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Double-Entry Accounting:

The Mathematical Formulation and

Generalization

David Ellerman*

Although double-entry accounting has been used in the business world for

5 centuries, the mathematical formulation of the double entry method is almost

completely unknown. In this paper, the usual case of scalars is given first and

then generalized to the multi-dimensional case of vectors. The success in main-

taining the two-sided accounts, debits and credits, the double-entry principle,

and the trial balance in both cases provides strong evidence that the formula-

tion correctly captures the double-entry method in mathematical form.

Introduction

Double-entry bookkeeping illustrates
one of the most astonishing examples of
intellectual insulation between disci-
plines, in this case, between accounting
and mathematics. Double-entry book-
keeping (DEB) was developed during
the fifteenth century and was recorded in
1494 as a system by the Italian math-
ematician Luca Pacioli [1914]. Double-
entry book-keeping has been used

for over five centuries in commercial
accounting systems. If the mathematical
formulation of any field should be well
understood, one would think it might
be accounting. Remarkably, however,
the mathematical formulation of double
entry accounting — algebraic operations
on ordered pairs of numbers — is largely
unknown, particularly in the field of
accounting.

The mathematical basis for a precise
treatment of DEB was developed in the
nineteenth century by William Rowan
Hamilton as an abstract mathematical
construction using ordered pairs to deal
with the complex numbers [Hamilton
1837]. The multiplicative version of this
construction is the “group of fractions”
which uses ordered pairs of whole num-
bers (written vertically) to enlarge the
system of positive whole numbers to the
system of positive fractions containing

- multiplicative inverses (just reverse the

entries in a fraction to get its inverse).
The ordered pairs construction that is
relevant to conventional DEB is the
additive case called the “group of differ-
ences.”! It is used to construct a number
system with “additive inverses” by using
operations on ordered pairs of posi-

tive numbers including zero (unsigned
numbers). All that is required to grasp
the connection with DEB is to make the
identification:

ordered pairs (horizontally written)
of numbers in group of differences
construction = two-sided T-accounts

of DEB (debits on the left side and
credits on the right side).

In view of this identification, the
group of differences (or fractions in the
multiplicative case) will be called the
Pacioli group.

In spite of some attention to DEB by
mathematicians [e.g., DeMorgan 1869,
Cayley 1894, and Kemeny et al. 1962],
this connection has not been noted

in mathematics (not to mention in
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accounting) with one perhaps solitary

exception. In a semi-popular book, D. E.

Littlewood noted the connection:
The bank associates two totals with
each customer’s account, the total of
moneys credited and the total of mon-
eys withdrawn. The net balance is then
regarded as the same if, for example,
the credit amounts of £102 and the
debit £100, as if the credit were £52
and the debit £50. If the debit exceeds

the credit the balance is negative.

This model is adopted in the defini-
tion of signed integers. Consider pairs
of cardinal numbers (a, b) in which the

first number corresponds to the debit,
and the second to the credit. [1960, 18]

With this exception, the author has not
been able to find a single mathematics
book or paper, elementary or advanced,
popular or esoteric, which notes that the
ordered pairs of the group of differ-
ences construction are the T-accounts
used in the business world for about five
centuries.

Is the Pacioli group the correct formula-
tion of DEB? One acid test of a math-
ematical formulation of a theory is the
question of whether or not it facilitates
the generalization of the theory. Normal
bookkeeping does not deal with incom-
mensurate physical quantities; everything
1s expressed in the common units of
moncey. Is there a generalization of DEB
to deal with multi-dimensional incom-
mensurates with no common measure
of value (e.g., multiple “bottom lines” or
environmental accounting)?

In the literature on the mathemat-

1cs of accounting there was a proposed

“solution” to this question, a system of

multi-dimensional physical accounting

[see Ijir1 1965, 1966, and 1967]. In this

system, most of the normal structure of

DEB was lost:

* there was no balance sheet equation,

* there were no equity or proprietorship
accounts,

* the temporary or nominal accounts
could not be closed, and

« the “trial balance” did not balance.

It is common for certain aspects of a
theory to be lost in a generalization of
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the theory. The accounting community
had apparently accepted the failure of all
these features of DEB as the necessary
price to be paid to generalize DEB to
incommensurate physical quantities. For
example, the systems of “Double-entry

multidimensional accounting” previously
published in the accounting literature
[see also Charnes et al. 1976, or Hase-
man and Whinston 1976] had acqui-
esced in the absence of the balance-sheet
equation.

For instance, the convenient idea of an
accounting identity is lost since the di-
mensional and metric comparability it as-
sumes 1s no longer present except under
special circumstances. [Ijiri 1967, 333]

Yet when DEB is mathematically
formulated using the group of differ-
ences, then the generalization to vectors
of incommensurate physical quantities is
immediate and trivial. A/ of the normal
features of DEB — such as the balance-
sheet equation, the equity account, the
temporary accounts, and the trial balance
—are preserved in the generalization [see
Ellerman 1982, 1985, 1986]. Thus the
“accepted” generalized model of DEB
was simply a failed attempt at general-
ization which had been “received” as a
successful generalization that unfortu-
nately had to “sacrifice” certain features

of DEB.

Due to this remarkable intellectual
insulation between mathematics and
accounting, the successful mathematical
treatment and generalization of double-
entry bookkeeping (first published a
quarter-century ago) will take many
more years to become known and under-
stood in accounting.

The Pacioli Group

Multi-dimensional accounting is based
on the group of differences or Pa-

cioli group construction starting with
non-negative vectors. The usual case

of accounting can be identified with

the special case using one dimensional
vectors or scalars. A vector x = (x,,...,X )
is non-negative it and only if all its
components X, are non-negative (positive
or zero). The ordered puirs of non-nega-

tive vectors will be called Taccounts.
The left-hand side (LHS) vector d is
the debit entry and the right-hand side
(RHS) vector ¢ is the credit entry.
T-account: [d // ¢] = [debit vector //

credit vector].?

The algebraic operations on T-accounts
are much like the operations on fractions
except that addition is substituted for
multiplication. In order to illustrate the
additive-multiplicative analogy between
T-accounts and fractions, the basic
definitions will be developed in parallel
columns. For a fraction or “multiplicative
T-account”, we may take the numerator
as the debit entry and the denominator
as the credit entry.

The Pacioli group P* consists of the
ordered pairs [x // y] of non-negative
n-dimensional vectors, with the above
definition of addition and equality. The
Pacioli group P is isomorphic with all of
R" (the set of all n-vectors with positive
and negative components) under two
isomorphisms: the debit isomorphism,
which associates [w // x] with w—x, and
the credit isomorphism, which associates
[w // x] with x—w. In order to translate
from T-accounts [x // y] back and forth
to general vectors z, one needs to specify
whether to use the debit or credit iso-
morphism. This will be done by labeling
the T-account as debit balance or credit
balance. Thus if a T-account [x // y] is
debit balance, the corresponding vector
1s x~y, and if it is credit balance, then the
corresponding vector is y—x.

The Double-Entry Method: Scalar Case
Given an equation w + .. + X =y + ... + 7,
it is not possible to change just one term
in the equation and have it still hold.

2) The double-slash notation was suggested by Pacioli. At the beginning of each entry, we always provide per’, because, first, the debtor must be given, and immediately after the creditor,

the one separated from the other by two little slanting parallels (wirgolette), thus, //,... " [Pacioli 1914, 43]




Table 1
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Additive Case Multiplicative Case

Operation on T-accounts

Identity element for operation

Equality between two T-accounts.

Inverses

“Disjointness” of two T-accounts

“Reduced form” for a T-account

Unique reduced form representation

Example

Two or more terms must be changed.
The fact that two or more terms (or
“accounts”) must be changed is 7oz the

basis for the double-entry method. That

mathematical fact is a characteristic of
the transaction itself (the changes in

the equation), not a characteristic of the

method of recording the transaction.

The double-entry method is a method
of encoding an equation using ordered
pairs or T-accounts and using unsigned

T-accounts add together by adding
debits to debits and credits to credits
(w//x]+[y//z]=[w+y// x+z].

The identity element for addition is
the zeroT-account [0 // 0].

Given two T-accounts [w // x]and [y // 2],
the cross-sums are the two vectors
obtained by adding the credit entry in one
T-account to the debit entry in the other
T-account. The equivalence relation
between T-accounts is defined by setting
two T-accounts equal if their cross-sums
areequal:[w//x]=[y//z]ifw+z=x+y.

The negative or additive inverse of a
T-account is obtained by reversing the debit
and credit entries:—[w // x] =[x //w].

Given two vectors x = (x1,.,.xn) and y =
(y1,..,yn), let max(x,y) be the vector with
the maximum of xi and yi as its ith
component, and let min(x,y) be the vector
with the minimum of xi and yi as its

ith component.

Two non-negative vectors x and y are said
to be disjoint if min(xy) = o.

AT-account [x // y] is in reduced form if x
andy are disjoint.

Every T-account [x // y] has a unigue
reduced representation
[x-min(x,y) // y-min(x,y)].

Consider the T-account

((12,3,8) // (10,5, 4)].

The minimum of the debit and credit
vectors is (10,3, 4) so the reduced form
representation is

[(2,0,4) //(0,2,0)].

numbers (non-negative numbers) to re-
cord transactions to make changes in the
equation. While there is unfortunately
considerable confusion about this in the
accounting literature, the doubleness of
“double-entry” is the two-sidedness of
the T-accounts and the mathematical
properties that follow (e.g., equal debits
and credits in a transaction, and equal
debits and credits in the trial balance of
the whole set of accounts or ledger).

Fractions multiply together by multiplying
numerator times numerator and
denominator times denominator
(W/x)(y/z) = (wy/xz).

The identity element for multiplication
is the unit fraction (1/1).

Given two fractions (w/x) and (y/z), the
cross-multiples are the two integers
obtained by multiplying the numerator of
one with the denominator of the other.
The equivalence relation between fractions
is defined by setting two fractions equal if
their cross-multiples are equal:

(w/x) = (y/z) if wz = xy.

The multiplicative inverse of a fraction is
obtained by reversing the numerator and
denominator: (w/x)-1 = (x/w).

Given two integers w and x, let lcm(w,x) be
the least common multiple of w and x, and
let gcd(w,x) be the greatest common divisor
of w and x (the largest integer dividing
both).

Two integers w and x are said to be
relatively prime if gcd(w,x) = 1.

A fraction (w/x) is in lowest terms if w
and x are relatively prime.

Each fraction (w/x) has a unique
representation in lowest terms
(w/gcd(w,x))/(x/gcd(w,x)).

Consider the fraction (28/35).

The greatest common divisor of the
numerator and denominator is 7 so the
fraction in lowest terms is (4/5).

The alternative to the double entry
method is to record a transaction by
making a single entry of adding a signed
(positive or negative) number to each
affected account. Two or more accounts
in the equation would sall always be
affected by this alternative method of
recording a transaction (since that is a
property of the transaction itself, not of
the recording method). Such a system is
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a complete accounting system to update Assets Liabilities Equity

the balance sheet equation but would Original equation zero-account:  [15000 // 0] [0 /7 10000] [0 // 5000]
have no two-sided T-accounts, no debits +Transaction 1 zero-account: [0 /7 1200] [1200 // 0]

or credits, no double entry principle +Transaction 2 zero-account: [1500 // 0] [0 // 1500]
(equal debits and credits in a transac- +Transaction 3 zero-account: [0 /7 800] [800 // 0]

tion), and no trial balance of adding

debits and credits. = Ending equation zero-account: [16500//2000]  [800 // 10000]  [1200 // 6500]
Unfortunately, the phrase “single entry = (in reduced form) [14500 // 0] [0 /7 9200] [0 /7 5300].

accounting” is also used to denote simply
an incomplete accounting “system” (e.g.,
no equity account) where there is no
equation to be updated. But without

an equation, that is not an alternative
“system” at all. The real choice between
the double entry method and the com-
plete single entry method of recording a
transaction is the choice between using
unsigned (“single-sided”) numbers in
two-sided accounts or signed (“two-sid-
ed”) numbers in “single-sided” accounts.

Consider an example of a company
with the simplified initial balance sheet

equation:
Assets = Liabilities + Equity
15000 = 10000 + 5000.

Eguation 1: Beginning Scalar Balance
Sheet

It is customary in accounting (although
not mathematically necessary) to move
each term or “account” to the side of

the equation so that it is preceded by a
plus sign. A T-account equal to the zero
T-account [0 // 0] is called a zero-account.
Equations encode as zero-accounts. Each
left-hand side (LHS) term x is encoded
as a debit-balance T-account [x // 0] and
each right-hand side (RHS) term y is
encoded as a credit-balance T-account

[0 // y]. These T-accounts then would
add up to the zero-account [0 // 0]. The
balance sheet equation thus encodes as an
equation zero-account which, by leaving
out the plus signs, becomes the following
initial ledger of T-accounts.

Assets Liabilities Equity
[15000//0] [0 //10000] [0 //5000]
Equation 2: Beginning Ledger of T-Ac-

counts

Consider three transactions in a

productive firm.

1.$1200 of input inventories are used
up and charged directly to equity.

2.$1500 of product is produced, sold,
and added directly to equity.

3.$800 principal payment is made on

Lquation 3: Initial Ledger + Journal = Ending Ledger

a loan.

Each transaction is then encoded as a
transactional zero-account and added to
the appropriate terms of the equational
zero-account. For instance, the first
transaction subtracts 1200 from Assets
and subtracts 1200 from Equity. The
Assets account is encoded as a LHS or
debit-balance account so the subtracting

of a number from it would be encoded as
adding the T-account [0 // 1200] to it.
Equity 1s encoded as a RHS or credit-
balance term so subtracting 1200 from it
would be encoded as adding [1200 // 0]
to it. The other transactions are encoded
in a similar manner.

The initial T-accounts in the ledger

add up to the zero account (initial trial
balance). Each transaction is encoded as
two or more T-accounts that add to the
zero-account (double entry principle).
Zero added to zero equals zero. Thus
adding the transaction zero-accounts to
the initial equation zero-account (post-
ing journal to ledger) will yield another
equation zero-account (which can be
checked by taking another trial balance).
Each T-account is then decoded accord-
ing to how whether it was encoded as
debit balance or credit balance to obtain
the ending balance sheet equation.

Assets = Liabilities  +
14500 9200 +
Equation 4: Ending Balance Sheet
Equation

Equity
5300.

The Double-Entry Method: General Case
The general case of the double-entry
method starts with an equation between
sums of n-dimensional vectors. Vector
equations are first encoded in the Pacioli
group constructed from the non-negative
n-dimensional vectors. Since the vectors
in a T-account must be non-negative,

we must first develop a way to separate

out the positive and negative compo-
nents of a vector. The positive part of a
vector X is x* = max(x,0), the maximum
of x and the zero vector [note that “0” is
used, depending on the context, to refer
to the zero scalar or the zero vector].
The negative part of x is x~ = -min(x,0),
the negative of the minimum of x and
the zero vector. Both the positive and
negative parts of a vector x are non-
negative vectors.” Every vector x has a
“Jordan decomposition” x = x* - x*. The
two 1somorphisms that map vectors to
T-accounts 0fnon~neg;1tive vectors are
the debit isomorphism that maps x to
the T-account [x* // x] and the credit
isomorphism that maps x to [x // x°].

Given any equation in Rn, w + ... + x

=y + ... + z, each left-hand side (LHS)
vector x 1s encoded via the debit isomor-
phism as a debit-balance T-account [x*
// x7] and each right-hand side (RHS)
vector y is encoded via the credit iso-
morphism as a credit-balance T-account
[v // y']. Then the original equation
holds if and only the sum of the encoded



T—B.CCOLlIltS isa Zero-account:

Wt . +X=y+..+2
if and only if
[w/wl+o+x/x]+ly //y]+..
+ [z // 2] is a zero-account.
Equation 5: Encoding an Equation as an
Equation Zero-Account

Given the equation, the sum of the
encoded T-accounts is the equation zero-
account of the equation. Since only plus
signs can appear between the T-accounts
in an equational zero-account, the plus
signs can be left implicit. The listing of
the T-accounts in an equational zero-
account (without the plus signs) is the
ledger.

Changes in the various terms or “ac-
counts” in the beginning equation are
recorded as fransactions. Transactions
must be recorded as valid algebraic
operations which transform equations
into equations. Since equations encode
as zero-accounts, a valid algebraic opera-
tion would transform zero-accounts into
zero-accounts. There is only one such
operation 1n the Pacioli group: add on a
zero-account. Zero plus zero equals zero.
The zero-accounts representing transac-
tions are called fransaction zero-accounts.
The listing of the transactional zero-ac-
counts is the journal.

A series of valid additive operations on a
vector equation can then be presented in
the following standard scheme:

Beginning Equation Zero-Account
+ Transaction Zero-Accounts
= Ending Equation Zero-Account

or, in more conventional terminology,

Beginning Ledger
+ Journal

= Ending Ledger.

The process of adding the transac-

tion zero-accounts to the initial ledger

to obtain the ledger at the end of the
accounting period is called posting the
Journal to the ledger. The fact that a trans-
action zero-account is equal to [0 // 0] is
traditionally expressed as the double-entry
principle that transactions are recorded
with equal debits and credits. The sum-
ming of the debit and credit sides of
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what should be an equation zero-account
to check that it is indeed a zero-account
1s traditionally called the zria/ balance. All
those features from scalar case of DEB
carry over to the general vector case.

At the end of the cycle, the ending equa-
tional zero-account is decoded to obtain
the equation that results from the alge-

braic operations represented in the trans-
actions. The T-accounts in an equational
zero-account can be arbitrarily parti-
tioned into two sets: DB (debit balance)
and CB (credit balance). T-accounts [w
// x] in DB are decoded as w—x on the
left side of the equation, and T-accounts
[w // x] in CB are decoded as x-w on
the right side of the equation. Given a
zero-account, this algorithm yields an
equation. In an accounting application,
the T-accounts in the final equation
zero-account would be partitioned into
sets DB and CB according to the side
of the initial equation from which they
were encoded.

Consider the following initial vector
equation:

(67 _3) 10) + (_2) 5) _2) = (47 27 8)
Equation 6: Sample Vector Eguation to be
Encoded

It encodes as the equation zero-account

[(6,0,10) //(0,3,0)] + [(0,5,0) // (2,0,
2)] +[(0,0,0) // (4,2, 8)].

Equation 7: Equation Encoded as a Zero
T-Account

Suppose that the transaction would sub-
tract the vector (=2, -9, 1) from the first
vector on the LHS and from the vector
on the RHS side of the original equation
to obtain the ending equation:

(87 67 9) + (_27 5) _2) = (6) 117 7)‘
Eguation 8: Ending Vector Equation

To perform this operation using the
double-entry method, the subtracting

of the vector (-2, -9, 1) from the first
LHS term is encoded using the credit
isomorphism to get [(2,9,0)//(0,0,1)]
which is added to the first LHS or debit-
balance term in the T-account version of
the original equation. In more traditional

terminology, we would say that (-2,

=9, 1) is “credited” to that debit-bal-
ance account. For the subtraction from
the RHS term, the vector is encoded
using the debit isomorphism to obtain
[(0,0,1)//(2,9,0)] and added to the cred-
it-balance T-account version of the RHS
term. That is, (=2, -9, 1) is “debited” to
that credit-balance account. This yields
another equational zero-account:

Original Equation zero-account:

[(6,0,10)//(0,3,0)] + [(0,5,0)//(2,0,2)] +

[(0,0,0)//(4,2,8)]
+ Transaction Zero-account:
[(2,9,00/7(0,0,1)]  +[(0,0,1)//(2,9,0)]

Ending equation zero-account:
((8,9,10)//(0,3,1)] + [(0,5,0)//(2,0,2)] +
[(0,0,1)//(6,11,8)].

Equation 9: Beginning Ledger + Journal =
Ending Ledger

After a number of such transactions,
the ending equation zero-account is
then decoded to obtain an equation
back in Rn. In this case, let the first two
T-accounts be debit-balance and the
third one credit-balance (as they were
originally encoded). Then the ending
equational zero-account decodes as the
vector equation

(87 6) 9) + (_27 57 _2) = (67 11) 7)
Equation 10: Decoded Ending Equation

In the scalar case, a T-account will
always have a reduced form either as [d

// 0] or [0 // ¢] so that adding [d // 0]




to an account (a term in the equational
zero-account) can be described as “debit-
ing d to the account” and similarly for
“crediting c to the account.” For vector
T-accounts, the reduced form of a T-
account does not necessarily have the
zero vector on one side or the other. In
the case above, the reduced form of the
T-account encoding of (-2, -9, 1) would
be “mixed.” The “debit” takes the form of
adding the T-account [(0,0,1)//(2,9,0)]
obtained using the debit isomorphism to
a term, and the “credit” takes the form
of adding the inverse [(2,9,0)//(0,0,1)]
obtained by the credit isomorphism to
another term.
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bookkeeping starts with the analogy
between the ordered pairs construction
of additive inverses and T-accounts. That
allows the concrete procedures of DEB
to be reproduced abstractly using the
group of differences construction, and
then to be extended from ordered pairs of
non-negative scalars to ordered pairs of
non-negative vectors to obtain the system
of n-dimensional DEB. The immediate
and straightforward generalization of

the ordered pairs treatment to n-dimen-
sional vectors and to fractions — with the
main structure and principles of DEB
preserved — supports the thesis that this
treatment captures the mathematical es-

accounting literature about the “double-
ness” that is characteristic of DEB. The
conventional wisdom is still that the
doubleness refers to the fact that each
transaction must affect two or more
accounts (see any textbook) when that

1s a characteristic of the transaction
itself, not the recording method. Any
complete accounting system, such as

the double entry method using “single-
sided” numbers (no minus signs) with
double-sided accounts, or a complete
single-entry system using “double-sided”
numbers (positive or negative) in single-
sided accounts, must change two or more
accounts in recording a transaction.

sence of the double-entry method.

Concluding Remarks

“Mathematics is the study of analogies
between analogies.”[Rota 1997, 214] The
mathematical analysis of double-entry
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