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DAVID P. ELLERMAN

CATEGORY THEORY AND CONCRETE
UNIVERSALS
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This paper presents the notion of a theory of universals. Set theory is
shown to be a theory of universals. The Cantor-Frege naive set theory
allowed sets as universals for a property to qualify as concrete in-
stances of the property. This led to the set theoretical paradoxes.
Axiomatic set theory was reconstructed using an iterative concept of a
. set so the set as the universal for a property was more abstract than
the instances. Set theory, based on the iterative concept of sets, is thus
the theory of abstract universals. A separate theory is needed for
: concrete universals.

This paper argues that category theory is the theory of concrete
universals. The notion of the concrete universal allows the systematic
philosophico-logical interpretation of the universal mapping proper-
ties of category theory.

Moreover, category theory provides a precise mathematical model
for the self-predicative version of Plato’s Theory of Forms. It
rigorously models many of the ancient philosophical ideas about
universals such as: (1) the Platonic notion that all the instances of a
property have the property by virtue of participating in the universal
and (2) the notion of the universal as showing the essence of a
property without any imperfections.
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2. THEORIES OF UNIVERSALS

, In Plato’s Theory of Ideas or Forms (€wdm), a property F has an entity
l associated with it, the wuniversal ur, which uniquely represents the
property. An object x has the property F, i.e., F(x), if and only if (iff)
the object x participates in the universal ug. Let u (from pefeél or
methexis) represent the participation relation so

O

S “x wup” reads as ‘“x participates in ug”.

Given a relation u, an entity ug is said to be a universal for the property
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410 DAVID P. ELLERMAN

F (with respect to u) if it satisfies the following universality condition:
for any x, x u ur if and only if F(x).

A universal representing a property should be in some sense unique.
Hence there should be an equivalence relation (=) so that universals
satisfy a uniqueness condition:

if up and up are universals for the same F, then ug = ug..

A mathematical theory is said to be a theory of universals if it contains
a binary relation p and an equivalence relation =~ so that with certain
properties F there are associated entities ur satisfying the following
conditions:

I Universality: for any x, xuur iff F(x), and
(I1) Uniqueness: if ur and ug are universals for the same F
[i.e., satisfy (I) above], then ur =~ ug.

A universal ug is said to be abstract if it does not participate in itself,
i.e., "(ur p ug). Alternatively, a universal ug is concrete if it is self-
participating, i.e., ur p ur.

3. SET THEORY AS THE THEORY
OF ABSTRACT UNIVERSALS

There is a modern mathematical theory which readily qualifies as a
theory of universals, namely set theory. The universal representing a
property F is the set of all elements with the property:

ur = {x l F(x)}.

The participation relation is the set membership relation usually
represented by €. The universality condition in set theory is the

equivalence called a (naive) comprehension axiom: there is a set y
such that

for any x, x € y iff F(x).

Set theory also has an extensionality axiom which states that two sets
with the same members are identical:

for all x, (x € y iff x € y’) implies y = y'.
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CATEGORY THEORY AND CONCRETE UNIVERSALS 411

Thus if y and y’ both satisfy the comprehension axiom scheme for the
same F then y and y' have the same members so y = y’. Hence in set
theory the uniqueness condition on universals is satisfied with the
equivalence relation (=) as equality (=) between sets. Thus naive set
theory qualifies as a theory of universals.

The hope that naive set theory would provide a general theory of
universals proved to be unfounded. The naive comprehension axiom
lead to inconsistency for such properties as

F(x)= x is not a member of x=x ¢ x.

If R is the universal for that property, i.e., R is the set of all sets which
are not members of themselves, the naive comprehension axiom yields
the contradiction known as Russell’s Paradox:

ReRiff R¢ R.

The characteristic feature of Russell’s Paradox and the other set
theoretical paradoxes is the self-reference wherein the universal is
allowed to qualify for the property represented by the universal, e.g.,
the Russell set R is allowed to be one of the x’s in the universality
relation

xe€ R iff x ¢ x.

There are several ways to restrict the naive comprehension axiom to
defeat the set theoretical paradoxes, e.g., as in Russell’s type theory,
Zermelo-Fraenkel set theory, or von Neumann-Bernays set theory.
; The various restrictions are based on an iterative concept of set
" (Boolos, 1971) which forces a set y to be more ‘abstract’, e.g., of
: higher type or rank, than the elements x € y. Thus the universals
provided by the various set theories are ‘abstract’ universals in the
; intuitive sense that they are more abstract than the objects having the
' property represented by the universal. Sets may not be members of
themselves. Quine’s system ML (1955b) allows “Ve V” for the
universal class V, but no standard model of ML has ever been found
where “€” is interpreted as set membership (viz., Hatcher, 1982,
chap. 7). We are concerned with theories which are “set theories” in
the sense that “€”” can be interpreted as set membership.
With the modifications to avoid the paradoxes, a set theory still
qualifies as a theory of universals. The membership relation is the
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412 DAVID P. ELLERMAN

participation relation so that for suitably restricted predicates, there
exists a set satisfying the universality condition. Set equality serves as
the equivalence relation in the uniqueness conditions. But set theory
cannot qualify as a general theory of universals. The paradox-induced
modifications turn the various set theories into theories of abstract
(i.e., non-self-participating) universals since they prohibit the self-
membership of sets.

4. CONCRETE UNIVERSALS

Philosophy contemplates another type of universal, a concrete uni-
versal. The intuitive idea of a concrete universal for a property is that
it is an object which has the property and has it in such a universal
sense that all other objects with the property resemble or participate in
that paradigmatic or archetypical instance. The concrete universal ug
for a property F is concrete in the sense that it has the property itself,
i.e., F(ur). It is universal in the intuitive sense that it represents
F-ness in such a perfect and exemplary manner that any object
resembles or participates in the universal ug if and only if it has the
property F.

The intuitive notion of a concrete universal occurs in ordinary
language (the ‘all-American boy’), in theology (‘“‘the Word made
flesh”), in the arts and literature (the old idea that great art uses a
concrete instance to universally exemplify certain human conditions),
and in philosophy (the perfect example of F-ness with no imper-
fections, only those attributes necessary for F-ness).

Did the notion of a concrete universal occur in Plato’s Theory of
Forms? Plato’s forms are often considered to be abstract or non-self-
participating universals quite distinct and ‘above’ the concrete in-
stances. In the words of one Plato scholar, ‘“‘not even God can scratch
Doghood behind the Ears’ (Allen, 1960). But Plato did give examples
of self-participation or self-predication, e.g., that Justic is just [Pro-
tagoras 330]. Moreover, Plato often used expressions that indicated
self-predication of universals.

But Plato also used language which suggests not only that the Forms exist separately
(xwpwrra) from all the particulars, but also that each Form is a peculiarly accurate or
good particular of its own kind, i.e., the standard particular of the kind in question or
the model (mapaderyua) to which other particulars approximate. (Kneale and Kneale,
1962, p. 19).
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CATEGORY THEORY AND CONCRETE UNIVERSALS 413

But many scholars regard the notion of a Form as paradeigma or
concrete universal as an error.

For general characters are not characterized by themselves: humanity is not human. The
mistake is encouraged by the fact that in Greek the same phrase may signify both the
concrete and the abstract, e.g. 7o Aevkov (literally ‘the white’) both ‘the white thing’ and
‘whiteness’, so that it is doubtful whether avro 10 Aevkov (literally ‘the white itself’)
means ‘the superlatively white thing’ or ‘whiteness in abstraction’. (Kneale and Kneale,
1962, pp. 19-20]

Thus some Platonic language is ambivalent between interpreting a
form as a concrete universal (‘the superlatively white thing’) and an
abstract universal (‘whiteness in abstraction’).

The literature on Plato has reached no resolution on the question of
self-predication. Scholarship has left Plato on both sides of the fence;
many universals are not self-participating but some are. It is fitting
that Plato should exhibit this ambivalence since the self-predication
issue has only come to a head in this century with the set theoretical
antinomies. Set theory had to be reconstructed as a theory of uni-
versals which were rigidly non-self-participating.

The reconstruction of set theory as the theory of abstract universals
cleared the ground for a separate theory of universals that are always
self-participating. Such a theory of concrete universals would realize
the self-predicative strand of Plato’s Theory of Forms.

A theory of concrete universals would have an appropriate parti-
cipating relation u so that for certain properties F, there are entities
ur satisfying the universality condition:

for any x, x u ur if and only if F(x).

The universality condition and F(ug) imply that ug is a concrete
universal in the previously-defined sense of being self-participating,
ur pup. A theory of concrete universals would also have to have an
equivalence relation so the concrete universals for the same property
would be unique up to that equivalence relation.

Is there a precise mathematical theory of concrete universals? Is
there a theory that is to concrete universals as set theory is to abstract
universals? Our claim is that category theory is precisely that theory.
Before the more technical development, a simple example will illus-
trate the concrete universals in category theory.

A partially-ordered set is a simple example of a category. Conisder
a universe of sets with the inclusion relation < as the partial ordering
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414 DAVID P. ELLERMAN

relation. Given sets a and b, consider the property
F(x)=x<a& x=<b.

The participation relation is set inclusion < and the intersection a1 b
is the universal ug for this property F(x). The universality relation
states that the intersection is the greatest lower bound of a and b in
the inclusion ordering:

forany x, x<aNbiff x<=a& x=<b.

The universal has the property it represents, i.e., allb=a& aNb=
b, so it is a self-participating or concrete universal. Two concrete
universals for the same property must participate in each other. In
partially ordered sets, the anti-symmetry condition

y=y & y'<yimplies y =y’

means that equality can serve as the equivalence relation in the
uniqueness condition for universals in a partial order.

5. CATEGORY THEORY: SOME DEFINITIONS

Some familiarity is assumed with Eilenberg and MacLane’s theory of
categories (e.g., MacLane and Birkhoff, 1967 or MacLane, 1971)
although some elementary definitions will be given to establish nota-
tion.

A category C consists of

(a) a set of objects a, b, c, ...,
(b) for each pair of objects (a, b), a set homc(a, b) = C(a, b)
whose elements are represented as arrows or morphsims

fra—b,

(c) for any fehomc(a, b) and gehomc(b, c), there is the
composition gf: a— b— ¢ in homc(a, c),

(d) composition of arrows is an associative operation, and

(e) for each object a, there is an arrow 1, € homc(a, a), called

the identity of a, such that for any f: a— b and g: c— a,
fla=fand 1,g=g.

An arrow f: a— b is an isomorphism if there is an arrow g: b— a such
that fg=1, and gf = 1,.
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6. CATEGORY THEORY AS THE THEORY
OF CONCRETE UNIVERSALS

For the concrete universals of category theory, the participation rela-
tion is the uniquely-factors-through relation. It can always be for-
mulated in a suitable category as:

“x uwu” means ‘“there exists a unique arrow x— u’’.

Then x is said to uniquely factor through u, and the arrow x — u is the
unique factor or participation morphism. In the universality condition,

for any x, x p u if and only if F(x),

the existence of the identity arrow 1,: u— u is the self-participation of
the concrete universal which corresponds with F(u), the application of
the property to u. It is sometimes convenient to ‘“‘turn the arrows
around” and use the dual definition where “x u u’” means “there exists
a unique arrow u— x” which can also be viewed as the original
definition stated in the dual or opposite category.

In category theory, the equivalence relation used in the uniqueness
condition is the isomorphism (=). Thus it must be verified that two
concrete universals for the same property are isomorphic. By the
universality condition, two concrete universals u and u’ for the same
property must participate in each other. Let f: w'— u and g: u— v’
be the unique arrows given by the mutual participation. Then by
composition gf: u’'— u' is the unique arrow u’'— u’ but 1, is another
such arrow so by uniqueness, gf=1,. Similarly, fg: u— u is the
unique self-participation arrow for u so fg=1,. Thus mutual parti-
cipation of u and u’ implies u = u'.

Category theory therefore qualifies as a theory of universals with
participation defined as ‘“uniquely factors through” and the
equivalence relation taken as isomorphism. The universal of category
theory are self-participating or concrete; a universal u uniquely fac-
tors through itself by the identity morphism 1,.

Category theory as the theory of concrete universals has quite a
different flavor from set theory, the theory of abstract universals.
Given the collection of all the elements with a property, set theory can
postulate a more abstract entity, the set of those elements, to be
universal. But category theory cannot postulate its universals because
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416 DAVID P. ELLERMAN

those universals are concrete. Category theory must find its uni- .
versals, if at all, among the entities with the property. Y

7. AN EXAMPLE: PRODUCTS AS UNIVERSALS

The previous example of set intersection is a special case of the notion

of a product in a category. In the general case, it becomes clear that

the entities of interest are the morphisms more than the objects which '
appear as the domains and codomains of morphisms. Given objects a
and b in a category C (which the reader could take as the category S
of sets), the property F applies to pairs of morphisms with a common
domain and with a and b as the codomains:

F({f, g)) means for some x, f: x— a and g: x— b.

The universal for this property, if it exists, is a pair of morphisms
m:aXb—>a and m:aXb—b with a common domain, usually
denoted a X b, such that any other pair of morphisms f: x— a and
g: x— b factor uniquely through the projections (m, m;). “Factor
uniquely through” means there exists a unique morphism h: x—a X b
such that the triangles commute in the following diagram (Figure 1):

f.
m
3th
X paxb
m
8
b
Fig. 1.

As a universality condition, this is:

(f, g) uniquely factors through (m, m) iff for some x,
f:x—>aand g: x—b.

If (f, g) has the property, (f, g) uniquely factors through (m,, m). And
if (f, g) uniquely factors through (i.e., participates in) (m, m), the
property is reflected back from the concrete universal (m, m) to the
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CATEGORY THEORY AND CONCRETE UNIVERSALS 417

entities participating in it. That is, if f= mh and g= mh for some
factor map h: x— a X b, then f and g must have the property of being
morphisms from some common domain to a and b (since m and m
have that property). Thus the Platonic notion that an entity has F by
virtue of participating in the universal for F has a precise realization in
category theory.

The previous definition of a universal for a property F as an object u
was the simplest definition to yield the result that two universals for
the same property are isomorphic. In most cases of interest, the
universals will be morphisms or collections of morphisms. It is always
possible to define new categories so these collections of morphisms
will become the objects in the new category. In the product example,
consider a new category C' where the objects are pairs (fj, f,) of
morphisms from C with a common domain. Given two objects (f;, f2)
and (g;, &) with codomain (f;) =codomain (g;) for i=1, 2, a mor-
phism

h:(fi, f2) (g1, 82)

in C’ is a morphism in C from the domain of the f’s to the domain of
the g’s such that g;h=f, and g,h = f,. In this new category C’, the
pair (m, m,) fits the definition of a universal object:

for any (fi, o) in C', 3! {fi, f2) = (m, m) iff F(f1, f2)).

8. AN IMPORTANT EXAMPLE: THE NATURAL
NUMBERS AS A UNIVERSAL

As the theory of concrete universals, category theory does not try to
reconstruct arithmetic or analysis or other branches of mathematics
from the ground up as does set theory. Abstract universals can be
“made” (e.g., the construction of the Zermelo hierarchy) whereas
concrete universals must be “found” (as the universal paradigm
example in the already-existing class of entities having a property).
The foundational role of category theory (qua theory of concrete
universals) is to characterize what is important in mathematics by
exhibiting its concrete universality properties, not to provide some
alternative construction of the same entities.

For instance, why are the Natural Numbers important? From the
viewpoint of set-theoretical model theory, the Natural Numbers are
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one among infinites of other models of a language containing a
designated element (zero in N) and a unary function (the successor
function in N). Instead of providing yet another construction of the
Natural Numbers, category theory gives the universzality property
which shows why they are important. Lawvere (e.g., MacLane and
Birkhoff, 1968, p. 67) has shown that the (second-order) Peano axioms
are equivalent to a certain universal mapping property which exhibits
the Natural Numbers as the universal enumerating- set.

Peano’s Axioms: N is a set with a designated element 0 and a
function o: N— N such that

(1) o is injective,

(2) 0 is not in the image o(N), and

(3) for any subset P of N, if
(a) Oisin P, and
(b) for all nin N, if n € P implies o(n)e P
then P = N (induction principle).

Let C be the category whose objects are sets S endowed with a
designated element z and an endofunction f: S— § and whose mor-
phisms are set functions that preserve the designated elements and
commute with the endofunctions. Thus if (S, z, f) and (S, z', f') are in
C, then a morphism (S, z, f)— (S, z’, ) is given by a function g: S—
S’ such that g(z)=2z" and for any s in S, f'(g(s)) = g(f(s)). The
universality property which characterizes the Natural Numbers is the:

Peano-Lawvere Axiom: (N, 0, o) is an initial object in the
category C, i.e., for any object (S, z, f) in C, there is a
unique morphism g: (N, 0, o)— (S, z, f).

The participation relation is that:

(8,2, fy (S, z,f) iff there is a unique morphism
(S,z,H—(S, 2, ).

The property F((S, z, f)) is that:
there is a sequence so, §1,... in S such that so=2z and f
gives the next element in the sequence, i.e., f(s,) = s,4+1 for

all n (note that the Natural Numbers are used implicitly or
explicitly in the language stating the property).

The Natural Numbers (N, 0, o) are the concrete universal for that
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CATEGORY THEORY AND CONCRETE UNIVERSALS 419

property F, they are the universal enumerating set. Given any object
(S, z, f) in C, there exists a unique morphism g: (N, 0, o) — (S, z, f).
The unique participation map is given by the iterates of f applied to z,
i.e., g(n) = f"(z) where g(0) = z. The sequence s, Sy, ... in S is given
by the image of g.

Peano’s Axioms can be derived from the universal property of the
Natural Numbers (e.g., MacLane and Birkhoff, 1968, chap. II, §11).
Consider, for example, the induction principle. Let P be a subset of N,
such that (a) 0 is in P, and (b) for all n in N, if n e P then o(n)e P.
Then f(n) = o(n) defines a function f: P—> P so (P,0,f) is an object
in C. Hence there is a unique participation map s: N— P such that
the triangle and rectangle in the following diagram (Figure 2) com-
mutes.

(14

N >N
P ¥
1 O»P f —» P

Fig. 2.

The inclusion map j: P— N makes the bottom triangle and rec-
tangle in the following diagram (Figure 3) commute.

a
N - N
/‘s ls
1 > P f - P
\ . i
N {
N g - N

Fig. 3.

Hence the outer triangle and rectangle commute so js: N— N is the
unique self-participation map for N, i.e., js is the identity map N— N.
Therefore the inclusion map j: P— N must be surjective, i.e., P = N.
Thus the induction principle-like the other Peano Axioms-can be
derived from the universal property of the Natural Numbers.
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Q. UNIVERSALS AS ESSENCES

The concrete universal for a property represents the essential
characteristics of the property without any imperfections (to use some
language of an Aristotelian stamp). All the objects in category theory
with universal mapping properties such as limits and colimits (vis.
Schubert, 1972, chaps. 7-8) are concrete universals for universal
properties. Thus the universals of category theory can typically be
presented as the limit (or ‘colimit’) of a process of filtering out or
eliminating imperfections to arrive at the pure essence of the property.

Consider the previous example of the intersection a b of sets a
and b as the concrete universal for the property F of being contained
in a and in b. If a set x has the property but is not the universal, then x
has certain ‘imperfections’ relative to the property F. In this case, the
imperfections of x are the sets x’ which are contained in a and in b,
but which are not contained in x. If we remove all the imperfections,
i.e., add to x all the other elements common to a and b, then we
arrive at the ‘essence’ of the property, the concrete universal a (1 b for
the property.

This limiting process of arriving at the universal can be expressed in
a more categorical fashion. In category theory, it is useful to consider
the factors-through relation. Since participation is the uniquely-fac-
tors-through relation, factors-through can be thought of as a *“‘weak-
participation” relation. Given the uniquely-factors-through relation u
for a property F, the factors-through relation will reflect the property
in the sense that:

if F(y) and x factors through y, then F(x).

If x and y are instances of F and x factors through y, then y is said to
be equally or more essential than x (with respect to F). In other words,
the weak-participation relation for F can be considered as the ‘essen-
tialness’ preordering (reflexive and transitive relation) on the instances
of F. Then the concrete universal for F would, by definition, be
equally or more essential than all the instances of F, i.e., ‘the essence’
of F.

In a preordering as a category, factors-through is the same as
participation since there is at most one morphism between two
objects. In the intersection example, the inclusion relation =< is the
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participation relation. The property F(x)=x=<a & x < b is preserved
under arbitrary unions, i.e.,

if F(xg) for any xg in {xg | B € B}, then F(Ngxg).

Hence given any collection of instances {xg | B € B} of the property F,
their union is equally or more essentially F than the instances. None of
the sets in the collection are imperfections of the union. Thus the limit
of this process, the ‘essence of F-ness’, can be obtained as the union of
all the instances of F:

U{x|x= & x=b}=aNb.

It has no imperfections relative to the property F. Moreover, since the
universal is concrete, the set a () b is among the sets x involved in the
union and it contains all the other such sets x. Thus the union is ‘taken
on’, i.e., is equal to one of the sets in the union.

All the category theory examples can be dualized by ‘reversing the
arrows’. Reversing the inclusion relation in the definition of F yields
the property:

Gx)=as=x&b=x.

The participation relation u for G is the reverse of inclusion = and
the union of a and b is the concrete universal. The universality
condition is:

forall x, x=aNbiff asx&b=1x.

If x has the property G but is not the universal, then x has certain
‘imperfections’. An imperfection of x (relative to the G property)
would be given by an another set x’ containing both a and b but not
containing x. A set of instances of G could be purified of some
imperfections by taking the intersection of the set. G-ness is preserved
under arbitrary intersections. The intersection of a collection of sets
with the property G is equally or more essential than the sets in the
collection. None of the sets in the collection are imperfections of the
intersection. Thus the universal or essence of G-ness can be obtained
as the intersection of all the sets with the property G;
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MNx|asx&b=x}=aNb.

It has no imperfections relative to G.

10. LIMITS AND COLIMITS AS ESSENCES

The intersection and union of sets in an inclusion ordering are
examples of limits and colimits in categories. All limits and colimits
are concrete universals for certain defining properties. The result that
the intersection or limit a N b can be obtained as the union or colimit
of all the instances of the defining property extends to all limits and
colimits. Any limit (respectively, colimit) is the colimit (limit) of the
instances of its defining property. In philosophical terms, the limit or
colimit is the essence arrived at by the limiting process of purifying all
the instances of the property of their imperfections.

This result will be illustrated using a limit that is a special case of the
pullback construction. Instead of considering just pairs of morphisms
into a and b as in the product example, suppose there is an additional
morphism j: a— b. Let the property G apply to a pair of morphisms
(f, 8) where f: x— a and g: x — b if (f, g) commutes with j in the sense
that jf: x—a— b= g: x— b. Given a pair (f, g') of morphisms into a
and b with the common domain x’, a morphism h: (f, g)—(f, g) is
defined by a morphism h: x — x' such that f= f'h and g= g'h. Then
(f, g is said to factor through (f', g'). If the factorization is unique, it is
the participation relation u for the property G.

The property G of commuting with j is reflected by these morphisms
h. If (f, g’) commutes with j and there is a morphism h:(f, g)—
(f, g"), then (f, g) commutes with j since jf' = g’ implies jfh=g'h or
jf = g. In that case, (f, g) is said to be equally or more essential than
(f, g) with respect to the property G. Thus the factors-through rela-
tion defines the essentialness preorder on the instances of G.

Given an instance of G, (f, g), an imperfection of (f, g) (relative to
G) is another G-instance (f’, g') which does not factor through (f, g).

The concrete universal for G, if it exists in C, is given by a pair of
morphisms (p,, pp) into a and b with a common domain denoted lim
G. That pair commutes with j and is universal among pairs of
morphisms into a and b with a common domain which commute with
j. Thus given another pair (f, g) with that property G, there is a
unique factor morphism i: x —lim G such that p,i = f and p,i= g as
indicated in the following commutative diagram (Figure 4).
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Fig. 4.

The concrete universal for G has no imperfections relative to G.

The aim is to show that a colimit of instances of the property G also
has G and is equally or more essential than the instances. Then the
limit limG can be obtained as the colimit of all the instances of G.
Consider any set of instances (f, g) of G with morphisms h: (f, g)—
(f, g') as previously defined. The common domains of the pairs such
as x and x' together with the morphisms h: x — x' define a diagram D
in the category C [e.g., Arbib and Manes, 1975, p. 45; or Schubert,
1972, chap. 6]. The colimit of the diagram is given by an object
colimD and a set of morphisms i,: x — colimD for x in the diagram.
The morphisms i, commute with the diagram morphisms h in the
sense that i, h =i, and the colimit is the universal such set of
morphisms. The f morphisms from the pairs (f, g) form another such
set of morphisms commuting with the h morphisms in the diagram D
so there exists a unique factor morphism i,: colim D — a such that for
all the f’s, i,i, = f, i.e., all the triangles in the following diagram
(Figure 5) commute.

f

X \ E L ia
,X
coimD ———& a

h
/'/‘.
X' f

Fig. 5.

The g morphisms from the pairs (f, g) for another such set of mor-
phisms so there exists a unique morphism i,: colimD — b such that for
all the g’s, i, = g.

It remains to show that the pair (i,, i,) has the property G of
commuting with j. For any x in the diagram D, g = jf = j(iaiy) = (jia)ix.
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But i, is the unique morphism such that for any x in the diagram,
iply = g SO ip = Ji,, 1.€., (ia, ip) commutes with j. The morphism i,: x —
colimD shows that (f, g) factors through (i,, i,) for any x in the
diagram, so the colimit of any set of instances of G yields an instance
of G that the equally or more essential than those instances. None of
those instances are imperfections of colimD relative to G.

The limit limG can be obtained as the colimit of the diagram
formed by all the instances of G. It would have no imperfections
relative to G. The collection of all the instances of G does not
necessarily form a small set, but the colimit exists, if lim G exists, since
lim G would be a terminal object in the diagram. The colimit is ‘taken
on’ by limG. This example illustrates the general theme that the limits
and colimits of category theory can be obtained as the result of
‘purifying’ all the instances of the defining property G of their imper-
fections to arrive at the ‘essence’ of G-ness.

11. THE THIRD MAN ARGUMENT
IN PLATO

Much of the modern Platonic literature on self-participation stems
from Vlastos’ work on the Third Man argument (1954, 1981). The
name derives from Aristotle, but the argument occurs in the dialo-
gues.

But now take largeness itself and the other things which are large. Suppose you look
at all these in the same way in your mind’s eye, will not yet another unity make its
appearance—a largeness by virtue of which they all appear large?

So, it would seem.

If so, a second form of largeness will present itself, over and above largeness itself and
the things that share in it, and again, covering all these, yet another, which will make all
of them large. So each of your forms will no longer be one, but an indefinite number.
(Parmenides, p. 132).

If a form is self-predicative, the participation relation can be inter-
preted as ‘resemblence’. An instance has the property F because it
resembles the paradigmatic example of F-ness. But then, the Third
Man argument contends, the common property shared by Largeness
and other large things give rise to a ‘One over the many’, a form
Largeness* such that Largeness and the large things share the com-
mon property by virtue of resembling Largeness*. And the argument
repeats itself giving rise to infinite regress of forms. A key part of
the Third Man argument is what Vlastos calls the Non-Identity thesis:
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NI If anything has a given character by participating in a Form, it is not identical with
that Form. (Vliastos, 1981, p. 351)

It implies that Largeness* is not identical with Largeness.

P. T. Geach (1956) has developed a self-predicative interpretation
of Forms as standards or norms, an idea he attributes to Wittgenstein.
A stick is a yard long because it resembles, length-wise, the Standard
Yard measure. Geach avoids the Third Man regress with the excep-
tionalist device of holding the Form ‘separate’ from the many so they
could not be grouped together to give rise to a new ‘One over the
many’. Geach aptly notes the analogy with Frege’s ad hoc and
unsuccessful attempt to avoid the Russell-type paradoxes by allowing
a set of all and only the sets which are not members of themselves-
except for that set itself (viz., Quine, 1955a; Geach, 1980).

Category theory provides a mathematical model for the Third Man
argument, and it shows how to avoid the regress. In the last section, it
was shown that given a collection or diagram D of entities with a
certain property F, an entity colimD could be constructed that was
equally or more essentially F than the entities in the collection. That is
the mathematical model for the process of forming the ‘One over the
many’. The One (colim D) has the property F shared by the many, and
the many participate in the One. A new collection or diagram D*
could be formed using the many and the One, and thus a new One*
(colimD*) could be formed. In this manner, category theory
rigorously models the Third Man argument.

The category theoretic model shows that the flaw in the Third Man
argument lies not in self-predication but in the Non-Identity thesis
(viz., Vlastos, 1954, pp. 326-29). “‘The One’ is not necessarily ‘over
the many’; it can be (isomorphic to) one among the many. In mathe-
matical terms, a colimit or limit can ‘take on’ one of the elements in
the diagram. In the special case of sets ordered by inclusion, the union
or intersection of a collection of sets is not necessarily distinct from
the sets in the collection; it could be one among the many.

For example, let A =U{Ag} be the One formed as the union of a
collection of many sets {Ag}. Then add A to the collection and form
the new One* as

A* = U{AB}U A.

This operation leads to no Third Man regress since A*= A. In
general, if the colimit colimD of a diagram D is appended onto the
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diagram to form a new diagram D* then it becomes a ‘terminal
object’ in the new diagram D* so colim D* = colimD.

12. ENTAILMENT AS A RELATION BETWEEN
UNIVERSALS

In Plato’s Theory of Forms, a logical inference is valid because it
follows the necessary connections between universals. Threeness
entails oddness because the universal for threeness ‘‘brings-on”
(emdeper or epipherei, viz., Vlastos, 1981, p. 102; or Sayre, 1969,
Part I1V) or “shares-in”’ the universal for oddness. In a mathematical
theory of universals, the ‘“‘entailment” relation between universals is
defined as follows: given universals ug and ug,

ug entails ug if for any x, if x pu ug then x p ug.

In set theory, the participation relation u is the membership relation €
so the entailment relation between sets as abstract universals is the
inclusion relation. Thus in set theory as the theory of abstract uni-
versals, the entailment relation (inclusion) between universals is not
the same as the participation relation (membership). Considerable
effort was expended in the history of logic to clearly understand the
difference between inclusion and membership, e.g., between the
copulas in *“All roses are beautiful”” and “The rose is beautiful.”

In category theory, the participation relation w is the uniquely-
factors-through relation and the universals are self-participating. If ug
entails ur, then x p ug implies x p ug. Since ug p ug, it follows that
uc p ug. Conversely, if ug pug, then x pug implies that x factors
through ug. But since factors-through reflects the property F, x is an
instance of F and thus x u ur. Hence if ug entails ug, then ug p ur,
and vice versa. Thus for the concrete universals of category theory,

Entailment relation = Participation relation restricted to
universals.

To speak in a philosophical mode for illustrative purposes, let “The
Rose’ and ‘“The Beautiful’ be the concrete universals for the respective
properties. In the theory of concrete universals, the universal state-
ment “All roses are beautiful” and the singular statement “The Rose
is beautiful” are equivalent. Both express the proposition that The
Rose participates in (i.e., entails) The Beautiful, and that proposition is
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distinct from the statement ‘““The rose is beautiful” (about a plant in
my backyard).

For a category theoretic example of entailment (or participation)
between universals, let G((f, g)) be the property of being morphisms
from some common domain into a and b that commute with a
morphism j: a— b, i.e., jf = g. Let Fi(f, g)) be the property of simply
being morphisms from a common domain into a and b. Clearly the
following logical implication holds:

for any (f, g), if G({f, g)) then F((f, g)).

By the universality conditions for the universals ug ={(p,, p») and
up = (m, m),

for any (f, g), if {f, g) u{pa, pp), then (f, g) u(m, m),

SO (pa, py) entails {1, m,). Since (p,, py) participates in (1, m,), there
is a unique factor morphism I;{p,, py)— (m, m). If the ambient
category C is the category of sets, the common domain limG of
{Pa,> P») can be represented as the subset of the cartesian product a X b
consisting of the ordered pairs (x, j(x)) for x in the set a, so i is the
embedding i: limG— a X b.

13. CONCLUDING REMARKS

Whitehead described European philosophy as a series of footnotes to
Plato, and the Theory of Forms was central to Plato’s thought. The
interpretation of category theory as the theory of concrete universals
provides a rigorous self-predicative mathematical model for Plato’s
Theory of Forms.

Logic becomes concrete in category theory as the theory of con-
crete universals. A property F can be realized concretely as an object
which is the universal ur. The fact that x is an F-instance can be
realized concretely by an object which the unique participation mor-
phism x — ur. A universal implication (x)(G(x) = F(x)) can be real-
ized concretely by an object which is the unique participation mor-
phism ug— ur wherein one universal ‘brings-on’ or entails another
universal.

What is the relevance of category theory to the foundations of
mathematics? Today, this question might be answered by pointing to
Lawvere and Tierney’s theory of topoi (e.g., Lawvere, 1972; Lawvere
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et al., 1975; or Hatcher, 1982). Topos theory can be viewed as a
categorically-formulated generalization of set theory to abstract sheaf
theory. A set can be viewed as a sheaf of sets on the one-point space,
and much of the machinery of set theory can be generalized to sheaves
(e.g., the author’s 1971 dissertation (1974) generalizing the
ultraproduct construction to sheaves on a topological space). Since
much of mathematics can be formulated in set theory, it can be
reconstructed with many variations in topoi.

The concept of category theory as the logic of concrete universals
presents quite a different picture of the foundational relevance of
category theory. Topos theory is important in its own right as a
generalization of set theory, but it does not exclusively capture cate-
gory theory’s foundational contribution. Concrete universals do not
“generalize” abstract universals, so as the theory of concrete uni-
versals, category theory does not try to generalize set theory, the
theory of abstract universals. Category theory presents the theory of
the other type of universals, the self-participating or concrete uni-
versals.

Category theory is relevant to foundations in a different way than
set theory. As the theory of concrete universals, category theory does
not attempt to derive all of mathematics from a single theory. Instead,
category theory’s foundational relevance is that it provides uni-
versality concepts to characterize the important structures or forms
throughout mathematics.

The Working Mathematician knows that the importance of category
theory is that it provides a criterion of importance in mathematics.
Category theory provides the concepts to isolate the universal in-
stance from among all the instances of a property. The Concrete
Universal is the most important instance of a property because it
represents the property in a paradigmatic way. It shows the essence of
the property without any imperfections. All other instances have the
property by virtue of participating in the Concrete Universal.
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