ated by i), is a continuous map since n7! (X()) = «. Given a sheaf of
structures P on I, we define the (direct image) sheaf of structures P0 on

Pr(J) by the condition: PO(X) = P(n~1(X)) for X open in Pr(Z). The
sheaf of structures (Pr(J), P°) will be called the prime sheaf of (I, P),
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and its stalks will be called the prime stalks of (I, P). A filter F € Pr(I) is
maximal if for any openu, u € F or —u € F. The stalks of PO at maximal
filters will be called the max-stalks of (I, P). The operation which takes

a sheaf of structures (/, P) to its prime sheaf (Pr(/), PO) easily extends to
an endofunctor on the category of sheaves of structures (of a given type)
and their morphisms. This functor will be called the prime functor.

The following L.os-type theorem establishs the relationship between
wforcing in a given sheaf and in its prime sheaf. Assume that (/, P) is a
sheaf of structures, @(xy, ..., x,,) is an n-ary formula, ai, ..., a, are in
P(uo), and F € X(uy) (i.e., ug € F).

Prime Stalk Theorem

PR "y ... a) iff {i€uy P, + g, ... a,)} € F.

Proof. The proof is by induction over the complexity of ¢ and we will
be using the following facts about basic opens in Pr(/) (see [15]):

(1) — = X(u) = X(— —u),

() X(upu X(uy) = X(uy U U,),

(3) X(uy) N X(uy) = X(uy 0 uy),

(4) —X(u) = X(—w),

(5)——-VU,X(u)=X(--U » Uy,
where {u,} is any set of open subsets of . We prove the theorem by
showing that

{F & X(ug): Pp H"p(ay, ..., a)} =X({i€u, P, R0, ..., a))).

That is, we show that the wforcing-value of the sentence in the prime
sheaf is the basic open determined by the wforcing-value of the sentence
in the original sheaf.

(1) ¢ = R atomic:
{i€uy P, B pa,.., a)r=——[{ic uy P E ()N Ug
and, similarly in Pr(J), -
{F € X(up): PY "¢y, ..., a,)} = = —[{F € X(uy): PY Fp(..)} N X(u,)

(and since the truth-value of an atomic sentence in the prime sheaf is the
basic open defined by the truth-value in the original sheaf, we may con-
tinue)
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=——X({icuy P, Fo(.)h N X(ugy)

=X(—-—-{i€ Uy P, Eol.)rN uo)

=X({i€u, P, H-* ¢(£1_1, ﬁ)}) )
D=y vx
{F € X(uy): P2 w*w(ﬁ, e @)} =

=—— [{F€ X(uy): PR #" ¥ (..)}
U {FEX(uy): PR H x ()1 N X(uy)
(so by induction hypothesis)
=——(X{i€ug P Y(.OD U X({i € uy P, " x()OD] N X(uy)
=X(——Hi€uy P Y(IIU {i€uy P H"x(.OHN N uy)

=X({i€uy P, " <p(£z_l, ﬁ)}) .

(3) ¢ = Y A x: similar to (2).

(4) o=

{F€ X(uy): PIQ H* ¢(..)} = int [(X(uy) — {F: Pg Y (.OH
=—[{F€ X(u,): Plg Hy(.)n X(uy)

(so by induction hypothesis)

= - [X{i€uy P, = yopln X(u,)
= X(~[{i: P, 90N 0wy

=X({i€uy: P, " p()]) .
(5) ¢ = (Ix)Y: Recall that
{i€uy P, " (3x) Y(x, a, ... a,)}=

:__l: U U {ieu: P, K" Y(q a, ...,an)}]ﬂ U

uCuy acsP(u)

and similarly in Pr(/), where the first union may be taken over basic
opens X(u) C X(ug). Thus
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{FeXuy): A Ax) Y (x, ay,..., a)} =

U U F € X(u): PO #* )
[X(u)CX(uO) 2P O(X(w) { (w): Pp 4¢ o LR an)}]n X(uO)

=__[u U X({icu P, H—*w(g,ﬁ,...,g&\)}):lﬂX(uo)

uCuy acPu)

=X(__[ U U {iewP " Y@, “_1""'?11)}]0”0)

uCuy acP(u)
=X{i€uy P, - 3x) Y (x, a, ..., ﬂz)}) .

This result would not hold if weak-forcing (wforcing) was replaced

by forcing because, in general, U, X(u,) is only a dense subset of
X(U, u,).
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Part III. ULTRASTALKS

Our main theorem, which shows that max-stalks are generalized ultra-
products, is a sharpening of the prime stalk theorem that replaces weak-
forcing by truth on the left hand side when F is a maximal filter. We
will first define a new sheaf on a homeomorphic copy of the subspace
of maximal filters which will have stalks isomorphic to the max-stalks.
Let Ult(J) be the Stone space of the complete Boolean algebra Reg(/)
of regular open (regopen) subsets of the space I Ult(/) is homeomorphic
with the max spectrum of the cpBa O(J), i.e., with the subspace of maxi-
mal filters in Pr(/). If F is an ultrafilter of Reg(/), the corresponding
maximal filter is FO = {u € O(I): —u & F}. If F is a maximal filter of
O(I), the corresponding ultrafilter is F* = {— —u € Reg(J): u € F}.

Given a sheaf of structures (/, P), we will construct another sheaf of
structures (Ult(J), P*) called the ultrasheaf of (I, P). The stalks of the
ultrasheaf of (I, P) will be called the ultrastalks of (I, P). If u, is a reg-
open subset of J and X(u,) is the basic open of Ult(/) determined by ug
(i-e., X(ug) = {F e Ult()): uy € F}), then we define P* on the basic opens
in the following manner:

P (X(uy) = lim P(u),

ucduo

where the direct limit is over the structures P(u) for u an open dense
subset of ug (notation: u C4 ug). If g is another regopen s.t. X(ug) C X(uy),
then uy C ug, and if u C 4 4y, then u N ugy C 4 uy. The homomorphisms

[PG) =2 P(u 0 ) = PHX()): 4 C g )

commute with the homomorphisms in the direct system forP*(X(uO)),
s0 by the universality property for direct limits there is a unique homo-
morphism P*(X (ug)) - P*(X(up)) s.t. for any u Cq4 Uy the following
diagram commutes:

P)—— P )

can. can.

P* (X (ug)) ———— P*(X(up)) .



178 D.P. Ellerman, Sheaves of structures and generalized ultraproducts

By taking these as the restriction homomorphisms, we have a ‘presheaf’
of structures on the basic opens of Ult(/). As indicated in Part I, such

a ‘presheaf’ on basic opens can be canonically extended to a presheaf of
structures defined on all the opens of Ult(/). The long and tedious proof
that this presheaf is, in fact, a sheaf [the ultrasheaf of (/, P)] is relegated
to an appendix.

The operation which takes a sheaf of structures (/, P) to its ultrasheaf
(Ult(D), P*) is functorial only on sheaf of structures morphisms ( f, ©),
where f is an open continuous map. Given an arbitrary sheaf of struc-
tures (/, P), we can now obtain the prime sheaf (Pr(7), P%) and the ultra-
sheaf (Ult(7), P*). There is a morphism (£, ®) : (Ult(J), P*) = (Pr(J), PY),
where for any ultrafilter 7, f(F) = FO the corresponding maximal filter.
Let us distinguish the opens of the prime spectrum and the Stone space
with the superscripts of “0”” and “*” respectively. Then f ~1(X%(u)) =
=X*(——u),sof: Ult(J) > Pr(J) is a continuous function. For basic
opens, let

®X°(u) P PP O(w)) > PO w))
be the canonical homomorphism

P(XOw)=Puw)—> lim P)

wCy-—u

=P (= =) =P*(f X))

which we have since u is an open dense subset of — —u. For other opens
Y0in Pr(D), PAY %) = Pt~ 1 (Y %) = PO(X %~} (Y 0))) and F 1(Y ) =
=YX~ (Y %)), so let Oyo =0 o, —1(yo, (Wheren : T Pr(l) is
the continuous map taking i to'the prir?cipal prime filter F; generated
by i). To check that (£, ®) is a morphism, we must check that the fol-
lowing square commutes for any Uy C uy. The square commutes by the
commutativity of the constituent triangles.

can.

PO(X%u,)) = Pu,)

rest.

P*(X*(—- —u )= liln P@u)
. huc g——u
rest. Pu, N ——u,)
LA N
POXO(uy) = P(u,) PYX*(—=u)= lim  P(u).

ucC d—~u2

rest.
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For each ultrafilter F, the morphism induces a homomorphism

ef: P)Q(F) - P which is an isomorphism. Thus, a generalized ultra-
product may be constructed as a max-stalk, i.e., as a ‘one-stage’ direct
limit P2, llmuepo P(u), or as an ultrastalk, i.e., as a ‘two-stage’ direct
limit if llmu cF llmu C gu P(u). Henceforth we will use ultrastalks
and max-stalks 1nterchangea ly.

Let (1, P) be an arbitrary sheaf of structures, let F € Ult(J), and let
FO={yue€0(): — —u€ F} be the corresponding maximal filter. Let
¢(xy, ..., x,) be an n-ary formula and let a,, ..., a,, € P(u,), where
ug € FO (ie, — —uy € F).

Ultrastalk Theorem
Pl Fea, .. a,) iff {i€uy PH "y, .., a,)} €FO,

ie.,
Pp Fo, ... a,) iff ——{i€ugP " ola, .. a,)}€F.

Proof. By the prime stalk theorem, it suffices to prove that
Pho Elay, ..., a,)iff PO H-* p(ay, ..., a,) (i.e., that truth = wforcing
1n max- st_lks) Wthh we w111 do by 1nduct10n over the complexity of .

(1) ¢ = R atomic: Let
u ={i€uy P, ERG@,, ..., a,)} = U {uC uy Pu) FR(P,°(,), ..., p.0(a )}
so by condition (3) in the definition of a sheaf of structures,

Pu)) FR(p,2(ay), ... 1,2 (a,)) .

Hence
Pho " R(ay ..., a,) iff {i€ug P H"R(ay ..., a,)} € F°
iff ——uy Nuge FO iff y e FO
iff PFOo FR(, ..., a,).
D=y vx

RS H vy, ..,a,) iff  {i€uy P H" yvx(..)}eFO
iff  {i€uy P, " ¢(.)}eFO°

or {ie Uy Pl. H-*x(..)} € FO
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. *
iff PFO0 - y(..) orPFO0 " x(.)
iff PFO0 Eyl.) orP}LQ0 Ex(..)

iff P;)O E vla, ... a,).

(3) ¢ = Y Ax: Similar to 2.

(="
P W elay, . a,) iff {i€ug P TY()} € FO

iff  {i€uy; P, H" y(.)} ¢ FO
iff  not A% K y(.)
iff not P;)o Fy(..)

iff BY Eelag, .., a,).

() p=03x)y:
P% H" (3X) ¥ (x, a, ..., a,)

iff  {i€uy, P, B (3x) Y(x, ..)} € FO
iff U U {i€w P " Ya,.)}=u €F°.

uCugy acsPu)

The wforcing-values in this union form an open cover of u;. We claim
that given any open cover {u,},c4 of an open u, there is a disjoint open
cover {ug}op which covers a dense subset of u s.t. each u, is contained in
some u,. Consider the class of all disjoint open covers {u},cp of some
subset of u s.t. for each s there is an r s.t. u; C u,. Order the class by in-
clusion (not refinement). The class is non-empty and the union of each
chain is in the class so, by Zorn’s lemma, there is a maximal element
which clearly must cover a dense subset of u (thus proving the claim).
Applying this topological fact to our problem, there is a disjoint open
cover {ughep s.t. Uscp 4, =uy Cquy, and for each s, there is an a in
some P(u) s.t.

u, C {i€u: P, B-* Y(a, a ..., al)} )

Let a, € P(uy) be the restriction of such an element a so that for any
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i€ ug, P H* d/(as, a,, ..., a,). Since the {u,} are disjoint, the individuals
{a,} agree on infersections, so they patch together to yield an element

ay € P(u,) (here is where we made crucial use of condition (2), the patch-
ing property of sheaves) such that for all i € u,, P; H* Ylay, ay, ... a,).
Continuing the proof: - T -

PY H (3x) Y(x, a, ... a,
iff  Ju, and Ja; € P(u,) s.t.

{i€uy P " Ylay, ay, ..., a)} € F°
iff Ju, and EIaO € P(u,) s.t.

P% W V(ay, a, ..., a,)

) iff u e FO

iff Ju, and Aay € P(uy) s.t.
o F¥lag ay g, 0fE PG F(EX) YK 0, .0a,),

Corollary on Forcing

P;)O '=‘P(ﬁ’ woa,) iff {i€uy P H-go(ﬁ, e @)} € FO .

Proof. By definition,
{i€uy, P, H-* play, .., a)t=——{i€uy P, v, ...,a_)}ﬁ U

Now u, € F9, and since F9 is maximal, for any openu, u € FO iff
— —u € F9, Thus the forcing-value is in FO iff the wforcing-value is in F©.
The ultrastalk (or max-stalk) construction generalizes the classical
ultraproduct construction and the more recent Boolean ultrapower con-
struction (see [18] and [14] — one might note that what Vopénka calls
a “‘sheaf” is not a sheaf but a Boolean-valued relation). Classical ultra-
products are the ultrastalks of discrete sheaves and Boolean ultrapowers
are the ultrastalks of constant sheaves. In the latter case, let (J, A) be the
constant sheaf of structures constructed from the structure A and the
space I (i.e.,

A(u) = {uL A: flocally constant}) .

Then the elements of A* (Ult(/)) are in one-to-one correspondence with
the functions f': A - Reg(/) which partition the cBa. The ultrastalk A%
is the Boolean ultrapower of A w.r.t. the ultrafilter F in the cBa Reg(/).
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Part IV. EXTENSIONS AND APPLICATIONS

A presheaf of (universal) algebras of a given type on the space I is a
functor from O (I)°P into the category of algebras of that type and homo-
morphisms. A sheaf of algebras is a presheaf of algebras which satisfies
conditions (1) and (2) of Part I. Thus a sheaf of algebras of a given type
is a sheaf of sets (/, P) together with a morphism P” - P for each n-ary
atomic operation in the type. In a sheaf of algebras (/, P), if an n-ary
atomic operation f is construed as an (n + 1)-ary atomic relation
f(xq ..., X,) = X4, then that atomic relation automatically satisfies
condition (3) of Part I, i.e., the graph of the operation constitutes a sub-
sheaf of the (n + 1)® power sheaf P"*1. Hence a sheaf of algebras ‘is’ a
sheaf of relational structures so our results apply to all the sheaves of
algebras (e.g., groups, rings, fields, etc.) which are so ubiquitous in
modern mathematics. At the end of this section, we will outline an ap-
plication involving sheaves of rings.

It is clear (from the last paragraph) that we could have begun with
the (seemingly) broader notion of a relational structure as a set with
atomic relations as well as atomic operations defined on it (where in-
dividual constants are 0-ary operations). Then a presheaf of relational
structures of a given type on I is a functor from O(J)°P into the category
of structures of that type and homomorphisms (where the latter preserve
both atomic relations and operations). A sheaf of relational structures
of a given type is a presheaf of structures of the given type such that
conditions (1) and (2) of Part I are satisfied and such that the atomic
relations satisfy condition (3). Thus a sheaf of structures of a given type
is a sheaf of sets (/, P) together with a morphism P" - P for each n-ary
atomic operation in the type and together with a subsheaf of P" for
each n-ary atomic relation in the type. Since the graph of an n-ary opera-
tion automatically defines a subsheaf of P"*! (i.e., satisfies condition (3)),
this definition of a sheaf of structures is equivalent to the one given in
Part 1.

It should be noted that we have not excluded the empty relational
structures, even though that is customary in model theory. If the simi-
larity type u is without individual constants, then the empty structure
‘of type u’ is a member ofM”, the category of structures of that type
and homomorphisms. The terminal object in the category Sh(J) of
sheaves of sets on / and morphisms (natural transformations) is the empty
product or oth power (/, 1) where 1(«) =1 = {0} for any openu C I
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A sheaf of sets (/, P) is said to be non-empty if there exists a morphism
from the terminal sheaf 1 to P(i.e., if P(J) # 0). If one wishes to exclude
the empty structure, then one may add to the above definition of a
sheaf of structures the stipulation that the underlying sheaf of sets (/, P)
be non-empty (or simply exclude the empty structure from the category
of structures of that type and homomorphisms). The stipulation would
always be satisfied if the type included constants (i.e., 0-ary operations)
since a constant is given by a morphism P® = 1 - P. However, it is worth
noting that the above results do not depend upon that customary ex-
clusion. As Sabah Fakir pointed out to me, the usual ‘quotient of direct
product’ construction and the direct limit or sheaf theoretic construc-
tion of classical ultraproducts yield isomorphic results only when empty
factors are excluded. When some of the structures in the indexed set of
structures are empty, the usual construction collapses to the empty struc-
ture and violates the Lo§ theorem, whereas the structure yielded by the
direct limit construction continues to satisfy the £o§ theorem. Accord-
ingly, the Lo§ theorem specifies when a classical ultrastalk is non-empty.
That is, for discrete 7 and an ultrafilter F,

Pl=PLE@@x)(x=x) iff {iel:P;F@Ax)(x=x)}€EF.

The Feferman—Vaught (F—V) generalized product construction takes
as part of its initial data an indexed set of structures (see [4]), i.e., a
discrete sheaf of structures. As with ultraproducts, the generalized prod-
uct construction and theorem can be generalized to arbitrary sheaves of
structures (as initial data). Stephen Comer [2] has extended the F—-V
theorem to the case where the initial datum is a sheaf of structures on
a Boolean space with clopen truth-values — where the classical case is
obtained by taking (what we would call) a classical ultrasheaf, i.e., the
ultrasheaf (= prime sheaf’) of a discrete sheaf. However, if we begin with
an arbitrary sheaf of structures, then the ultrasheaf construction yields a
sheaf of structures on a Boolean space. By the ultrastalk theorem, the
truth-values are all clopen (i.e., the wforcing-values are regopen, but
wforcing = truth in ultrastalks and regopen = clopen in an extremally
disconnected Boolean space). In this manner, the general case (arbitrary
initial sheaf) is reduced to Comer’s theorem. Comer [2] and Angus
Macintyre [13] have obtained decidability and model-completeness
results by using certain sheaves of structures on Boolean spaces with
clopen truth-values that are constructed with different techniques.

The ultrasheaf construction is functorial on morphisms (f, ®) with f
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open. If (1, P) and (J, Q) are arbitrary sheaves of structures and

(f, ©): U Py=(J, Q) is a sheaf of sets morphism (i.e., the maps

0,: QW) ~» P(f~1(v)) are not assumed to be homomorphisms) with f
open (as well as continuous), then there is a canonically defined mor-
phism ‘

(Ult(f), ©) : (UIt(D), P*) = (UIt(J), Q")

between the respective ultrasheaves. This morphism induces for each
F < Ult(I), an ultrastalk map

Clyy QUi ~ Pr -
There is an ultrastalk map theorem which is a £.o$-type theorem that
characterizes the formulas preserved by an ultrastalk map (9*)}? in terms
of what sets are in the ultrafilter F.

We will illustrate this £o$-type mapping theorem by considering the
classical case where / and J are discrete spaces (so the ultrastalks are
ultraproducts). Let p(x, ..., x,)) be an n-ary formula, let
g1, s & € QU Y= iy @, and let iy, = ©;(g;) so that (@ﬂﬁ(&c) = }ﬂf
fork =1, ..., n. Then the following equivalence holds:

if Q;}It(f)(p) Folgy, ..., g,), then Pr Eo(hy, ..., h,) if and only if

{ielif Qf(z) l=<p(ig_1, g_”), then Pl. l=<p(fﬁ, f&l)} e F,

Let us say that a map truth-preserves a formula w(xy, ..., x,,) if the map
preserves each instance of truth. Then one can easily prove the following
‘classical’ result;

Ultraproduct Map Theorem

(Cho

Q*Ult HEyTT Py truth-preserves pxy, . X))
iff{iel Qfm———+ P, truth-preserves o(x, ... x,) €F}.

The usual proof of Frayne’s lemma is essentially an implicit application
of this result. The ultrastalk map theorem extends this ultraproduct map
theorem to the general case (arbitrary sheaves of structures) with the
only important change being that the conditions on the original stalk
maps ©F : Q) ~ P; must be restated in terms of weak-forcing rather
than truth.



D.P. Ellerman, Sheaves of structures and generalized ultraproducts 185

When a notion of forcing is defined, then it is customary to say that
a structure is generic if the notions of forcing and truth coincide in that
structure. In Abraham Robinson’s approach to model theoretic forcing,
a notion of (infinite) forcing is defined with respect to a (usually proper)
class of classical structures, and then generic structures are to be found
within that class. We have defined a forcing notion within each general-
ized relational structure (i.e., each sheaf of structures) which yields a
forcing notion on the set of classical structures that are the stalks of
the sheaf. By the ultrastalk theorem, ultrastalks and max-stalks are
generic stalks (and an ultrasheaf is generic in the sense that all its stalks
are generic). This suggests an alternative tactic to that of searching for
generic stalks among the stalks of a given sheaf of structures.

By applying the prime functor, we ‘blow up’ the given sheaf of struc-
tures (I, P) to obtain a new sheaf (Pr(Z), P?) with certain generic stalks,
some of which are ‘generic completions or developments’ of the original
stalks P; in the following sense. Each original stalk P; is isomorphically re-
produced as the principal prime stalk }}0’ (where F; is the principal prime
filter generated by i), and the notions of forcing and wforcing (as well as
truth) in PF agree with the corresponding notions in £;. The wforcing
notion in the stalks of (Pr(/), PYY is related to Wforcmg in the stalks of
(I, P) by a Lo$-type theorem (i.e., the prime stalk theorem). The new
sheaf (Pr(/), PY always has certain stalks which are generic (the max-
stalks), and truth in these generic stalks is related to wforcing and forcing
in the original sheaf (7, P) by Lo$-type theorems (the ultrastalk theorem
and the corollary on forcing). We noted above (in Part I) that there is a
preorder defined on the points of any space, and if i < i’, then there is
an induced homomorphism P; > P;, which preserves the forcing and
wforcing of all formulas. In the prime spectrum Pr(/), which is T, this
topologically defined partial order on the prime filters as points coin-
cides with the inclusion relation between the prime filters. If we begin
at any prime stalk PFO (principal or otherwise) and move to larger and
larger prime filters F' containing F, then the corresponding prime stalks
PI,Q, become ‘increasing generic’ (intuitively speaking) until we arrive
‘in the limit’ at a max-stalk which is generic. This development of struc-
tures is traced by the induced homomorphisms PF - PO which preserve
the forcing and wforcing of all formulas. Furthermore, PO H-* play, ....a,)
iff PO = gp(a ..., a,) for all generic developments PF, ofPF, i.e. Tbr all
generic P . Wlth FC F' (where the data is the same as in the prime
stalk theorem).
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For an application to sheaves of rings, consider the sheaf (/, C) of rings
of germs of real-valued continuous functions on a (completely regular)
space I (i.e., C(u) = {f: u-I5 R is continuous}). It is well-known that
when [ is discrete, then the residue class fields of the ring C(/) are classi-
cal ultraproducts (ultrapowers in fact). In order to generalize that result
when [ is not discrete, we consider (Ult(J), C*), the ultrasheaf of (Z, C)
[N.B., C” is not bounded functions but is our notation for the ultrasheaf
of C.] The ring of global sections C* (Ult(/)) = li_r)n ucyl C(u) is, by the
results of Fine, Gillman, and Lambek [5], the complete or maximal
ring of quotients Q(C(I)) (also denoted as Q(J)) of C(J). Then the ultra-
stalks of C, i.e., the stalks of the ultrasheaf C*, are precisely the residue
class fields of Q(/) = C*(Ult(/)). Hence, the generalized ultraproducts
associated with any ring of real-valued continuous functions C(J) are
the residue class fields of its maximal ring of quotients. It was not evident
that the maximal ring of quotients was involved in the classical case of
discrete I because then C(J/) = Q(J) = C*(Ult(])).

In more detail, let f € Q(]) = hm uc gl C(u) be the equivalence class
of some f € C(u) for some open u dense in LIt Zy(f)=int(Z(f)) =

= int( £ ~1(0)), then Zo(f) is a uniquely determined open, independently
of the particular representative f. If M is a maximal ideal in Q(J), then
Fy ={Zy(f): f € M} is a maximal filter in the cpBa of opens of 1. Con-
versely, if F is a maximal filter, then Mg = { f: Zy(f) € F} is a maximal
ideal in Q(/). These operations are inverse to one another, i.e., Foyp=F
and Mg,y = M. The ring theoretic maximal spectrum of Q(/) is homeo-
morphic with the subspace of Pr(/) of maximal filters, which is homeo-
morphic with Ult(/). Since Q(J) is regular (in the sense of Von Neumann)
all prime ideals are maximal, so in fact the ring theoretic prime spectrum
Spec(Q(7)) is homeomorphic with Ult(/) (see [5, Corollaries 10.17 and
11.12]).

For u an open subset of /, let E(u) denote the continuous real-valued
function defined on the dense open subset « U —u which has value 0
on u and value 1 on —u (so that Zo(E(u)) = u). Then the class E(u) € Q(1)
is an idempotent and all idempotents in Q(/) have that form for some
(regular) open u. The Boolean algebra of idempotents of Q(/) is com-
plete and isomorphic to Reg(/), the cBa of regopens of /. Moreover, the
ideals M of Q(I) are Z,-ideals in the sense that f € M iff E(Zy(f)) € M.

Let M be a maximal ideal of Q(/), let F = F, be the corresponding
maximal filter, and let F* be the corresponding ultrafilter. It is now
easy to verify that C;* = Q(I)/ M, i.e., that the ultrastalks of (/, C) are
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the residue class fields of Q(/). If £, g€ C*(UIt(D)) = Q(I), then

Cr. Ef=g iff ——int({i: f() =g} e F*
iff int({i: f(i) —g(i))=0N€EF
iff Z(f—g)€EF
iff f—geM
iff QU)/MEf=g,

and similarly for the ring operations. If the usual order relation is in-
cluded in the structure, then we have

Cl.Ef<g iff ——int({i: f()< gD € F"
iff  int({i: () < gDDE F
iff int({i: 0< (g—fDPEF
ifft Zyg—f—lg—fNEF
iff g—f—lg—fleM
ifft QU)/MEO<g—f
iff QUN/MEf<g.

Thus the ultrastalks are the residue class fields of Q(J). Let p(xy, ..., x,)
be an n-ary formula in the language of ordered rings and let

f1 ..., [, € C(u) for some open u dense in . Then the ultrastalk theorem
implies the following theorem:

Theorem

QUDIME@(fy o fy) iff E{i€u: G W5 o(fy, . [)DEM.

If a commutative ring R (with unity) is a direct product of fields, then
R = Q(R) = the maximal ring of quotients of R [10]. Daigneault and
Kochen [9] have shown that the residue class fields of R (= Q(R)) are
classical ultraproducts. A commutative ring R is said to be reduced (or
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semi-prime) if it contains no non-zero nilpotents. Reduced commutative
rings can be represented as the subrings of direct products of fields. The
above theorem can be generalized to any reduced commutative ring R by
applying the ultrasheaf construction to the affine scheme of R and then
using the results of Banaschewski [1]. The residue class fields of the
maximal ring of quotients Q(R) of a reduced commutative ring R are
generalized ultraproducts.
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Appendix 1. The ultrasheaf theorem
Theorem. (Ult(]), P*) is a sheaf of relational structures.

Proof. Let s and s' be subscript variables which range over a fixed index
set S that is hereafter unmentioned. To show that P* is a sheaf of sets,
we need to verify the basis condition of Part I. That is, given a basic
open X(u,), a cover of X(u,) by basic opens {X(uy)}, and a set of ele-
ments {a, € P*(X(us))} s.t. for any s and s', a, and a, have the same
restriction to P*(X(u)) for any basic open X(u) C X(ug) N X(uy), then
we must show that there exists a unique element am € P*(X(uo)) which
restricts to the elements {a,}. We first show uniqueness, so suppose
a;, a, € P*(X(uo)) both restrict to all the elements {a,}. Now a, and a,
are equivalence classes in the direct limit P*(X(uo)) = li_r)n uCqu, P(u) so
there are a| € a; and a) € a, where botha), a, € P(uy) for some uy C 4 uy,.
Then for each index s, a'l and a'2 go by the restriction map P(u'O) - P(ub Nuy)
to some a; and a,,, respectively, where they are both in the equivalence
class a; € P*(X(uy)). Thus there is a uj Cqu, (and we may take ug C ug N uy)
s.t. ay; and ay; restrict to the same element a; € P(u;) [since ay, and ay
are in the same equivalence class in the direct limit P*(X(us))]. Hence
we have a set of elements {a, € P(u;)} which agree on the intersections
of the {u;} (since they are all restrictions of a'1 as well as a}), so by the
patching property of the sheaf P [i.e., condition (2)], there is an element
a' € P( U, uy) which restricts to the {a;} and by the uniqueness property
of the sheaf P [i.e., condition (1)] that element is unique. The set
ug = Uj uy is a subset of u and the restrictions of aj and a} to P(up) in
turn restrict to all the {a's} so by uniqueness in P, a'l and a'2 have the
same restriction (i.e., a’) to P(u). By assumption, X(uy) = Ug X(uy) so
—— Ug uy =uy and thus Ugug Cyug. Foreachs, u; Cyu; so
ug = Ugug Cq Ugug Cqug, ie., ug Cq 1. Hence P(ug) is in the direct
system forP*(X(uo)), and a'l and a'2 have the same restriction to P(u'(;),
so they are in the same equivalence class, i.c., a, = a,. Thus we have
uniqueness.

Given a set of elements {a, € P*(X(us))} such that for any indices
s and s', a; and ay have the same restriction to any P*(X(u)) for
X(u) C X(uy) N X(uy), it remains to show the existence of an element
ap € P*(X(uo)) which restricts to all the elements {a,}. Since X(u) N Xug)
is itself a basic open, we need only consider a set of elements which agree
on intersections. Moreover, X(uq) is compact so there is a finite subcover
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{X(ug): k=1, ..., n}. Let q; be the given element of P*(X(uy)) for
k=1, .., n We first show that it is sufficient to show the existence of
anagy € P*(X(uo)) which restricts to the {a;: k=1, ..., n}. Given such
an a, the restriction of a in P*(X(us)) and a; must both have the same
restriction to P*(X(us) N X(uy)) for k =1, ..., n. But the set
{X(uy) N X(up): k=1,...,n}is a cover of the basic open X(u,) by basic
opens so, by the above uniqueness result, the restriction of a; in
P*(X(us)) and a are the same element, i.e., a, restricts to each a,. Thus
it suffices to show the existence of an appropriate a; for finite covers.
We proceed by induction over #, the number of basic opens in the
cover. It is trivial for n = 1, so suppose we have an n element cover
{X(ug): k=1,...,n} of X(uy) and a set {a € P*(X(uy)): k=1, ..., n}
of elements which agree on intersections. The union of the first n — 1
sets in the cover is a basic open and those n — 1 sets are a cover of it,
so by induction hypothesis there is an element a’ € P*(U’,é:ll X(uy)),
which restricts to the ¢, fork =1, ...,n — 1. If @’ and a,, have the same
restriction to the intersection, i.e., in P*(X(u,) N UZ;% X(uyp)), then the
induction step reduces to the case of n = 2. But that intersection is a
basic open, {X(u,) N X(): k=1,...,n—1}is a cover of it by basic
opens, and a,, and 4’ have the same restriction to each set in that cover,
so by uniqueness a,, and a’ have the same restriction to the intersection.
Thus we only need consider the case X(ug) = X(uy) Y X(u,), where
a, € P*(X(ul)) and a, € P*(X(uz)) have the same restriction to
P*(X(u;) N X(uy)). The cover

{X(ul) N X(—u,), X(—ul) N X(uy), X(u)) N X(uz)}"

is a disjoint cover of X(u) by basic opens and it refines the two element
cover. Let ,a; € P*(X(ul) M X(—u,)) be the restriction of a;, let

14 € P*(X(—u;) N X(uy)) be the restriction of a,, and let a;, € P*(X(uy)
N X(u,)) be the restriction of a; and a,. As X(u;) N X(—uy) = X(uy N —uy),
there is an open yu; C 4 u; N —u, and an element 2a'1 € P(yu,) such

that ,a] € ,a,. In a similar manner we have sets ;u, and u;, open dense
in —uy Nuy and u; N u,, respectively, and we have elements la'2 € P(1uy)
and ), € P(uy;) such that (a5 € ;a, and a}, € ay,. Since ,uy, yU,, and
uy, are disjoint, the elements 2a'1, la'z and a'12 agree on intersections, so
by the patching property of P, there is an element @’ € P(u'), where

u' = ,uy U juy U uy,, which restricts to then. Also

U Cq(uyp N —u)) U=y Nup Uy Nuy) Sy —— (@ Vuy) =u,
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so P(u") is in the direct system for P*(X(uo)), and hence a’ € P(u') deter-
mines an equivalence class a, € P*(X(uo)). Now a restricts to ,a;, 145,
and a;, so it remains to show that a, restricts to a; and a,. The restric-
tion of @, to P*(X(ul)) and a; have the same restriction to

P*(X(u;) N X(—u,)) and to P*(X(uy) N X(u,)) (that is, ya; and a;,),
and

{X(ul) N X(—uz), X(ul) N X(u2)}

is a cover of the basic open X(u,) by basic opens, so by uniqueness again,
ag restricts to a;. Similarly, a, restricts to a,. This completes the proof
that (Ult(/), P¥) is a sheaf of sets, i.e., that it satisfies conditions (1) and
(2) in the definition of a sheaf of structures (see Part I).

The remaining condition (3) states that for any n-ary atomic relation
R(xy, ..., x,)), the graph subpresheaf of (P*)" determined by the relation
is in fact a subsheaf, On a basic open X(u) the graph subpresheaf has
the value

{Ka,, ..., a) € P*(X(uo))”: P*(X(uo)) = R(ay, ..., a,)} = li_r)nucdu0 ER®W),

where F R is the given graph subsheaf of P" associated with the atomic
relation. But this presheaf on Ult(/) is just (FR)*, so by the above proof,

it is a sheaf of sets and thus a subsheaf of (P*)". Hence, (Ult(]), P*) is
a sheaf of relational structures — the ultrasheaf of (/, P).
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Appendix II. The stalk space approach to sheaves

We have exclusively used the presheaf approach to sheaves which has
been generalized in algebraic geometry (sheaves on a Grothendieck
topology) and the theory of topoi. However, the horticultural termino-
logy is derived from the original definition of a sheaf as a special type
of fiber space. This fiber space or stalk space approach is used, for ex-
ample, in representation theory.

In the stalk space approach, a sheaf of sets is a triple (S, I, p) where
S and I are topological spaces and p : S > [ is a local homeomorphism,
i.e., for any s € S, there is an open neighborhood v 3 s such that p re-
stricted to v is a homeomorphism onto an open subset p(v) of . This
implies that p is continuous and open. For any i € I, the stalk S;atiis
the fiber p—1(i). If one wishes to exclude empty stalks, then one should
additionally stipulate that p be onto. The map p is called the projection
map, 1 is called the base space, and S is called the sheaf space or stalk
space since its underlying set is the (disjoint) union of the stalks.

ForR C S, (R, I, pI R) is a sheaf iff R is open, and in that case
(R, I, p T R) is said to be a subsheaf of (S, I, p). It (S, I py) and (S,, 1, py)
are sheaves with the same base space /, their product is the sheaf
Sy X; S,, I, p), where

S1 X, S,= {(Sl, 5y € S1 X S, pl(sl) =p2(s2)}

with the restriction of the product topology (terminology: fibered prod-
uct or pullback) and where S; X; Sz—l—]—> [ is defined by p({s,, 5,))
=p1(s1) = p,(s,). Finite products of sheaves on I and finite powers of a
sheaf on / are similarly defined, The empty product or Oth power of a
sheaf on / is the sheaf (/, , 1) where 1 is the identity map. For sheaves
(S, 1, py) and (S, 1, py), amap f: Sy = S, which commutes with the
projection maps is a morphism

(S, 1 p)-L(8, 1 py)

if f is continuous.

For a sheaf (S, 1, p) and any open u C I, a section over u is a continuous
map f: « > S such that p o f is the identity on u [N.B., a section is here
defined as a continuous right-inverse.] Let I'(x, S) be the set of sections
over . If foru’ C u we take the “restriction map” I'(u, $) - I"'(u//, ) to
be the restriction map, we obtain a presheaf I'(-, S) : O(I)°? - Ens. This
presheaf clearly satisfies conditions (1) and (2) of Part I so it is a sheaf of
sets (as defined in the presheaf approach) called the sheaf of sections.
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Let (, P) be a presheaf of sets on /, let S = U ,c; P; be the disjoint
union of the stalks, and let p : S~ I take each element of P; to i. For any
open u# C I and any element a € P(u), let v, C S be the image of the map
u > S which takes i € u to the equivalence classa € P,. If we topologize
S by taking the sets v,, for opens u C I and elements a € P(u), as a basis,
then (S, 1, p) is a sheaf of sets (as defined in the stalk space approach).
The sheaf of sections (/, I'(-, S)) is called the associated sheaf (or, sheaf-
ification) of the presheaf (I, P). If (I, P) was a sheaf, then and only then
it would be isomorphic with its associated sheaf (i.e., P(u) = I'(u, §) for
all opens u C I). Conversely, if we begin with a sheaf (S, I, p), construct
the sheaf of sections, and then (as above) reconstruct a stalk space sheaf,
the resultant sheaf is isomorphic with (S, 7, p). Hence, the presheaf approach
and the stalk space approach to sheaves are equivalent.

A triple (S, I, p) is a sheaf of (universal) algebras of a given type if:

(1)p : S~ 1Iisalocal homeomorphism,

(2) each stalk S; = p~1(i) is an algebra of the given type,

(3) for each n-ary atomic operation f, the induced map from the nth
fibered power S X, ... X; S (n times) to S is continuous.

Thus a sheaf of algebras of a given type is a sheaf of sets (S, 1, p) together
with a morphism from the nth power of (S, I, p) to (S, I, p) for each n-ary
atomic operation in the type.

Let us first use the broad definition of a “relational structure’ as a set
(possibly empty) with atomic relations and operations defined on it (where
constants are 0-ary operations). A triple (S, 1, p) is a sheaf of relational
structures of a given type if:

(1) p: S~ 1Iisalocal homeomorphism,

(2) each stalk §; = p~1(i) is a relational structure of the given type,

(3) for each r-ary atomic relation R, its graph
{€sy 0, 5,0 €ES X0 X 80S; BERC(sy, ..., 5,), where i = p(s)) = ... = p(s,)}
is an open subset of the nt? fibered power S X; ... X; S (n times),

(4) for each n-ary atomic operation f, the induced map from the nth
fibered power $ X ; ... X; S to S is continuous.

Thus a sheaf of relational structures of a given type is a sheaf of (under-
lying) sets (S, 1, p) together with a subsheaf of the nth power of (S, I, p)
for each n-ary atomic relation in the type, and together with a morphism
from the nth power of (S, I, p) to (S, I, p) for each n-ary atomic operation
in the type. This is simply the usual definition of a relational structure
with “‘sheaf of sets”, “subsheaf™, and “morphism” substituted respectively

kN 11

for “set”, “subset”, and ‘‘function”.
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In a topological context, the appropriate topology on 2 = {0, 1} is
usually the non-discrete T, topology {@, {1}, 2}. For example, with that
topology on 2, the set of open subsets £2(/) (or topological power set)
of a space [ is isomorphic with the set of continuous functions 7 - 2.
Requirement (3) above could be restated as:

(3') for each n-ary atomic relation R, the characteristic function
Xg 1S X ... X; S~ 2is continuous.

Angus Macintyre [13] has given a definition of a sheaf of relational
structures which is similar to the above except that he stipulates an onto
projection map and puts the discrete topology on 2 [in his version of
requirement (3')]. An important use of the stalk space approach is the
representation of certain structures as structures of global sections I'(Z, S)
(with the structure inherited from the direct product of the stalks). An
onto projection map p guarantees non-empty stalk structures S;, the
existence of a right-inverse to p on 7, and the existence of a global section
in the ultrasheaf of the sheaf of sections, but it does not guarantee the
existence of a global section of p (i.e., a continuous right-inverse to p
on I). That is, the structure of global sections ['(/, ) might be empty
even with an onto projection map. A sheaf of sets on I, (S, I, p), is said
to be non-empty if there is a morphism from the empty product or Oth
power (Z, I, 1) to (S, I, p) [i.e., if (S, I, p) has a global section]. A non-
empty sheaf must have an onto projection map. If one desires to work
exclusively with non-empty relational structures, then one must require
that the underlying sheaf of sets be non-empty. This remark is germane
only for similarity types without individual constants because a 0-ary
operation is interpreted as a morphism (/, I, 1) = (S, I, p). A sheaf of
structures in a type with constants would automatically have a non-empty
underlying sheaf of sets.

Macintyre’s use of the discrete topology on 2 [in this version of re-
quirement (3')] implies that the graph of an atomic relation must be
clopen instead of simply open. That strong requirement seems too restric-
tive because when an n-ary atomic operation is construed as an (n + 1)-ary
atomic relation, the graph will not in general be clopen. Under that strong
condition, a sheaf of algebras would not in general qualify as a ‘‘sheaf of
structures’ if operations were construed as atomic relations. However,
it is immediate that the graph of an n-ary operation is open, i.e., that it
defines a subsheaf of the (n + 1)st power sheaf, since the graph of a con-
tinuous function is homeomorphic with its domain (which, in this case,
is the stalk space of the nth power sheaf). These definitional comments,
of course, do not affect Macintyre’s results.
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If (1, P) is a presheaf of structures, then the corresponding sheaf
(S, I, p) (constructed as above) is a sheaf of structures. If each set of
sections I'(w, s) C I, S; inherits its structure from the direct product,
then the sheaf of sections is a sheaf of structures (i.e., also satisfies con-
dition (3) of Part I) called the associated sheaf of structures of the pre-
sheaf of structures (/, P). Then (I, P) is a sheaf of structures iff it is iso-
morphic to its associated sheaf of structures. Conversely, (S, I, p) is a
sheaf of structures iff the (stalk space) sheaf of structures reconstructed
from the sheaf of structures of sections is isomorphic to (S, 7, p) (i.e.,
the stalk spaces are homeomorphic over 7 and the stalks S; = I'; are
isomorphic as structures). In short, the presheaf approach and the stalk
space approach to sheaves of relational structures are equivalent, because
the approaches are equivalent for sheaves of sets and the graphs of atomic
relations are simply subsheaves of sets of various powers of the under-
lying sheaf of sets.
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