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Abstract Categorical logic has shown that modern logic is essentially the logic of
subsets (or “subobjects”). In “subset logic,” predicates are modeled as subsets of a
universe and a predicate applies to an individual if the individual is in the subset.
Partitions are dual to subsets so there is a dual logic of partitions where a “distinc-
tion” [an ordered pair of distinct elements (u, u′) from the universe U ] is dual to an
“element”. A predicate modeled by a partition π on U would apply to a distinction
if the pair of elements was distinguished by the partition π , i.e., if u and u′ were
in different blocks of π . Subset logic leads to finite probability theory by taking the
(Laplacian) probability as the normalized size of each subset-event of a finite universe.
The analogous step in the logic of partitions is to assign to a partition the number of
distinctions made by a partition normalized by the total number of ordered |U |2 pairs
from the finite universe. That yields a notion of “logical entropy” for partitions and
a “logical information theory.” The logical theory directly counts the (normalized)
number of distinctions in a partition while Shannon’s theory gives the average number
of binary partitions needed to make those same distinctions. Thus the logical theory
is seen as providing a conceptual underpinning for Shannon’s theory based on the
logical notion of “distinctions.”
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1 Towards a logic of partitions

In ordinary logic, a statement P(a) is formed by a predicate P(x) applying to an
individual name “a” (which could be an n-tuple in the case of relations). The pred-
icate is modeled by a subset SP of a universe set U and an individual name such as
“a” would be assigned an individual ua ∈ U (an n-tuple in the case of relations).
The statement P(a) would hold in the model if ua ∈ SP . In short, logic is modeled
as the logic of subsets of a set. Largely due to the efforts of William Lawvere, the
modern treatment of logic was reformulated and vastly generalized using category
theory in what is now called categorical logic. Subsets were generalized to subobjects
or “parts” (equivalence classes of monomorphisms) so that logic has become the logic
of subobjects.1

There is a duality between subsets of a set and partitions2 on a set. “The dual
notion (obtained by reversing the arrows) of ‘part’ is the notion of partition” Lawvere
and Rosebrugh (2003, p. 85). In category theory, this emerges as the reverse-the-
arrows duality between monomorphisms (monos), e.g., injective set functions, and
epimorphisms (epis), e.g., surjective set functions, and between subobjects and quo-
tient objects. If modern logic is formulated as the logic of subsets, or more generally,
subobjects or “parts”, then the question naturally arises of a dual logic that might play
the analogous role for partitions and their generalizations.

Quite aside from category theory duality, it has long been noted in combinatorial
mathematics, e.g., in Gian-Carlo Rota’s work in combinatorial theory and probability
theory (Baclawski and Rota 1979), that there is a type of duality between subsets of a
set and partitions on a set. Just as subsets of a set are partially ordered by inclusion, so
partitions on a set are partially ordered by refinement.3 Moreover, both partial order-
ings are in fact lattices (i.e., have meets and joins) with a top element̂1 and a bottom
element ̂0. In the lattice of all subsets P(U ) (the power set) of a set U , the meet and
join are, of course, intersection and union while the top element is the universe U and
the bottom element is the null set ∅. In the lattice of all partitions �(U ) on a non-empty
set U , there are also meet and join operations (defined later) while the bottom element
is the indiscrete partition (the “blob”) where all of U is one block and the top element
is the discrete partition where each element of U is a singleton block.4

1 See Lawvere and Rosebrugh (2003) Appendix A for a good treatment.
2 A partition π on a set U is usually defined as a mutually exclusive and jointly exhaustive set {B}B∈π

of subsets or “blocks” B ⊆ U . Every equivalence relation on a set U determines a partition on U (with
the equivalence classes as the blocks) and vice-versa. For our purposes, it is useful to think of partitions as
binary relations defined as the complement to an equivalence relation in the set of ordered pairs U ×U . Intu-
itively, they have complementary functions in the sense that equivalence relations identify while partitions
distinguish elements of U .
3 A partition π more refined than a partition σ , written σ � π , if each block of π is contained in some
block of σ . Much of the older literature (e.g., Birkhoff 1948, Example 6, p. 2) writes this relationship the
other way around but, for reasons that will become clear, we are adopting a newer way of writing refinement
(e.g., Gray 1990) so that the more refined partition is higher in the refinement ordering.
4 Rota and his students have developed a logic for a special type of equivalence relation (which is rather
ubiquitous in mathematics) using join and meet as the only connectives Finberg et al. (1996).
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This paper is part of a research programme to develop the general dual logic of par-
titions. The principal novelty in this paper is an analogy between the usual semantics
for subset logic and a suggested semantics for partition logic; the themes of the paper
unfold from that starting point. Starting with the analogy between a subset of a set and
a partition on the set, the analogue to the notion of an element of a subset is the notion of
a distinction of a partition which is simply an ordered pair (u, u′) ∈ U × U in distinct
blocks of the partition.5 The logic of subsets leads to finite probability theory where
events are subsets S of a finite sample space U and which assigns probabilities Prob(S)

to subsets (e.g., the Laplacian equiprobable distribution where Prob(S) = |S|/|U |).
Following the suggested analogies, the logic of partitions similarly leads to a “log-
ical” information theory where the numerical value naturally assigned to a partition
can be seen as the logical information content or logical entropy h(π) of the parti-
tion. It is initially defined in a Laplacian manner as the number of distinctions that a
partition makes normalized by the number of ordered pairs of the universe set U . The
probability interpretation of h(π) is the probability that a random pair from U × U
is distinguished by π , just as Prob(S) is the probability that a random choice from
U is an element of S. This logical entropy is precisely related to Shannon’s entropy
measure (Shannon 1948) so the development of logical information theory can be seen
as providing a new conceptual basis for information theory at the basic level of logic
using “distinctions” as the conceptual atoms.

Historically and conceptually, probability theory started with the simple logical
operations on subsets (e.g., union, intersection, and complementation) and assigned a
numerical measure to subsets of a finite set of outcomes (number of favorable outcomes
divided by the total number of outcomes). Then probability theory “took off” from
these simple beginnings to become a major branch of pure and applied mathematics.

The research programme for partition logic that underlies this paper sees Shan-
non’s information theory as “taking off” from the simple notions of partition logic in
analogy with the conceptual development of probability theory that starts with sim-
ple notions of subset logic. But historically, Shannon’s information theory appeared
“as a bolt out of the blue” in a rather sophisticated and axiomatic form. Moreover,
partition logic is still in its infancy today, not to mention the over half a century ago
when Shannon’s theory was published.6 But starting with the suggested semantics
for partition logic (i.e., the subset-to-partition and element-to-distinction analogies),
we develop the partition analogue (“counting distinctions”) of the beginnings of finite
probability theory (“counting outcomes”), and then we show how it is related to the

5 Intuitively we might think of an element of a set as an “it.” We will argue that a distinction or “dit” is
the corresponding logical atom of information. In economics, there is a basic distinction between rivalrous
goods (where more for one means less for another) such a material things (“its”) in contrast to non-rivalrous
goods (where what one person acquires does not take away from another) such as ideas, knowledge, and
information (“bits” or “dits”). In that spirit, an element of a set represents a material thing, an “it,” while
the dual notion of a distinction or “dit” represents the immaterial notion of two “its” being distinct. The
distinction between u and u′ is the fact that u �= u′, not a new “thing” or “it.” But for mathematical purposes
we may represent a distinction by a pair of distinct elements such as the ordered pair (u, u′) which is a
higher level “it,” i.e., an element in the Cartesian product of a set with itself (see next section).
6 For instance, the conceptual beginnings of probability theory in subset logic is shown by the role of
Boolean algebras in probability theory, but what is the corresponding algebra for partition logic?
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already-developed information theory of Shannon. It is in that sense that the devel-
opments in the paper provide a logical or conceptual foundation (“foundation” in the
sense of a basic conceptual starting point) for information theory.7

The following table sets out some of the analogies in a concise form (where the
diagonal in U × U is �U = {(u, u)|u ∈ U }).
Table of analogies Subsets Partitions

“Atoms” Elements Distinctions
All atoms Universe U (all u ∈ U ) =̂1 Discrete partition̂1 (all dits)
No atoms Null set ∅ (no u ∈ U ) =̂0 Indiscrete partition̂0 (no dits)
Model of proposition or event Subset S ⊆ U Partition π on U
Model of individual or outcome Element u in U Distinction (u, u′) in U ×U −�U
Prop. holds or event occurs Element u in subset S Partition π distinguishes (u, u′)
Lattice of propositions/events Lattice of all subsets P(U ) Lattice of all partitions �(U )

Counting measure (U finite) # elements in S # dits (as ordered pairs) in π

Normalized count (U finite) Prob(S) = # elements in S
|U | h(π) = #distinctions in π

|U×U |
Prob. Interpretation (U finite) Prob(S) = probability that h(π) = probability random pair

random element u is in S (u, u′) is distinguished by π

These analogies show one set of reasons why the lattice of partitions �(U ) should
be written with the discrete partition as the top element and the indiscrete partition
(blob) as the bottom element of the lattice—in spite of the usual convention of writing
the “refinement” ordering the other way around as what Gian-Carlo Rota called the
“unrefinement ordering.”

With this motivation, we turn to the development of this conceptual basis for infor-
mation theory.

2 Logical information theory

2.1 The closure space U × U

Claude Shannon’s classic 1948 articles (Shannon 1948) developed a statistical theory
of communications that is ordinarily called “information theory.” Shannon built upon
the work of Ralph Hartley (1928) twenty years earlier. After Shannon’s information
theory was presented axiomatically, there was a spate of new definitions of “entropy”
with various axiomatic properties but without concrete (never mind logical) interpre-
tations (Kapur 1994). Here we take the approach of starting with a notion that arises
naturally in the logic of partitions, dual to the usual logic of subsets. The notion of a
distinction or “dit” is taken as the logical atom of information and a “logical infor-
mation theory” is developed based on that interpretation. When the universe set U is
finite, then we have a numerical notion of “information” or “entropy” h(π) of a parti-
tion π in the number of distinctions normalized by the number of ordered pairs. This

7 Perhaps an analogy will be helpful. It is as if the axioms for probability theory had first emerged full-blown
from Kolmogorov (1956) and then one realized belatedly that the discipline could be seen as growing out
of the starting point of operations on subsets of a finite space of outcomes where the logic was the logic of
subsets.
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logical “counting distinctions” notion of information or entropy can then be related to
Shannon’s measure of information or entropy.

The basic conceptual unit in logical information theory is the distinction or dit
(from “DIsTinction” but motivated by “bit”). A pair (u, u′) of distinct elements of
U are distinguished by π , i.e., form a dit of π , if u and u′ are in different blocks
of π .8 A pair (u, u′) are identified by π and form an indit (from INDIsTinction or
“identification”) of the partition if they are contained in the same block of π . A par-
tition on U can be characterized by either its dits or indits (just as a subset S of U
can be characterized by the elements added to the null set to arrive at S or by the
elements of U thrown out to arrive at S). When a partition π is thought of as deter-
mining an equivalence relation, then the equivalence relation, as a set of ordered pairs
contained in U × U = U 2, is the indit set indit(π) of indits of the partition. But from
the view point of logical information theory, the focus is on the distinctions, so the
partition π qua binary relation is given by the complementary dit set dit(π) of dits
where dit(π) = (U × U ) − indit(π) = indit(π)c. Rather than think of the partition
as resulting from identifications made to the elements of U (i.e., distinctions excluded
from the discrete partition), we think of it as being formed by making distinctions
starting with the blob. This is analogous to a subset S being thought of as the set of
elements that must be added to the null set to obtain S rather than the complemen-
tary approach to S by giving the elements excluded from U to arrive at S. From this
viewpoint, the natural ordering σ � π of partitions would be given by the inclusion
ordering of dit-sets dit(σ ) ⊆ dit(π) and that is exactly the new way of writing the
refinement relation that we are using, i.e.,

σ � π iff dit(σ ) ⊆ dit(π).

There is a natural (“built-in”) closure operation on U × U so that the equivalence
relations on U are given (as binary relations) by the closed sets. A subset C ⊆ U 2 is
closed if it contains the diagonal {(u, u) | u ∈ U }, if (u, u′) ∈ C implies (u′, u) ∈ C ,
and if (u, u′) and (u′, u′′) are in C , then (u, u′′) is in C . Thus the closed sets of U 2

are the reflexive, symmetric, and transitive relations, i.e., the equivalence relations
on U . The intersection of closed sets is closed and the intersection of all closed sets
containing a subset S ⊆ U 2 is the closure S of S.

It should be carefully noted that the closure operation on the closure space U 2 is
not a topological closure operation in the sense that the union of two closed set is not
necessarily closed. In spite of the closure operation not being topological, we may still
refer to the complements of closed sets as being open sets, i.e., the dit sets of partitions
on U . As usual, the interior int(S) of any subset S is defined as the complement of
the closure of its complement: int(S) = (Sc)c.

The open sets of U ×U ordered by inclusion form a lattice isomorphic to the lattice
�(U ) of partitions on U . The closed sets of U ×U ordered by inclusion form a lattice

8 One might also develop the theory using unordered pairs {u, u′} but the later development of the theory
using probabilistic methods is much facilitated by using ordered pairs (u, u′). Thus for u �= u′, (u, u′) and
(u′, u) count as two distinctions. This means that the count of distinctions in a partition must be normalized
by |U × U |. Note that U × U includes the diagonal self-pairs (u, u) which can never be distinctions.
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isomorphic to �(U )op, the opposite of the lattice of partitions on U (formed by turn-
ing around the partial order). The motivation for writing the refinement relation in the
old way was probably that equivalence relations were thought of as binary relations
indit(π) ⊆ U × U , so the ordering of equivalence relations was written to reflect the
inclusion ordering between indit-sets. But since a partition and an equivalence relation
were then taken as essentially the “same thing,” i.e., a set {B}B∈π of mutually exclu-
sive and jointly exhaustive subsets (“blocks” or “equivalence classes”) of U , that way
of writing the ordering carried over to partitions. But we identify a partition π as a
binary relation with its dit-set dit(π) = U ×U − indit (π) so our refinement ordering
is the inclusion ordering between dit-sets (the opposite of the inclusion ordering of
indit-sets).9

Given two partitions π and σ on U , the open set corresponding to the join π ∨ σ

of the partitions is the partition whose dit-set is the union of their dit-sets:10

dit (π ∨ σ) = dit (π) ∪ dit (σ ).

The open set corresponding to the meet π ∧ σ of partitions is the interior of the
intersection of their dit-sets:11

dit (π ∧ σ) = int(dit (π) ∩ dit (σ )).

The open set corresponding to the bottom or blob ̂0 is the null set ∅ ⊆ U × U (no
distinctions) and the open set corresponding to the discrete partition or top ̂1 is the
complement of the diagonal, U × U − �U (all distinctions).

2.2 Some set structure theorems

Before restricting ourselves to finite U to use the counting measure |dit (π)|, there are
a few structure theorems that are independent of cardinality. If the “atom” of informa-
tion is the dit then the atomic information in a partition π “is” its dit set, dit (π). The
information common to two partitions π and σ , their mutual information set, would
naturally be the intersection of their dit sets (which is not necessarily the dit set of a
partition):

Mut(π, σ ) = dit (π) ∩ dit (σ ).

9 One way to establish the duality between elements of subsets and distinctions in a partition is to start with
the refinement relation as the partial order in the lattice of partitions �(U ) analogous to the inclusion partial
order in the lattice of subsets P(U ). Then the mapping π �−→ dit (π) represents the lattice of partitions
as the lattice of open subsets of the closure space U × U with inclusion as the partial order. Then the
analogue of the elements in the subsets of P(U ) would be the elements in the subsets dit (π) representing
the partitions, namely, the distinctions.
10 Note that this union of dit sets gives the dit set of the “meet” in the old reversed way of writing the
refinement ordering.
11 Note that this is the “join” in the old reversed way of writing the refinement ordering. This operation
defined by the interior operator of the non-topological closure operation leads to “anomolous” results such
as the non-distributivity of the partition lattice—in contrast to the distributivity of the lattice of open sets
of a topological space.
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Shannon deliberately defined his measure of information so that it would be “additive”
in the sense that the measure of information in two independent probability distribu-
tions would be the sum of the information measures of the two separate distributions
and there would be zero mutual information between the independent distributions.
But this is not true at the logical level with information defined as distinctions. There
is always mutual information between two non-blob partitions—even though the inte-
rior of Mut(π, σ ) might be empty, i.e., int(Mut(π, σ )) = int(dit (π) ∩ dit (σ )) =
dit (π ∧ σ) might be empty so that π ∧ σ =̂0.

Proposition 1 Given two partitions π and σ on U with π �=̂0 �= σ , Mut(π, σ ) �= ∅.12

Proof Since π is not the blob, consider two elements u and u′ distinguished by π but
identified by σ [otherwise (u, u′) ∈ Mut(π, σ )]. Since σ is also not the blob, there
must be a third element u′′ not in the same block of σ as u and u′. But since u and u′
are in different blocks of π , the third element u′′ must be distinguished from one or the
other or both in π . Hence (u, u′′) or (u′, u′′) must be distinguished by both partitions
and thus must be in their mutual information set Mut(π, σ ). 
�

The closed and open subsets of U 2 can be characterized using the usual notions of
blocks of a partition. Given a partition π on U as a set of blocks π = {B}B∈π , let
B × B ′ be the Cartesian product of B and B ′. Then

indit (π) = ⋃

B∈π

B × B

dit (π) = ⋃

B �=B′
B,B′∈π

B × B ′ = U × U − indit (π) = indit (π)c.

The mutual information set can also be characterized in this manner.

Proposition 2 Given partitions π and σ with blocks {B}B∈π and {C}C∈σ , then

Mut(π, σ )= ⋃

B∈π,C∈σ

(B−(B ∩ C)) × (C−(B ∩ C))=
⋃

B∈π,C∈σ

(B − C) × (C − B).

Proof The union (which is a disjoint union) will include the pairs (u, u′) where for
some B ∈ π and C ∈ σ , u ∈ B − (B ∩ C) and u′ ∈ C − (B ∩ C). Since u′ is in C but
not in the intersection B ∩ C , it must be in a different block of π than B so (u, u′) ∈
dit (π). Symmetrically, (u, u′) ∈ dit (σ ) so (u, u′) ∈ Mut(π, σ ) = dit (π) ∩ dit (σ ).
Conversely if (u, u′) ∈ Mut(π, σ ) then take the B containing u and the C contain-
ing u′. Since (u, u′) is distinguished by both partitions, u �∈ C and u′ �∈ B so that
(u, u′) ∈ (B − (B ∩ C)) × (C − (B ∩ C)). 
�

12 The contrapositive of this proposition is interesting. Given two equivalence relations E1, E2 ⊆ U2, if
every pair of elements u, u′ ∈ U is identified by one or the other of the relations, i.e., E1 ∪ E2 = U2, then
either E1 = U2 or E2 = U2.
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2.3 Logical information theory on finite sets

For a finite set U , the (normalized) “counting distinctions” measure of information
can be defined and compared to Shannon’s measure for finite probability distributions.
Since the information set of a partition π on U is its set of distinctions dit (π), the
un-normalized numerical measure of the information of a partition is simply the count
of that set, |dit (π)| (“dit count”). But to account for the total number of ordered pairs
of elements from U , we normalize by |U ×U | = |U |2 to obtain the logical information
content or logical entropy of a partition π as its normalized dit count:

h(π) = |dit (π)|
|U×U | .

Probability theory started with the finite case where there was a finite set U
of possibilities (the finite sample space) and an event was a subset S ⊆ U . Under
the Laplacian assumption that each outcome was equiprobable, the probability of the
event S was the similar normalized counting measure of the set:

Prob(S) = |S|
|U | .

This is the probability that any randomly chosen element of U is an element of the
subset S. In view of the dual relationship between being in a subset and being distin-
guished by a partition, the analogous concept would be the probability that an ordered
pair (u, u′) of elements of U chosen independently (i.e., with replacement13) would
be distinguished by a partition π , and that is precisely the logical entropy h(π) =
|dit (π)|/|U × U | (since each pair randomly chosen from U × U is equiprobable).

Probabilistic interpretation: h(π ) = probability a random pair is distinguished by π .

In finite probability theory, when a point is sampled from the sample space U , we say
the event S occurs if the point u was an element in S ⊆ U . When a random pair (u, u′)
is sampled from the sample space U × U , we say the partition π distinguishes14 if
the pair is distinguished by the partition, i.e., if (u, u′) ∈ dit (π) ⊆ U × U . Then just
as we take Prob(S) as the probability that the event S occurs, so the logical entropy
h(π) is the probability that the partition π distinguishes.

Since dit (π ∨ σ) = dit (π) ∪ dit (σ ),

probability that π ∨ σ distinguishes = h(π ∨ σ ) = probability that π or σ distinguishes .

The probability that a randomly chosen pair would be distinguished by π and σ

would be given by the relative cardinality of the mutual information set which is called
the mutual information of the partitions:

13 Drawing with replacement would allow diagonal pairs (u, u) to be drawn and requires |U × U | as the
normalizing factor.
14 Equivalent terminology would be “differentiates” or “discriminates.”
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Mutual logical information: m(π, σ )= | Mut(π, σ )|
|U |2 = probability that π and σ distinguishes.

Since the cardinality of intersections of sets can be analyzed using the inclusion–
exclusion principle, we have:

| Mut(π, σ )| = |dit (π) ∩ dit(σ )| = |dit (π)| + |dit (σ )| − |dit (π) ∪ dit (σ )|.

Normalizing, the probability that a random pair is distinguished by both partitions is
given by the modular law:

m(π, σ ) = |dit (π) ∩ dit (σ )|
|U |2 = |dit (π)|

|U |2 + |dit (σ )|
|U |2 − |dit (π) ∪ dit (σ )|

|U |2
= h(π) + h(σ ) − h(π ∨ σ).

This can be extended by the inclusion–exclusion principle to any number of partitions.
The mutual information set Mut(π, σ ) is not the dit-set of a partition but its interior
is the dit-set of the meet so the logical entropies of the join and meet satisfy the:

Submodular inequality: h(π ∧ σ) + h(π ∨ σ) ≤ h(π) + h(σ ).

2.4 Using general finite probability distributions

Since the logical entropy of a partition on a finite set can be given a simple probabilis-
tic interpretation, it is not surprising that many methods of probability theory can be
harnessed to develop the theory. The theory for the finite case can be developed at two
different levels of generality, using the specific Laplacian equiprobability distribution
on the finite set U or using an arbitrary finite probability distribution. Correctly formu-
lated, all the formulas concerning logical entropy and the related concepts will work
for the general case, but our purpose is not mathematical generality. Our purpose is to
give the basic motivating example of logical entropy based on “counting distinctions”
and to show its relationship to Shannon’s notion of entropy, thereby clarifying the
logical foundations of the latter concept.

Every probability distribution on a finite set U gives a probability pB for each block
B in a partition π but for the Laplacian distribution, it is just the relative cardinality
of the block: pB = |B|

|U | for blocks B ∈ π . Since there are no empty blocks, pB > 0
and

∑

B∈π pB = 1. Since the dit set of a partition is dit (π) = ⋃

B �=B′
B × B ′, its size

is |dit (π)| = ∑

B �=B′ |B||B ′| = ∑

B∈π |B||U − B|. Thus the logical information
or entropy in a partition as the normalized size of the dit set can be developed as
follows:

h (π) =
∑

B �=B′ |B||B′|
|U |×|U | =

∑

B �=B′
pB pB′ =

∑

B∈π

pB (1 − pB) = 1 −
∑

B∈π

p2
B .
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Having defined and interpreted logical entropy in terms of the distinctions of a set
partition, we may, if desired, “kick away the ladder” and define the logical entropy of
any finite probability distribution p = {p1, . . . , pn} as:

h (p) = ∑n
i=1 pi (1 − pi ) = 1 − ∑n

i=1 p2
i .

The probabilistic interpretation is that h(p) is the probability that two independent
draws (from the sample space of n points with these probabilities) will give distinct
points.15

2.5 A brief history of the logical entropy formula: h(p) = 1 − ∑

i p2
i

The logical entropy formula h(p) = 1 − ∑

i p2
i was motivated as the normalized

count of the distinctions made by a partition, |dit (π)|/|U |2, when the probabilities
are the block probabilities pB = |B|

|U | of a partition on a set U (under a Laplacian

assumption). The complementary measure 1 − h(p) = ∑

i p2
i would be motivated

as the normalized count of the identifications made by a partition, |indit (π)|/|U |2,
thought of as an equivalence relation. Thus 1 − ∑

i p2
i , motivated by distinctions, is

a measure of heterogeneity or diversity, while the complementary measure
∑

i p2
i ,

motivated by identifications, is a measure of homogeneity or concentration. Histor-
ically, the formula can be found in either form depending on the particular con-
text. The pi ’s might be relative shares such as the relative share of organisms of
the i th species in some population of organisms, and then the interpretation of pi

as a probability arises by considering the random choice of an organism from the
population.

According to I. J. Good, the formula has a certain naturalness: “If p1, . . . , pt are
the probabilities of t mutually exclusive and exhaustive events, any statistician of this
century who wanted a measure of homogeneity would have take about two seconds
to suggest

∑

p2
i which I shall call ρ.” Good (1982, p. 561) As noted by Bhargava and

Uppuluri (1975), the formula 1 − ∑

p2
i was used by Gini in (1912 reprinted in Gini

(1955, p. 369)) as a measure of “mutability” or diversity. But another development
of the formula (in the complementary form) in the early twentieth century was in
cryptography. The American cryptologist, William F. Friedman, devoted a 1922 book
(Friedman 1922) to the “index of coincidence” (i.e.,

∑

p2
i ). Solomon Kullback (see

the Kullback-Leibler divergence treated later) worked as an assistant to Friedman and
wrote a book on cryptology which used the index Kullback (1976).

During World War II, Alan M. Turing worked for a time in the Government Code
and Cypher School at the Bletchley Park facility in England. Probably unaware of

15 Note that we can always rephrase in terms of partitions by taking h(p) as the entropy h(̂1) of discrete
partition on U = {u1, . . . , un} with the pi ’s as the probabilities of the singleton blocks {ui } of the discrete
partition.
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the earlier work, Turing used ρ = ∑

p2
i in his cryptoanalysis work and called it the

repeat rate since it is the probability of a repeat in a pair of independent draws from a
population with those probabilities (i.e., the identification probability 1−h(p)). Polish
cryptoanalyists had independently used the repeat rate in their work on the Enigma
(Rejewski 1981).

After the war, Edward H. Simpson, a British statistician, proposed
∑

B∈π p2
B as a

measure of species concentration (the opposite of diversity) where π is the partition
of animals or plants according to species and where each animal or plant is considered
as equiprobable. And Simpson gave the interpretation of this homogeneity measure
as “the probability that two individuals chosen at random and independently from the
population will be found to belong to the same group” Simpson (1949, p. 688). Hence
1−∑

B∈π p2
B is the probability that a random ordered pair will belong to different spe-

cies, i.e., will be distinguished by the species partition. In the biodiversity literature
(Ricotta and Szeidl 2006), the formula is known as “Simpson’s index of diversity”
or sometimes, the “Gini-Simpson diversity index.” However, Simpson along with
I. J. Good worked at Bletchley during WWII, and, according to Good, “E. H. Simpson
and I both obtained the notion [the repeat rate] from Turing” Good (1979, p. 395).
When Simpson published the index in 1948, he (again, according to Good) did not
acknowledge Turing “fearing that to acknowledge him would be regarded as a breach
of security” Good (1982, p. 562).

In 1945, Albert O. Hirschman (1945, p. 159 and 1964) suggested using
√

∑

p2
i

as an index of trade concentration (where pi is the relative share of trade in a cer-
tain commodity or with a certain partner). A few years later, Orris Herfindahl (1950)
independently suggested using

∑

p2
i as an index of industrial concentration (where

pi is the relative share of the i th firm in an industry). In the industrial economics
literature, the index H = ∑

p2
i is variously called the Hirschman–Herfindahl index,

the HH index, or just the H index of concentration. If all the relative shares were
equal (i.e., pi = 1/n), then the identification or repeat probability is just the prob-
ability of drawing any element, i.e., H = 1/n, so 1

H = n is the number of equal
elements. This led to the “numbers equivalent” interpretation of the reciprocal of the
H index (Adelman 1969). In general, given an event with probability p0, the “num-
bers-equivalent” interpretation of the event is that it is ‘as if’ an element was drawn
out of a set of 1

p0
equiprobable elements (it is ‘as if’ since 1/p0 need not be an integer).

This numbers-equivalent idea is related to the “block-count” notion of entropy defined
later.

In view of the frequent and independent discovery and rediscovery of the for-
mula ρ = ∑

p2
i or its complement 1 − ∑

p2
i by Gini, Friedman, Turing, Hirschman,

Herfindahl, and no doubt others, I. J. Good wisely advises that “it is unjust to associate
ρ with any one person” Good (1982, p. 562).16

16 The name “logical entropy” for 1 − ∑

p2
i not only denotes the basic status of the formula, it avoids

“Stigler’s Law of Eponymy”: “No scientific discovery is named after its original discoverer” Stigler (1999,
p. 277).
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After Shannon’s axiomatic introduction of his entropy (Shannon 1948), there was a
proliferation of axiomatic entropies with a variable parameter.17 The formula 1−∑

p2
i

for logical entropy appeared as a special case for a specific parameter value in several
cases. During the 1960s, Aczél and Daróczy (1975) developed the generalized entro-
pies of degree α:

Hα
n (p1, . . . , pn) =

∑

i pα
i − 1

(21−α − 1)

and the logical entropy occurred as half the value for α = 2. That formula also appeared
as Havrda-Charvat’s structural α-entropy (Havrda and Charvat 1967):

S(p1, . . . , pn, ;α) = 2α−1

2α−1 − 1

(

1 −
∑

i

pα
i

)

and the special case of α = 2 was considered by Vajda (1969).
Patil and Taillie (1982) defined the diversity index of degree β in 1982:

�β = 1 − ∑

i pβ+1
i

β

and Tsallis (1988) independently gave the same formula as an entropy formula in
1988:

Sq(p1, . . . , pn) = 1 − ∑

i pq
i

q − 1

where the logical entropy formula occurs as a special case (β = 1 or q = 2). While the
generalized parametric entropies may be interesting as axiomatic exercises, our pur-
pose is to emphasize the specific logical interpretation of the logical entropy formula
(or its complement).

From the logical viewpoint, two elements from U = {u1, . . . , un} are either iden-
tical or distinct. Gini (1912) introduced di j as the “distance” between the i th and
j th elements where di j = 1 for i �= j and dii = 0. Since 1 = (p1 + · · · + pn)

(p1 + · · · + pn) = ∑

i p2
i + ∑

i �= j pi p j , the logical entropy, i.e., Gini’s index of

mutability, h(p) = 1 − ∑

i p2
i = ∑

i �= j pi p j , is the average logical distance between
a pair of independently drawn elements. But one might generalize by allowing other
distances di j = d ji for i �= j (but always dii = 0) so that Q = ∑

i �= j di j pi p j would
be the average distance between a pair of independently drawn elements from U . In

17 There was no need for Shannon to present his entropy concept axiomatically since it was based on a
standard concrete interpretation (expected number of binary partitions needed to distinguish a designated
element) which could then be generalized. The axiomatic development encouraged the presentation of other
“entropies” as if the axioms eliminated or, at least, relaxed any need for an interpretation of the “entropy”
concept.
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1982, C. R. (Calyampudi Radhakrishna) Rao introduced precisely this concept as qua-
dratic entropy (Rao 1982) (which was later rediscovered in the biodiversity literature
as the “Avalanche Index” by Ganeshaish et al. (1997). In many domains, it is quite
reasonable to move beyond the bare-bones logical distance of di j = 1 for i �= j so
that Rao’s quadratic entropy is a useful and easily interpreted generalization of logical
entropy.

3 Relationship between the logical and Shannon entropies

3.1 The search approach to find the “Sent Message”

The logical entropy h(π) = ∑

B∈π pB(1− pB) in this form as an average over blocks
allows a direct comparison with Shannon’s entropy H(π) = ∑

B∈π pB log2(
1

pB
) of

the partition which is also an average over the blocks. What is the connection between
the block entropies h(B) = 1 − pB and H(B) = log2(

1
pB

)? Shannon uses reasoning
(shared with Hartley) to arrive at a notion of entropy or information content for an
element out of a subset (e.g., a block in a partition as a set of blocks). Then for a par-
tition π , Shannon averages the block values to get the partition value H(π). Hartley
and Shannon start with the question of the information required to single an element
u out of a set U , e.g., to single out the sent message from the set of possible messages.
Alfred Renyi has also emphasized this “search-theoretic” approach to information
theory (see Rényi 1965, 1970, or numerous papers in Rényi (1976)).18

One intuitive measure of the information obtained by determining the designated
element in a set U of equiprobable elements would just be the cardinality |U | of the set,
and, as we will see, that leads to a multiplicative “block-count” version of Shannon’s
entropy. But Hartley and Shannon wanted the additivity that comes from taking the
logarithm of the set size |U |. If |U | = 2n then this allows the crucial Shannon inter-
pretation of log2(|U |) = n as the minimum number of yes-or-no questions (binary
partitions) it takes to single out any designated element (the “sent message”) of the set.
In a mathematical version of the game of twenty questions (like Rényi’s Hungarian
game of “Bar-Kochba”), think of each element of U as being assigned a unique binary
number with n digits. Then the minimum n questions can just be the questions asking
for the i th binary digit of the hidden designated element. Each answer gives one bit
(short for “binary digit”) of information. With this motivation for the case of |U | = 2n ,
Shannon and Hartley take log(|U |) as the measure of the information required to sin-
gle out a hidden element in a set with |U | equiprobable elements.19 That extends the
“minimum number of yes-or-no questions” motivation from |U | = 2n to any finite set

18 In Gian-Carlo Rota’s teaching, he supposed that the Devil had picked an element out of U and would not
reveal its identity. But when given a binary partition (i.e., a yes-or-no question), the Devil had to truthfully
tell which block contained the hidden element. Hence the problem was to find the minimum number of
binary partitions needed to force the Devil to reveal the hidden element.
19 Hartley used logs to the base 10 but here all logs are to base 2 unless otherwise indicated. Instead of
considering whether the base should be 2, 10, or e, it is perhaps more important to see that there is a natural
base-free variation Hm (π) on Shannon’s entropy (see “block-count entropy” defined below).
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U with |U | equiprobable elements. If a partition π had equiprobable blocks, then the
Shannon entropy would be H(B) = log(|π |) where |π | is the number of blocks.

To extend this basic idea to sets of elements which are not equiprobable (e.g., par-
titions with unequal blocks), it is useful to use an old device to restate any positive
probability as a chance among equiprobable elements. If pi = 0.02, then there is a 1
in 50 = 1

pi
chance of the i th outcome occurring in any trial. It is “as if” the outcome

was one among 1/pi equiprobable outcomes.20 Thus each positive probability pi has
an associated equivalent number 1/pi which is the size of the hypothetical set of
equiprobable elements so that the probability of drawing any given element is pi .21

Given a partition {B}B∈π with unequal blocks, we motivate the block entropy
H(B) for a block with probability pB by taking it as the entropy for a hypothetical
numbers-equivalent partition πB with 1

pB
equiprobable blocks, i.e.,

H(B) = log(|πB |) = log

(

1

pB

)

.

With this motivation, the Shannon entropy of the partition is then defined as the arith-
metical average of the block entropies:

Shannon’s entropy: H(π) =
∑

B∈π

pB H(B) =
∑

B∈π

pB log

(

1

pB

)

.

This can be directly compared to the logical entropy h(π) = ∑

B∈π pB(1 − pB)

which arose from quite different distinction-based reasoning (e.g., where the search
of a single designated element played no role). Nevertheless, the formula

∑

B∈π pB

(1− pB) can be viewed as an average over the quantities which play the role of “block
entropies” h(B) = (1 − pB). But this “block entropy” cannot be directly interpreted
as a (normalized) dit count since there is no such thing as the dit count for a single
block. The dits are the pairs of elements in distinct blocks.

For comparison purposes, we may nevertheless carry over the heuristic reasoning to
the case of logical entropy. For each block B, we take the same hypothetical numbers-
equivalent partition πB with |U |

|B| = 1
pB

equal blocks of size |B| and then take the desired
block entropy h(B) as the normalized dit count h(πB) for that partition. Each block
contributes pB(1 − pB) to the normalized dit count and there are |U |/|B| = 1/pB

blocks in πB so the total normalized dit count simplifies to: h(πB) = 1
pB

pB(1− pB) =
1 − pB = h(B), which we could take as the logical block entropy. Then the aver-

age of these logical block entropies gives the logical entropy h(π) = ∑

B∈π pBh(B)

20 Since 1/pi need not be an integer (or even rational), one could interpret the equiprobable “number
of elements” as being heuristic or one could restate it in continuous terms. The continuous version is the
uniform distribution on the real interval [0, 1/pi ] where the probability of an outcome in the unit interval
[0, 1] is 1/(1/pi ) = pi .
21 In continuous terms, the numbers-equivalent is the length of the interval [0, 1/pi ] with the uniform
distribution on it.
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= ∑

B∈π pB(1− pB) of the partition π , all in the manner of the heuristic development
of Shannon’s H(π) = ∑

B∈π pB log( 1
pB

).
There is, however, no need to go through this reasoning to arrive at the logical en-

tropy of a partition as the average of block entropies. The interpretation of the logical
entropy as the normalized dit count survives the averaging even though all the blocks
of π might have different sizes, i.e., the interpretation “commutes” with the averaging
of block entropies. Thus h(π) is the actual dit count (normalized) for a partition π , not
just the average of block entropies h(B) that could be interpreted as the normalized
dit counts for hypothetical partitions πB .

The interpretation of the Shannon measure of information as the minimum number
of binary questions it takes to single out a designated block does not commute with
the averaging over the set of different-sized blocks in a partition. Hence the Shannon
entropy of a partition is the expected number of bits it takes to single out the desig-
nated block while the logical entropy of a partition on a set is the actual number of
dits (normalized) distinguished by the partition.

The last step in connecting Shannon entropy and logical entropy is to rephrase the
heuristics behind Shannon entropy in terms of “making all the distinctions” rather
than “singling out the designated element.”

3.2 Distinction-based treatment of Shannon’s entropy

The search-theoretic approach was the heritage of the original application of infor-
mation theory to communications where the focus was on singling out a designated
element, the sent message. In the “twenty questions” version, one person picks a hid-
den element and the other person seeks the minimum number of binary partitions
on the set of possible answers to single out the answer. But it is simple to see that
the focus on the single designated element was unnecessary. The essential point was
to make all the distinctions to separate the elements—since any element could have
been the designated one. If the join of the minimum number of binary partitions did
not distinguish all the elements into singleton blocks, then one could not have picked
out the hidden element if it was in a non-singleton block. Hence the distinction-based
treatment of Shannon’s entropy amounts to rephrasing the above heuristic argument in
terms of “making all the distinctions” rather than “making the distinctions necessary
to single out any designated element.”

In the basic example of |U | = 2n where we may think of the 2n like or equiprob-
able elements as being encoded with n binary digit numbers, then n = log( 1

1/2n ) is
the minimum number of binary partitions (each partitioning according to one of the n
digits) necessary to make all the distinctions between the elements, i.e., the minimum
number of binary partitions whose join is the discrete partition with singleton blocks
(each block probability being pB = 1/2n). Generalizing to any set U of equiprobable
elements, the minimum number of bits necessary to distinguish all the elements from
each other is log( 1

1/|U | ) = log(|U |). Given a partition π = {B}B∈π on U , the block

entropy H(B) = log( 1
pB

) is the minimum number of bits necessary to distinguish
all the blocks in the numbers-equivalent partition πB , and the average of those block
entropies gives the Shannon entropy: H(π) = ∑

B∈π pB log( 1
pB

).
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The point of rephrasing the heuristics behind Shannon’s definition of entropy in
terms of the average bits needed to “make all the distinctions” is that it can then be
directly compared with the logical definition of entropy which is simply the total num-
ber of distinctions normalized by |U |2. Thus the two definitions of entropy boil down
to two different ways of measuring the totality of distinctions. A third way to measure
the totality of distinctions, called the “block-count entropy,” is defined below. Hence
we have our overall theme that these three notions of entropy boil down to three ways
of “counting distinctions.”

3.3 Relationships between the block entropies

Since the logical and Shannon entropies have formulas presenting them as averages
of block-entropies, h(π) = ∑

B∈π pB(1 − pB) and H(π) = ∑

B∈π pB log( 1
pB

), the
two notions are precisely related by their respective block entropies, h(B) = 1 − pB

and H(B) = log( 1
pB

). Solving each for pB and then eliminating it yields the:

Block entropy relationship: h (B) = 1 − 1
2H(B) and H (B) = log

(

1
1−h(B)

)

.

The block entropy relation, h(B) = 1− 1
2H(B) , has a simple probabilistic interpretation.

Thinking of H(B) as an integer, H(B) is the Shannon entropy of the discrete partition
on U with |U | = 2H(B) elements while h(B) = 1 − 1

2H(B) = 1 − pB is the logical

entropy of that partition since 1/2H(B) is the probability of each block in that discrete
partition. The probability that a random pair is distinguished by a discrete partition
is just the probability that the second draw is distinct from the first draw. Given the
first draw from a set of 2H(B) individuals, the probability that the second draw (with
replacement) is different is 1 − 1

2H(B) = h(B).
To summarize the comparison up to this point, the logical theory and Shannon’s

theory start by posing different questions which then turn out to be precisely related.
Shannon’s statistical theory of communications is concerned with determining the sent
message out of a set of possible messages. In the basic case, the messages are equi-
probable so it is abstractly the problem of determining the hidden designated element
out of a set of equiprobable elements which, for simplicity, we can assume has 2n

elements. The process of determining the hidden element can be conceptualized as the
process of asking binary questions which split the set of possibilities into equiproba-
ble parts. The answer to the first question determines which subset of 2n−1 elements
contains the hidden element and that provides 1 bit of information. An independent
equal-blocked binary partition would split each of the 2n−1 element blocks into equal
blocks with 2n−2 elements each. Thus 2 bits of information would determine which of
those 22 blocks contained the hidden element, and so forth. Thus n independent equal-
blocked binary partitions would determine which of the resulting 2n blocks contains
the hidden element. Since there are 2n elements, each of those blocks is a singleton so
the hidden element has been determined. Hence the problem of finding a designated
element among 2n equiprobable elements requires log(2n) = n bits of information.
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The logical theory starts with the basic notion of a distinction between elements
and defines the logical information in a set of distinct 2n elements as the (normalized)
number of distinctions that need to be made to distinguish the 2n elements. The dis-
tinctions are counted as ordered rather than unordered pairs (in order to better apply
the machinery of probability theory) and the number of distinctions or dits is normal-
ized by the number of all ordered pairs. Hence a set of 2n distinct elements would
involve |U × U − �U | = 2n × 2n − 2n = 22n − 2n = 2n(2n − 1) distinctions which
normalizes to 22n−2n

22n = 1 − 1
2n .

There is, however, no need to motivate Shannon’s entropy by focusing on the search
for a designated element. The task can equivalently be taken as distinguishing all ele-
ments from each other rather than distinguishing a designated element from all the
other elements. The connection between the two approaches can be seen by computing
the total number of distinctions made by intersecting the n independent equal-blocked
binary partitions in Shannon’s approach.

Example of counting distinctions Doing the computation, the first partition which
creates two sets of 2n−1 elements each thereby creates 2n−1×2n−1 = 22n−2 distinc-
tions as unordered pairs and 2 × 22n−2 = 22n−1 distinctions as ordered pairs. The
next binary partition splits each of those blocks into equal blocks of 2n−2 elements.
Each split block creates 2n−2 × 2n−2 = 22n−4 new distinctions as unordered pairs
and there were two such splits so there are 2 × 22n−4 = 22n−3 additional unordered
pairs of distinct elements created or 22n−2 new ordered pair distinctions. In a sim-
ilar manner, the third partition creates 22n−3 new dits and so forth down to the nth

partition which adds 22n−n new dits. Thus in total, the intersection of the n inde-
pendent equal-blocked binary partitions has created 22n−1 +22n−2 +· · ·+22n−n =
2n(2n−1 + 2n−2 + · · · + 20) = 2n( 2n−1

2−1 ) = 2n(2n − 1) (ordered pair) distinctions
which are all the dits on a set with 2n elements. This is the instance of the block en-
tropy relationship h(B) = 1− 1

2H(B) when the block B is a singleton in a 2n element

set so that H(B) = log( 1
1/2n ) = log(2n) = n and h(B) = 1 − 1

2H(B) = 1 − 1
2n .

Thus the Shannon entropy as the number of independent equal-blocked binary par-
titions it takes to single out a hidden designated element in a 2n element set is also the
number of independent equal-blocked binary partitions it takes to distinguish all the
elements of a 2n element set from each other.

The connection between Shannon entropy and logical entropy boils down to two
points.

1. The first point is the basic fact that for binary partitions to single out a hidden ele-
ment (“sent message”) in a set is the same as the partitions distinguishing any pair
of distinct elements (since if a pair was left undistinguished, the hidden element
could not be singled out if it were one of the elements in that undistinguished
pair). This gives what might be called the distinction interpretation of Shannon
entropy as a count of the binary partitions necessary to distinguish between all the
distinct messages in the set of possible messages in contrast to the usual search
interpretation as the binary partition count necessary to find the hidden designated
element such as the sent message.
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2. The second point is that in addition to the Shannon count of the binary partitions
necessary to make all the distinctions, we may use the logical measure that is
simply the (normalized) count of the distinctions themselves.

3.4 A coin-weighing example

The logic of the connection between joining independent equal-blocked partitions and
efficiently creating dits is not dependent on the choice of base 2. Consider the coin-
weighing problem where one has a balance scale and a set of 3n coins all of which
look alike but one is counterfeit (the hidden designated element) and is lighter than the
others. The coins might be numbered using the n-digit numbers in mod 3 arithmetic
where the three digits are 0, 1, and 2. The n independent ternary partitions are arrived at
by dividing the coins into three piles according to the i th digit as i = 1, . . . , n. To use
the n partitions to find the false coin, two of the piles are put on the balance scale. If one
side is lighter, then the counterfeit coin is in that block. If the two sides balance, then the
light coin is in the third block of coins not on the scale. Thus n weighings (i.e., the join
of n independent equal-blocked ternary partitions) will determine the n ternary digits
of the false coin, and thus the ternary Shannon entropy is log3(

1
1/3n ) = log3(3

n) = n
trits. As before we can interpret the joining of independent partitions not only as the
most efficient way to find the hidden element (e.g., the false coin or the sent message)
but as the most efficient way to make all the distinctions between the elements of the set.

The first partition (separating by the first ternary digit) creates 3 equal blocks of
3n−1 elements each so that creates 3×3n−1×3n−1 = 32n−1 unordered pairs of distinct
elements or 2 × 32n−1 ordered pair distinctions. The partition according to the second
ternary digit divides each of these three blocks into three equal blocks of 3n−2 ele-
ments each so the additional unordered pairs created are 3×3×3n−2 ×3n−2 = 32n−2

or 2 × 32n−2 ordered pair distinctions. Continuing in this fashion, the nth ternary
partition adds 2 × 32n−n dits. Hence the total number of dits created by joining the n
independent partitions is:

2 × [32n−1 + 32n−2 . . . + 3n] = 2 × [3n(3n−1 + 3n−2 . . . + 1)]
= 2 × [3n (3n − 1)

3 − 1
] = 3n(3n − 1)

which is the total number of ordered pair distinctions between the elements of the 3n

element set. Thus the Shannon measure in trits is the minimum number of ternary par-
titions needed to create all the distinctions between the elements of a set. The base-3
Shannon entropy is H3(π) = ∑

B∈π pB log3(
1

pB
) which for this example of the dis-

crete partition on a 3n element set U is H3(̂1) = ∑

u∈U
1
3n log3(

1
1/3n ) = log3(3

n) = n
which can also be thought of as the block value entropy for a singleton block so that we
may apply the block value relationship. The logical entropy of the discrete partition
on this set is: h(̂1) = 3n(3n−1)

32n = 1 − 1
3n which could also be thought of as the block
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value of the logical entropy for a singleton block. Thus the entropies for the discrete
partition stand in the block value relationship which for base 3 is:

h(B) = 1 − 1

3H3(B)
.

The example helps to show how the logical notion of a distinction underlies the
Shannon measure of information, and how a complete procedure for finding the hidden
element (e.g., the sent message) is equivalent to being able to make all the distinctions
in a set of elements. But this should not be interpreted as showing that the Shannon’s
information theory “reduces” to the logical theory. The Shannon theory is addressing
an additional question of finding the unknown element. One can have all the distinc-
tions between elements, e.g., the assignment of distinct base-3 numbers to the 3n coins,
without knowing which element is the designated one. Information theory becomes
a theory of the transmission of information, i.e., a theory of communication, when
that second question of “receiving the message” as to which element is the designated
one is the focus of analysis. In the coin example, we might say that the information
about the light coin was always there in the nature of the situation (i.e., taking “nature”
as the sender) but was unknown to an observer (i.e., on the receiver side). The coin
weighing scheme was a way for the observer to elicit the information out of the sit-
uation. Similarly, the game of twenty questions is about finding a way to uncover the
hidden answer—which was all along distinct from the other possible answers (on the
sender side). It is this question of the transmission of information (and the noise that
might interfere with the process) that carries Shannon’s statistical theory of com-
munications well beyond the bare-bones logical analysis of information in terms of
distinctions.

3.5 Block-count entropy

The fact that the Shannon motivation works for other bases than 2 suggests that there
might be a base-free version of the Shannon measure (the logical measure is already
base-free). Sometimes the reciprocal 1

pB
of the probability of an event B is interpreted

as the “surprise-value information” conveyed by the occurrence of B. But there is a bet-
ter concept to use than the vague notion of “surprise-value information.” For any posi-
tive probability p0, we defined the reciprocal 1

p0
as the equivalent numberof (equiprob-

able) elements (always “as it were” since it need not be an integer) since that is the num-
ber of equiprobable elements in a set so that the probability of choosing any particular
element is p0. The “big surprise” as a small probability event occurs means it is “as if” a
particular element was picked from a big set of elements. For instance, for a block prob-
ability pB = |B|

|U | , its numbers-equivalent is the number of blocks |U |
|B| = 1

pB
in the hypo-

thetical equal-blocked partition πB with each block equiprobable with B. Our task is to
develop this number-of-blocks or block-count measure of information for partitions.

The block-count block entropy Hm(B) is just the number of blocks in the hypothet-
ical number-of-equivalent-blocks partition πB where B is one of |U |

|B| = 1
pB

associated

similar blocks so that Hm(B) = 1
pB

.

123



138 Synthese (2009) 168:119–149

If events B and C were independent, then pB∩C = pB pC so the equivalent number
of elements associated with the occurrence of both events is the product 1

pB∩C
= 1

pB

1
pC

of the number of elements associated with the separate events. This suggests that the
average of the block entropies Hm(B) = 1

pB
should be the multiplicative average (or

geometric mean) rather than the arithmetical average.
Hence we define the number-of-equivalent blocks entropy or, in short, block-count

entropy of a partition π (which does not involve any choice of a base for logs) as the
geometric mean of block entropies:

Block-count entropy: Hm(π) = ∏

B∈π

Hm(B)pB = ∏

B∈π

(

1
pB

)pB
blocks .

Finding the designated block in π is the same on average as finding the designated
block in a partition with Hm(π) equal blocks. But since Hm(π) need not be an integer,
one might take the reciprocal to obtain the probability interpretation: finding the desig-
nated block in π is the same on average as the occurrence of an event with probability
1/Hm(π).

Given a finite-valued random variable X with the values {x1, . . . , xn} with the
probabilities {p1, . . . , pn}, the additive expectation is: E[X ] = ∑n

i=1 pi xi and the
multiplicative expectation is: Em[X ] = ∏n

i=1 x pi
i . Treating the block probability as

a random variable defined on the blocks of a partition, all three entropies can be
expressed as expectations:

Hm(π) = Em

[

1

pB

]

H(π) = E

[

log

(

1

pB

)]

h(π) = E[1 − pB] = 1 − E[pB].

The usual (additive) Shannon entropy is then obtained as the log2 version of this
“log-free” block-count entropy:

log2(Hm(π)) = log

(

∏

B∈π

(

1

pB

)pB
)

=
∑

B∈π

log

((

1

pB

)pB
)

=
∑

B∈π

pB log

(

1

pB

)

= H(π).

Or viewed the other way around, Hm(π) = 2H(π).22 The base 3 entropy encoun-
tered in the coin-weighing example is obtained by taking logs to that base: H3(π) =
log3(Hm(π)), and similarly for the Shannon entropy with natural logs: He(π) =
loge(Hm(π)), or with common logs: H10(π) = log10(Hm(π)).

22 Thus we expect the number-of-blocks entropy to be multiplicative where the usual Shannon entropy is
additive (e.g., for stochastically independent partitions) and hence the subscript on Hm (π).
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Note that this relation Hm(π) = 2H(π) is a result, not a definition. The block-count
entropy was defined from “scratch” in a manner similar to the usual Shannon entropy
(which thus might be called the “log2-of-block-count entropy” or “binary-partition-
count entropy”). In a partition of individual organisms by species, the interpretation
of 2H(π) (or eHe(π) when natural logs are used) is the “number of equally common
species” (MacArthur 1965, p. 514). MacArthur argued that this block-count entropy
(where a block is a species) will “accord much more closely with our intuition. . .”
(than the usual Shannon entropy).

The block-count entropy is the information measure that takes the count of a
set (of like elements) as the measure of the information in the set. That is, for the
discrete partition on U , each pB is 1

|U | so the block-count entropy of the discrete

partition is Hm(̂1) =
∏

u∈U

|U |1/|U | = |U | which could also be obtained as 2H(̂1) since

H(̂1) = log(|U |) is the log2-of-block-count Shannon entropy of̂1. Hence, the natural
choice of unit for the block-count entropy is “blocks” (as in Hm(̂1) = |U | blocks
in the discrete partition on U ). The block-count entropy of the discrete partition on
an equiprobable 3n element set is 3n blocks. Hence the Shannon entropy with base 3
would be the log3-of-block-count entropy: log3(Hm(̂1)) = log3(3

n) = n trits as in the
coin-weighing example above. The block value relationship between the block-count
entropy and the logical entropy in general is:

h(B) = 1 − pB = 1 − 1

1/pB
= 1 − 1

Hm(B)
= 1 − 1

2H(B)
= 1 − 1

3H3(B)

= 1 − 1

eHe(B)
= 1 − 1

10H10(B)

where Hm(B) = 1/pB = 2H(B) = 3H3(B) = eHe(B) = 10H10(B).

4 Analogous concepts for Shannon and logical entropies

4.1 Independent partitions

It is sometimes asserted that “information” should be additive for independent23 par-
titions but the underlying mathematical fact is that the block-count is multiplicative
for independent partitions and Shannon chose to use the logarithm of the block-count
as his measure of information.

If two partitions π = {B}B∈π and σ = {C}C∈σ are independent, then the block
counts (i.e., the block entropies for the block-count entropy) multiply, i.e., Hm(B ∩
C) = 1

pB∩C
= 1

pB

1
pC

= Hm(B)Hm(C). Hence for the multiplicative expectations we
have:

23 Recall the “independent” means stochastic independence so that partitions π and σ are independent if
for all B ∈ π and C ∈ σ , pB∩C = pB pC .
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Hm(π ∨ σ) =
∏

B,C

Hm(B ∩ C)pB∩C =
∏

B,C

[Hm(B)Hm(C)]pB pC

=
(

∏

B∈π

Hm(B)pB

) (

∏

C∈σ

Hm(C)pC

)

= Hm(π)Hm(σ ),

or taking logs to any desired base such as 2:

H(π ∨ σ) = log2(Hm(π ∨ σ)) = log2(Hm(π)Hm(σ )) = log2(Hm(π))

+ log2(Hm(σ )) = H(π) + H(σ ).

Thus for independent partitions, the block-count entropies multiply and the log-of-
block-count entropies add. What happens to the logical entropies? We have seen that
when the information in a partition is represented by its dit set dit (π), then the overlap
in the dit sets of any two non-blob partitions is always non-empty. The dit set of the
join of two partitions is just the union, dit (π ∨ σ) = dit (π) ∪ dit (σ ), so that union is
never a disjoint union (when the dit sets are non-empty). We have used the motivation
of thinking of a partition-as-dit-set dit (π) as an “event” in a sample space U ×U with
the probability of that event being the logical entropy of the partition. The following
proposition shows that this motivation extends to the notion of independence.

Proposition 3 If π and σ are (stochastically) independent partitions, then their dit
sets dit (π) and dit (σ ) are independent as events in the sample space U × U (with
equiprobable points).

Proof For independent partitions π and σ , we need to show that the probability
m(π, σ ) of the event Mut(π, σ ) = dit (π)∩dit (σ ) is equal to the product of the prob-
abilities h(π) and h(σ ) of the events dit (π) and dit (σ ) in the sample space U ×U . By
the assumption of independence, we have |B∩C|

|U | = pB∩C = pB pC = |B||C|
|U |2 so that

|B ∩ C | = |B||C |/|U |. By the previous structure theorem for the mutual information
set: Mut(π, σ ) = ⋃

B∈π,C∈σ

(B − (B ∩C))× (C − (B ∩C)), where the union is disjoint

so that:

| Mut(π, σ )| =
∑

B∈π,C∈σ

(|B| − |B ∩ C |)(|C | − |B ∩ C |)

=
∑

B∈π,C∈σ

(

|B| − |B||C |
|U |

)(

|C | − |B||C |
|U |

)

= 1

|U |2
∑

B∈π,C∈σ

|B|(|U | − |C |)|C |(|U | − |B|)

= 1

|U |2
∑

B∈π

|B||U − B|
∑

C∈σ

|C ||U − C |

= 1

|U |2 |dit(π)||dit (σ )|.
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Hence under independence, the normalized dit count m(π, σ )= | Mut(π,σ )|
|U |2 =

dit (π)

|U |2
dit (σ )

|U |2 = h(π)h(σ ) of the mutual information set Mut(π, σ ) = dit (π)∩dit (σ )

is equal to product of the normalized dit counts of the partitions:

m(π, σ ) = h(π)h(σ ) if π and σ are independent. 
�

4.2 Mutual information

For each of the major concepts in the information theory based on the usual Shannon
measure, there should be a corresponding concept based on the normalized dit counts
of logical entropy.24 In the following sections, we give some of these corresponding
concepts and results.

The logical mutual information of two partitions m(π, σ ) is the normalized dit
count of the intersection of their dit-sets:

m(π, σ ) = |dit (π) ∩ dit (σ )|
|U × U | .

For Shannon’s notion of mutual information, we might apply the Venn diagram heu-
ristics using a block B ∈ π and a block C ∈ σ . We saw before that the infor-
mation contained in a block B was H(B) = log( 1

pB
) and similarly for C while

H(B ∩ C) = log( 1
pB∩C

) would correspond to the union of the information in B and
in C . Hence the overlap or “mutual information” in B and C could be motivated as
the sum of the two informations minus the union:

I (B; C) = log

(

1

pB

)

+ log

(

1

pC

)

− log

(

1

pB∩C

)

= log

(

1

pB pC

)

+ log (pB∩C )

= log

(

pB∩C

pB pC

)

.

Then the (Shannon) mutual information in the two partitions is obtained by averaging
over the mutual information for each pair of blocks from the two partitions:

I (π; σ) =
∑

B,C

pB∩C log

(

pB∩C

pB pC

)

.

24 See Cover and Thomas’ book (1991) for more background on the standard concepts. The corresponding
notions for the block-count entropy are obtained from the usual Shannon entropy notions by taking antilogs.
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The mutual information can be expanded to verify the Venn diagram heuristics:

I (π; σ) =
∑

B∈π,C∈σ

pB∩C log

(

pB∩C

pB pC

)

=
∑

B,C

pB∩C log (pB∩C ) +
∑

B,C

pB∩C log

(

1

pB

)

+
∑

B,C

pB∩C log

(

1

pC

)

= −H (π ∨ σ) +
∑

B∈π

pB log

(

1

pB

)

+
∑

C∈σ

pC log

(

1

pC

)

= H (π) + H (σ ) − H (π ∨ σ) .

We will later see an important inequality, I (π; σ) ≥ 0 (with equality under indepen-
dence), and its logical version.

In the logical theory, the corresponding “modular law” follows from the inclusion–
exclusion principle applied to dit-sets: |dit (π) ∩ dit (σ )| = |dit (π)| + |dit (σ )| −
|dit (π) ∪ dit (σ )|. Normalizing yields:

m(π, σ ) = |dit (π) ∩ dit (σ )|
|U |2 = |dit (π)|

|U |2 + |dit (σ )|
|U |2 − |dit (π) ∪ dit (σ )|

|U |2
= h(π) + h(σ ) − h(π ∨ σ).

Since the formulas concerning the logical and Shannon entropies often have similar
relationships, e.g., I (π; σ) = H(π) + H(σ ) − H(π ∨ σ) and m(π, σ ) = h(π) +
h(σ ) − h(π ∨ σ), it is useful to also emphasize some crucial differences. One of the
most important special cases is for two partitions that are (stochastically) independent.
For independent partitions, it is immediate that I (π; σ) = ∑

B,C pB∩C log(
pB∩C
pB pC

) =
0 but we have already seen that for the logical mutual information, m(π, σ ) > 0
so long as neither partition is the blob ̂0. However for independent partitions we
have;

m(π, σ ) = h(π)h(σ )

so the logical mutual information behaves like the probability of both events occurring
in the case of independence (as it must since logical entropy concepts have direct prob-
abilistic interpretations). For independent partitions, the relation m(π, σ ) = h(π)h(σ )

means that the probability that a random pair is distinguished by both partitions is the
same as the probability that it is distinguished by one partition times the probability
that it is distinguished by the other partition. In simpler terms, for independent π and
σ , the probability that π and σ distinguishes is the probability that π distinguishes
times the probability that σ distinguishes.

It is sometimes convenient to think in the complementary terms of an equiva-
lence relation “identifying.” rather than a partition distinguishing. Since h(π) can
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be interpreted as the probability that a random pair of elements from U are dis-
tinguished by π , i.e., as a distinction probability, its complement 1 − h(π) can
be interpreted as an identification probability, i.e., the probability that a random
pair is identified by π (thinking of π as an equivalence relation on U ). In gen-
eral,

[1 − h(π)][1 − h(σ )] = 1 − h(π) − h(σ ) + h(π)h(σ ) = [1 − h(π ∨ σ)]
+[h(π)h(σ ) − m(π, σ ]

which could also be rewritten as:

[1 − h(π ∨ σ)] − [1 − h(π)][1 − h(σ )] = m(π, σ ) − h(π)h(σ ).

Hence:

if π and σ are independent: [1 − h(π)][1 − h(σ )] = [1 − h(π ∨ σ)].

Thus if π and σ are independent, then the probability that the join partition π ∨ σ

identifies is the probability that π identifies times the probability that σ identifies. In
summary, if π and σ are independent, then:

Binary-partition-count (Shannon) entropy: H(π ∨ σ) = H(π) + H(σ )

Block-count entropy: Hm(π ∨ σ) = Hm(π)Hm(σ )

Normalized-dit-count (logical) entropy: h(π ∨ σ) = 1 − [1 − h(π)][1 − h(σ )].

4.3 Cross entropy and divergence

Given a set partition π = {B}B∈π on a set U , the “natural” or Laplacian probability
distribution on the blocks of the partition was pB = |B|

|U | . The set partition π also
determines the set of distinctions dit (π) ⊆ U × U and the logical entropy of the par-

tition was the Laplacian probability of the dit-set as an event, i.e., h(π) = |dit (π |
|U×U | =

∑

B pB(1 − pB). But we may also “kick away the ladder” and generalize all the
definitions to any finite probability distributions p = {p1, . . . , pn}. A probability dis-
tribution p might be given by finite-valued random variables X on a sample space U
where pi = Prob(X = xi ) for the finite set of distinct values xi for i = 1, . . . , n. Thus
the logical entropy of the random variable X is: h(X) = ∑n

i=1 pi (1−pi ) = 1−∑

i p2
i .

The entropy is only a function of the probability distribution of the random variable, not
its values, so we could also take it simply as a function of the probability distribution p,
h(p) = 1 − ∑

i p2
i . Taking the sample space as {1, . . . , n}, the logical entropy is still

interpreted as the probability that two independent draws will draw distinct points from
{1, . . . , n}. The further generalizations replacing probabilities by probability density
functions and sums by integrals are straightforward but beyond the scope of this paper
(which is focused on conceptual foundations rather than mathematical developments).
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Given two probability distributions p = {p1, . . . , pn} and q = {q1, . . . , qn} on the
same sample space {1, . . . , n}, we can again consider the drawing of a pair of points
but where the first drawing is according to p and the second drawing according to q.
The probability that the pair of points is distinct would be a natural and more general
notion of logical entropy which we will call the:

logical cross entropy: h (p‖q) =
∑

i

pi (1 − qi ) = 1 −
∑

i

pi qi =
∑

i

qi (1 − pi )

= h (q‖p)

which is symmetric. The logical cross entropy is the same as the logical entropy when
the distributions are the same, i.e.,

if p = q, then h(p‖q) = h(p).

The notion of cross entropy in conventional information theory is: H(p‖q) =
∑

i pi log( 1
qi

) which is not symmetrical due to the asymmetric role of the logarithm,
although if p = q, then H(p‖q) = H(p). Then the Kullback-Leibler divergence
D(p‖q) = ∑

i pi log(
pi
qi

) is defined as a measure of the distance or divergence
between the two distributions where D(p‖q) = H(p‖q) − H(p). The information
inequality is: D(p‖q) ≥ 0 with equality if and only if pi = qi for i = 1, . . . , n (Cover
and Thomas 1991, p. 26). Given two partitions π and σ , the inequality I (π; σ) ≥ 0 is
obtained by applying the information inequality to the two distributions {pB∩C } and
{pB pC } on the sample space {(B, C) : B ∈ π, C ∈ σ } = π × σ :

I (π; σ) =
∑

B,C

pB∩C log(
pB∩C

pB pC
) = D({pB∩C }‖{pB pC }) ≥ 0

with equality under independence.
But starting afresh, one might ask: “What is the natural measure of the differ-

ence or distance between two probability distributions p = {p1, . . . , pn} and q =
{q1, . . . , qn} that would always be non-negative, and would be zero if and only they
are equal?” The (Euclidean) distance between the two points in R

n would seem to be
the “logical” answer—so we take that distance (squared) as the definition of the:

logical divergence (or logical relative entropy): d(p‖q) =
∑

i

(pi − qi )
2,

which is symmetric and non-negative. We have component-wise:

0 ≤ (pi − qi )
2 = p2

i − 2pi qi + q2
i = 2

[

1

n
− pi qi

]

−
[

1

n
− p2

i

]

−
[

1

n
− q2

i

]
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so that taking the sum for i = 1, . . . , n gives:

0 ≤ d(p‖q) =
∑

i

(pi − qi )
2 = 2

[

1 −
∑

i

pi qi

]

−
[

1 −
∑

i

p2
i

]

−
[

1 −
∑

i

q2
i

]

= 2h(p‖q) − h(p) − h(q).

Thus we have the:

0 ≤ d (p‖q) = 2h (p‖q) − h (p) − h (q) with equality if and only if pi = qi for i = 1, . . . , n

Logical information inequality.

If we take h(p‖q)− 1
2 [h(p)+h(q)] as the Jensen difference (Rao 1982, p. 25) between

the two distributions, then the logical divergence is twice the Jensen difference. The
half-and-half probability distribution p+q

2 that mixes p and q has the logical entropy

of h(
p+q

2 ) = h(p‖q)
2 + h(p)+h(q)

4 so that:

d (p‖q) = 4

[

h

(

p + q

2

)

− 1

2
{h (p) + h (q)}

]

≥ 0.

The logical information inequality tells us that “mixing increases logical entropy”
(or, to be precise, mixing does not decrease logical entropy) which also follows from
the fact that logical entropy h(p) = 1 − ∑

i p2
i is a concave function.

An important special case of the logical information inequality is when p =
{p1, . . . , pn} is the uniform distribution with all pi = 1

n . Then h(p) = 1 − 1
n where

the probability that a random pair is distinguished (i.e., the random variable X with
Prob(X = xi ) = pi has different values in two independent samples) takes the spe-
cific form of the probability 1 − 1

n that the second draw gets a different value than
the first. It may at first seem counterintuitive that in this case the cross entropy is
h(p‖q) = h(p) + ∑

i pi (pi − qi ) = h(p) + ∑

i
1
n ( 1

n − qi ) = h(p) = 1 − 1
n for any

q = {q1, . . . , qn}. But h(p‖q) is the probability that the two points, say i and i ′, in the
sample space {1, . . . , n} are distinct when one draw was according to p and the other
according to q. Taking the first draw according to q, the probability that the second
draw is distinct from whatever point was determined in the first draw is indeed 1 − 1

n
(regardless of probability qi of the point drawn on the first draw). Then the divergence
d(p‖q) = 2h(p‖q) − h(p) − h(q) = (1 − 1

n ) − h(q) is a non-negative measure of
how much the probability distribution q diverges from the uniform distribution. It is
simply the difference in the probability that a random pair will be distinguished by the
uniform distribution and by q. Also since 0 ≤ d(p‖q), this shows that among all prob-
ability distributions on {1, . . . , n}, the uniform distribution has the maximum logical
entropy. In terms of partitions, the n-block partition with pB = 1

n has maximum logical
entropy among all n-block partitions. In the case of |U | divisible by n, the equal n-block
partitions make more distinctions than any of the unequal n-block partitions on U .
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For any partition π with the n block probabilities {pB}B∈π = {p1, . . . , pn}:

h(π) ≤ 1 − 1

n
with equality if and only if p1 = · · · = pn = 1

n
.

For the corresponding results in the Shannon’s information theory, we can apply
the information inequality D(p‖q) = H(p‖q) − H(p)≥ 0 with q as the uniform
distribution q1 = · · · = qn = 1

n . Then H(p‖q) = ∑

i pi log( 1
1/n ) = log(n) so

that: H(p) ≤ log(n) or in terms of partitions:

H(π) ≤ log2(|π |) with equality if and only if the probabilities are equal

or, in base-free terms,

Hm(π) ≤ |π | with equality if and only if the probabilities are equal.

The three entropies take their maximum values (for fixed number of blocks |π |) at the
partitions with equiprobable blocks.

In information theory texts, it is customary to graph the case of n = 2 where the
entropy is graphed as a function of p1 = p with p2 = 1 − p. The Shannon entropy
function H(p) = −p log(p) − (1 − p) log(1 − p) looks somewhat like an inverted
parabola with its maximum value of log(n) = log(2) = 1 at p = .5. The logical
entropy function h(p) = 1 − p2 − (1 − p)2 = 2p − 2p2 = 2p(1 − p) is an inverted
parabola with its maximum value of 1 − 1

n = 1 − 1
2 = .5 at p = .5. The block-count

entropy Hm(p) = ( 1
p )p( 1

1−p )1−p = 2H(p) is an inverted U-shaped curve that starts

and ends at 1 = 2H(0) = 2H(1) and has its maximum at 2 = 2H(.5).

4.4 Summary of analogous concepts and results

Shannon entropy Logical entropy

Block entropy H(B) = log(1/pB ) h(B) = 1 − pB

Relationship H(B) = log
(

1
1−h(B)

)

h(B) = 1 − 1
2H(B)

Entropy H(π) = ∑

pB log(1/pB ) h(π) = ∑

pB (1 − pB )

Mutual information I (π; σ) = H(π)+ H(σ )− H(π ∨σ) m(π, σ ) = h(π) + h(σ ) − h(π ∨ σ)

Independence I (π; σ) = 0 m(π, σ ) = h(π)h(σ )

Independence & Joins H(π ∨ σ) = H(π) + H(σ ) h(π ∨σ) = 1−[1− h(π)][1− h(σ )]
Cross entropy H(p‖q) = ∑

pi log(1/qi ) h(p‖q) = ∑

pi (1 − qi )

Divergence D(p‖q) = H(p‖q) − H(p) d(p‖q) = 2h(p‖q) − h(p) − h(q)

Information inequality D(p‖q) ≥ 0 with = iffpi = qi ∀i d(p‖q) ≥ 0 with = iff pi = qi ∀i
Info. ineq. sp. case I (π; σ) = D({pB∩C }

‖{pB pC }) ≥ 0 with equality
d({pB∩C }‖{pB pC }) ≥ 0 with
equality under independence

under independence
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5 Concluding remarks

In the duality of subsets of a set with partitions on a set, we found that the elements
of a subset were dual to the distinctions (dits) of a partition. Just as the finite prob-
ability theory for events started by taking the size of a subset (“event”)S normalized
to the size of the finite universe U as the probability Prob(S) = |S|

|U | , so it would be
natural to consider the corresponding theory that would associate with a partition π

on a finite U , the size |dit (π)| of the set of distinctions of the partition normalized by

the total number of ordered pairs |U × U |. This number h(π) = |dit (π)|
|U×U | was called

the logical entropy of π and could be interpreted as the probability that a randomly
picked (with replacement) pair of elements from U is distinguished by the partition
π , just as Prob(s) = |S|

|U | is the probability that a randomly picked element from U is
an element of the subset S. Hence this notion of logical entropy arises naturally out
of the logic of partitions that is dual to the usual logic of subsets.

The question immediately arises of the relationship with Shannon’s concept of
entropy. Following Shannon’s definition of entropy, there has been a veritable pleth-
ora of suggested alternative entropy concepts (Kapur 1994). Logical entropy is not
an alternative entropy concept intended to displace Shannon’s concept any more than
is the block-count entropy concept. Instead, I have argued that the dit-count, block-
count, and binary-partition-count concepts of entropy should be seen as three ways to
measure that same “information” expressed in its most atomic terms as distinctions.
The block-count entropy, although it can be independently defined, is trivially related
to Shannon’s binary-partition-count concept—just take antilogs. The relationship of
the logical concept of entropy to the Shannon concept is a little more subtle but is
quite simple at the level of blocks B ∈ π : h(B) = 1 − pB , Hm(B) = 1

pB
, and

H(B) = log( 1
pB

) so that eliminating the probability, we have:

h(B) = 1 − 1
Hm (B)

= 1 − 1
2H(B) .

Then the logical and additive entropies for the whole partition are obtained by taking
the (additive) expectation of the block entropies while the block-count entropy is the
multiplicative expectation of the block entropies:

Hm(π) =
∏

B∈π

(

1

pB

)pB

H(π) =
∑

B∈π

pB log

(

1

pB

)

h(π) =
∑

B∈π

pB(1 − pB).

In conclusion, the simple root of the matter is three different ways to “measure” the
distinctions that generate an n-element set. Consider a 4 element set. One measure of
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the distinctions that distinguish a set of 4 elements is its cardinality 4, and that measure
leads to the block-count entropy. Another measure of that set is log2(4) = 2 which can
be interpreted as the minimal number of binary partitions necessary: (a) to single out
any designated element as a singleton (search interpretation) or, equivalently, (b) to
distinguish all the elements from each other (distinction interpretation). That measure
leads to Shannon’s entropy formula. And the third measure is the (normalized) count
of distinctions (counted as ordered pairs) necessary to distinguish all the elements from
each other, i.e., 4×4−4

4×4 = 12
16 = 3

4 , which yields the logical entropy formula. These

measures stand in the block value relationship: 3
4 = 1− 1

4 = 1− 1
22 . It is just a matter of:

1. counting the elements distinguished (block-count entropy),
2. counting the binary partitions needed to distinguish the elements (Shannon

entropy), or
3. counting the (normalized) distinctions themselves (logical entropy).
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