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Abstract
Abstraction turns equivalence into identity, but there are two ways to do it. Given
the equivalence relation of parallelness on lines, the #1 way to turn equivalence into
identity by abstraction is to consider equivalence classes of parallel lines. The #2
way is to consider the abstract notion of the direction of parallel lines. This paper
developments simple mathematical models of both types of abstraction and shows,
for instance, how finite probability theory can be interpreted using #2 abstracts as
“superposition events” in addition to the ordinary events. The goal is to use the second
notion of abstraction to shed some light on the notion of an indefinite superposition
in quantum mechanics.

Keywords Abstraction Superposition Indefiniteness in quantum mechanics

1 Introduction: TwoWays from Equivalence to Identity

Classical physics, if not our own intuitive concepts, consider reality to be objec-
tively definite ‘all the way down.’ But quantum mechanics suggests that reality at the
quantum level may be objectively or ontologically indefinite (not just subjectively or
epistemologically indefinite). Since we seem to lack ‘clear and distinct ideas’ about
objective indefiniteness, we need any help we can get, from any source, to build up
those intuitions.

The purpose of this paper is seek some help by drawing out some intriguing
and possibly illuminating analogies between abstraction in the philosophy of math-
ematics and the notion of superposition and objective indefiniteness in quantum
mechanics (QM). Moreover, a mathematical model for abstractions (or paradigms) is
proposed, and used to give a new type of “superposition event” in finite probability
theory.
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A well-known example of an abstraction principle is Frege’s “direction principle”
which Stewart Shapiro described as: for any lines 1 and 2 in some domain, the
“direction of 1 is identical to the direction of 2 if and only if 1 is parallel to 2.”
[11, p. 107]

Abstraction turns equivalence into identity. But there are two different ways to
turn this equivalence (i.e., parallelness) into identity. The version often used by the
proverbial ‘working mathematician’ will be called the #1abstraction, namely, just
the equivalence class. If [ ] is the parallelism equivalence class of the line , then the
equivalence-to-identity principle is clearly satisfied: [ 1] [ 2] iff 1 2 (where
is the equivalence relation of being parallel). But there is also what we may refer to
as the #2type of abstraction where the “direction of ” is an abstraction that captures
what is common to parallel lines and abstracts away from where they differ.

The purpose of this paper is:

to give a way to mathematically differentiate the #1 and #2 abstracts in a simple
setting,
to show that finite probability theory can be reformulated with the #2 abstracts as
“superposition events” in addition to the #1 abstracts (i.e., the subsets as ordinary
events), and then
to show that the mathematical treatment of the #2 abstracts is essentially the
same as is found in a rather different setting to describe superposition states
in quantum mechanics–where the #2 abstracts-version of probability becomes
quantum probability.

The goal is to use the new interpretation of probability theory using the mathemat-
ically modelled superposition events as #2 abstracts (rather than just subset-events)
to build the bridge to QM and thus to better understand ‘by analogy’ the key
superposition principle in QM.

2 Two Versions of Abstraction

One general form of an abstraction principle is given by Shapiro [11, p. 107] (taking
@ as an abstraction operator):

@ @ .

1. the #1 version of the abstraction operator takes equivalent entities to the
equivalence class @ [ ] [ ] @ , and;

2. the #2 version of the abstraction operator takes all the equivalent entities
such that to the abstract entity @ @ that is definite on what
is common in the equivalence class but is indefinite on how they differ (e.g.,
indefinite on all the other properties that distinguish them).

In Frege’s well-known example from the Grundlagen [9, pp. 110-111], an equiv-
alence class of parallel lines is a #1 type of abstraction out of some delimited class
of lines, while the act of abstracting away from the differences between parallel lines
(i.e., going from equivalence to identity) yields the #2 abstraction of direction.
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W. T. Tutte provides a good example of the attitude of a working mathematician.

Pure graph theory is concerned with those properties of graphs that are invariant
under isomorphism, for example the number of vertices, the number of loops,
the number of links, and the number of vertices of a given valency. It is there-
fore natural for a graph theorist to identify two graphs that are isomorphic. For
example, all link-graphs are isomorphic, and therefore he speaks of the ‘link-
graph’ as though there were only one. Similarly one hears of ‘the null graph’,
‘the vertex graph’, and ‘the graph of the cube’. When this language is used,
it is really an isomorphism class (also called an abstract graph) that is under
discussion. ([14, p. 6(original emphasis)]; quoted in: [18, p. 390])

For instance, a proof about a property of “the graph of the cube” is not a property
of an isomorphism class of graphs but a property of the graphs in that class or of the
“abstract graph” that abstracts away from the different instances in the isomorphism
class. Often proofs that could be seen as, in effect, using the #2 abstract graph are
formulated using systematic ambiguity, i.e., assuming an arbitrary graph in the iso-
morphism class and then using only the properties common to all members of the
class (by showing that the proof was independent of the choice from the equivalence
class)–which are precisely the properties in the #2 abstract graph.

Our purpose is to give clear and distinct models for these two types of abstracts,
but first we might consider the two abstracts in a broader setting (without assum-
ing an equivalence relation). This broader setting allows us to give a #2 abstract or
superposition interpretation to “events” in finite probability theory–which, in turn,
will facilitate the bridge over to QM.

Given any property defined on the elements of , two abstract objects can
be defined as in Fig. 1:

The #1 abstract is just the set of elements with that property while the #2 abstract
object is ‘the -entity’ which is definite on the property and indefinite on
the differences between all the such that .

We have a naming problem for these #2 abstracts like the problem of describing a
glass as being half-full or half-empty. We could describe the #2 abstract accord-
ing to the properties that are common to the entities in and thus definite so it is a
type of paradigmatic -entity (the ‘half-full’ description). Or we could describe the
#2 abstract as the indefinite -entity that remains after all the properties that dif-
ferentiate distinct -entities are removed (the ‘half-empty’ description). For instance,

Fig. 1 A property determines two types of abstract objects. (the ‘blob-sum’ or superposition-sum is
defined below)
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Table 1 Equivalents between #1 and #2 universals

defined on #1 abstraction #2 abstraction

Abstractions for & &

implies

in a logical context, the paradigm description might seem most appropriate while
in the eventual application to quantum mechanics, it is the indefiniteness aspect of
superposition states that is paramount.

3 Relations Between #1 and #2 Universals

In the version of finite probability theory developed below, the #2 abstracts or
superposition events will supplement the #1 universals or ordinary events .

For properties defined on , there is a 1-1 correspondence between the #1 and
#2 universals:

& & .

If another property defined on implies in the sense that
[ ], then in terms of #1 abstracts, this is the familiar .

But what is the equivalent of for #2 universals? Intuitively is ‘the
-thing’ that is definite on the -property but is otherwise indefinite on the differ-

ences between the members of . Those differences have been abstracted away from,
blurred or ‘blobbed’ out, or rendered indefinite. If we make more properties defi-
nite, then in terms of subsets, that will in general cut down to a subset , so

would be a more definite version of . This “process” of changing from
to a more definite , i.e., for , might be called projection or
sharpening (as in making a camera focus sharper or more definite) and symbolized:

or

can be “sharpened” to by adding some definiteness.

These relations between #1 and #2 abstracts are summarized in Table 1.
In the language of Plato, the projection relation is the relation of “participation”

( or methexis) or entailment between universals. As Plato would say, ‘the
-thing’ participates in or ‘brings-on’ ( or epipherei as in Vlastos [16, p.

102]) ‘the -thing,’ as in ‘the rocking chair’ brings on ‘the chair,’ i.e., ,
since ‘the chair’ can be sharpened to ‘the rocking chair’, i.e., the set of rocking
chairs is a subset of the set of chairs.1

Like the #1 abstracts , the #2 abstract entities , the paradigm-universals, are
routinely used in mathematics.

1These non-mathematical everyday examples are used for the purpose of illustration and, perhaps,
amusement.
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4 Examples of Abstract Paradigms inMathematics

There is an equivalence relation between topological spaces which is realized
by a continuous map such that there is an inverse so
the is homotopic to 1 (i.e., can be continuously deformed in 1 )
and is homotopic to 1 . According to the ‘classical’ homotopy theorist, Hans-
Joachim Baues, “Homotopy types are the equivalence classes of spaces” [2] under
this equivalence relation. That is the #1 type of abstraction.

But the interpretation offered in homotopy type theory (HoTT) is expanding iden-
tity to “coincide with the (unchanged) notion of equivalence” in the words of the
Univalent Foundations Program [15, p. 5] so it would refer to the #2 homotopy
type, i.e., ‘the homotopy type’ that captures the mathematical properties shared by
all spaces in an equivalence class of homotopic spaces (abstracting away from the
differences). Expanding identity to coincide with equivalence is another way to
describe the #2 abstracting from the class of equivalent entities to the abstract
paradigm-universal entity which is not the same as the particular entities in the
equivalence class .

For instance, ‘the homotopy type’ is not one of the classical topological spaces
(with points etc.) in the #1 equivalence class of homotopic spaces–just as Frege’s #2
abstraction of direction is not among the lines in the equivalence class of parallel
lines with the same direction.

While classical homotopy theory is analytic (spaces and paths are made of
points), homotopy type theory is synthetic: points, paths, and paths between
paths are basic, indivisible, primitive notions. [15, p. 59]

Homotopy type theory systematically develops a theory of the #2 type of abstrac-
tions that grows out of homotopy theory and type theory into a new foundational
theory.

From the logical point of view, however, it is a radically new idea: it says that
isomorphic things can be identified! Mathematicians are of course used to iden-
tifying isomorphic structures in practice, but they generally do so by “abuse of
notation”, or some other informal device, knowing that the objects involved are
not “really” identical. But in this new foundational scheme, such structures can
be formally identified, in the logical sense that every property or construction
involving one also applies to the other. [15, p. 5]

In our terminology, “isomorphic things can be identified” means the ‘blobbing
together’ of all the elements in an isomorphism class to create a single #2 abstract
that is definite on what is common to all the isomorphs but is indefinite on where
they differ.

Consider the homotopy example of ‘the path going once (clockwise) around the
hole’ in an annulus (disk with one hole as in Fig. 2), i.e., the abstract entity 1 in the
fundamental group 0 of the annulus: 1 0 :

Note that ‘the path going once (clockwise) around the hole’ has the paradig-
matic property of “going once (clockwise) around the hole” but is not one of the
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Fig. 2 ‘the path going once
(clockwise) around the hole’

particular (coordinatized) paths that constitute the equivalence class of coordina-
tized once-around paths deformable into one another. It abstracts away from the
coordinatizations that differentiate the paths in the homotopic equivalence class.

In a similar manner, we can view other common #2 abstractions such as: ‘the
cardinal number 5’ that captures what is common to the isomorphism class of all
five-element sets; ‘the integer 1 mod ’ that captures what is common within the
equivalence class ... 2 1 1 1 1 2 1 ... of integers; ‘the circle’
or ‘the equilateral triangle’–and so forth.

Category theory helped to motivate homotopy type theory for good reason.
Category theory has no notion of identity between objects, only isomorphism as
‘equivalence’ between objects. Therefore category theory can be seen as a theory of
abstract #2 objects, e.g., abstract sets, groups, spaces, etc., instead of the theory of
the #1 abstracts, the isomorphism classes.

Our purpose is to model the theory of paradigm-universals and their projec-
tions or sharpenings –that is analogous to working with sets and subsets, e.g., in
a Boolean algebra of subsets. That is all we will need to show that probability theory
can be developed using paradigm entities or superposition events in addition to
subset-events , and then finally to cross the bridge to quantum mechanics.

5 The Connection to Interpreting Symmetry Operations

In the usual case of abstraction where is an equivalence or isomorphism class,
the #2 universal by definition abstracts away for the differences between the
elements in the equivalence class. Hence if we consider any operation that takes one
element of an equivalence class [ ] to another element in the same class, then
the induced operation on the #1 abstracts, [ ] , is the identity, and the same
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holds for the #2 abstract since the two abstracts represent two different ways to
get abstracts that in different ways disregard the differences between the elements in
the equivalence class.

This can be visually illustrated in a simple example of the symmetry opera-
tion (defining an equivalence relation) of reflection on the -axis for an isosceles
triangles as in Fig. 3 that is taken as fully definite (all sides and angles labelled).

Thus the equivalence class of reflective-symmetric figures in the #1 or classical
interpretation is the set in Fig. 4.

The set remains invariant under reflection applied to its elements, which is another
way to say that the induced operation on the equivalence classes (or orbits) is the
identity.

Under the #2 indefiniteness-abstraction interpretation, the equivalence abstracts
to the figure that is definite on what is the same, and indefinite on what is different
between the definite figures in the equivalence class:

And the symmetry operation induced on the indefinite figure is also the identity as
illustrated in Fig. 5. As noted in the discussion of homotopy type theory, the move-
ment from one space to a homotopic space leaves the “homotopy type” the same
regardless of whether we think of the homotopy type as an equivalence class or as
the #2 type of abstract considered in homotopy type theory.

A concrete example of the #1 and #2 ways to go from equivalence to identity is the
derivation of the Maxwell-Boltzmann distribution and the Bose-Einstein distribution
as in Feller [8, pp. 20-1] or Ellerman [5]. This treatment is illuminated by the classical
and quantum version of a symmetry operation. Suppose we have two particles of the
same type which are classically indistinguishable so, following Weyl, we artificially
distinguish them using Mike and Ike labels. If each of the two particles could be
in states , , or , then the set of possible states is the set of nine ordered pairs

. Applying the symmetry operation of permuting Mike and
Ike, we have six equivalence classes (orbits) as in Table 2.

The symmetry operation on the equivalence classes is the identity, but in (classical)
Nature the primitive data are, as it were, the ordered pairs (the possible states), not
the equivalence classes. When we assign the equal probabilities of 1

9 to each ordered
pair (i.e., to each distinct state), that results in the Maxwell-Boltzmann distribution
on the equivalence classes. Nature counts states; we classically measure equivalence
classes and find the M-B distribution.

But in the quantum case, the operation of going to the #2 abstract
seems to be physically realized in an indefinite superposition state, i.e., the

Fig. 3 Reflection on vertical axis symmetry operation
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Fig. 4 The #1 abstraction of equivalence class

analogy: , where the symmetry operation
is the identity. Since there are then only six states, we assign the equal probabilities
of 1

6 to each state and obtain the Bose-Einstein distribution in Table 3. Nature again
counts states, but the superposition states (seen as physically realizing a type of #2
abstract from the equivalence classes) reduces the number of states to six.

6 Modelling #1 and #2 Abstracts

But it will surely be asked:

What is this crazy talk and loose analogy between forming an indefinite abstract
in mathematics and a superposition state in QM?

It is a fine question, and surely one way to approach the question is to give ‘clear
and distinct’ mathematical models of the two abstracts in a simple illustrative setting.
We distinguish the #1 and #2 interpretations for a finite as in Fig. 6.

The polygons in Fig. 6 can be characterized using two attributes, the number of
equal sides and being solid or hollow . Hence the universe has the elements

1 2 3 4 3 4 5 6 . The subset of solid figures 4 5 6
3 4 5 6 might be represented by a one-dimensional column vector

0
1
1
1

3
4
5
6

(with the given ordering). But by moving up one dimension to a

Fig. 5 The #2 abstraction of an indefinite entity
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Table 2 Maxwell-Boltzmann
distribution Equivalence classes under permutation M-B

2 9

2 9

2 9

1 9

1 9

1 9

two-dimensional matrix, we can represent or mathematically model both the #1 and
#2 versions of as two types of incidence matrices. For 1 ... , the inci-
dence matrix In of a binary relation is the matrix with
In 1 if and 0 otherwise.

1. The #1 (classical) version of (i.e., set of -things or set of solid figures) is
represented by the diagonal matrix In that lays the column vector along

the diagonal: In

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

representation of set of distinct -

entities. In is the incidence matrix of the diagonal relation
whose entries are the values of the characteristic function on .

2. The representation of the #2 (quantum-like) version of (i.e., the -thing ) is
the matrix In whose entries are the values of the characteristic function

on . Where signifies the transpose operation, this incidence
matrix can also be obtained as the product of the 1 column vector times the

1 row vector : In

0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

representation

of one indistinct -thing, ‘the solid figure’ 4 5 6 .

For (and only for) singletons , the #2 ‘abstract’ is just ,
and thus they have the same representation In In as expected, but for

1, In In .

Table 3 Bose-Einstein
distribution Six indefinite states B-E

1 6

1 6

1 6

1 6

1 6

1 6
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Fig. 6 Universe of figures

The two representations differ only in the off-diagonal entries. Think of the off-
diagonal In 1’s as equating, cohering, blurring out, ‘blobbing’ out, or
ignoring the differences (e.g., the number of sides) between and which have
the common ‘being a solid figure’ property:

In

0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

says

0 0 0 0

0 4 4 4 5 4 6

0 5 4 5 5 5 6

0 6 4 6 5 6 6

.

Intuitively, the differences in the number of sides of the solid figures have been
blurred out or rendered indefinite, so the only definite attribute of the paradigm entity
is the solid-figure.

Since the #2 abstract paradigm entities are represented by a certain type of inci-
dence matrix, we can mathematically represent the blob-sum orsuperposition sum #2
entity by the corresponding incidence matrix:

In .

For 2 4 , the blob-sum 2 4 is represented by In
where the blob-sum operation means ‘blobbing-out’ the distinctions between enti-
ties in (represented by the cross-terms in 2 4 2 4 which give the non-zero
off-diagonal entries in the incidence matrix):2

In In 2 4 2 4

In 2 2 In 4 4 In 2 4 In 4 2

0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

.

To better understand abstraction in mathematics, the superposition events in prob-
ability theory (defined below), and superposition states in QM, we should become as
comfortable with paradigms as with subsets . The paradigms for

2The disjunction of incidence matrices is the usual entry-wise disjunction: 1 1 1 0 0 1 1 and
0 0 0, and similarly for conjunction.

822 D. Ellerman



form a Boolean algebra isomorphic to under the mapping: for any Boolean
binary operation # for , # is the paradigm represented by
In # # .

The union or join of superposition events is the blob-sum
which is the #2 abstract represented by:

In

In

In In In In . (note as expected,

for

The intersection or meet of superposition events is rep-
resented by In where, as expected, for ,

;
The negation of a superposition event is represented by
In (note as expected, ).

The top and bottom of the BA of superposition events are represented by
the incidence matrices of all ones or all zeros respectively, and the partial order on
the blobbed-out incidence matrices In is that induced by set inclusion [i.e.,
the entry-wise partial order 0 1 on incidence matrices of the form In ].
If , then , so moving down in the BA of superposition events
represents ‘sharpening’ or rendering-more-definite just as a conditional probability
Pr is always for some event (or ) below the conditioning event in
the partial order of ordinary events. The atomic elements (corresponding to
the singletons ) are the sharpest or most definite or determinate elements. When
the events as subsets of the sample space , are replaced by the #2 abstracts ,
then this Boolean algebra structure on the set of superposition events in their
In representation for is isomorphic to the usual BA of events .
Figure 7 illustrates the two BAs for .

Fig. 7 The Boolean algebras of ordinary events and superposition events for
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7 The Projection Operation: Making an Indefinite Entity More
Definite

In the four figures example, suppose we classify or partition all the elements of
according to an attribute such as the parity of the number of sides, where a partition is
a set of nonempty disjoint subsets (blocks) of whose union is all of . Let be the
partition of with two blocks odd 3 5 and even 4 6 according
to the parity of the number of sides.

The equivalence relation defined by is referred to by Ellerman [4] as the
set of indistinctions, indit , and the incidence matrix
In indit is formed by the usual disjunction of corresponding matrix entries:

In In In indit

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

.

The #1 (classical) operation of intersecting the set of odd-sided figures with the
set of solid figures to give the set of odd-sided solid figures is represented as the
conjunction:

In In

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

.

The #2 (quantum-like) operation of ‘sharpening’ or ‘rendering more definite’ ‘the
solid figure’ 2 3 4 to ‘the odd-sided solid figure’ 3 5
5 , so 5 (suggested reading: 5 is a projection or sharpening of )
is represented as:

In In

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

5 .

But there is a better way to represent ‘sharpening’ using matrix multiplication
instead of just the logical operation on matrices, and it foreshadows and illuminates
the measurement operation in QM. For = even-sidedness, the matrix In

is a projection matrix, i.e., the diagonal matrix with diagonal entries so
. Then the result of the projection-sharpening can be represented

as:

In In In In .

Thus sharpening the solid-figure 4 5 6 by the even number-of-sides
attribute to obtain 4 6 is represented by pre- and post-multiplying the inci-
dence matrix In by the projection for evenness parity. Under the
#2 interpretation, the parity-sharpening, parity-classifying, parity-differentiation, or
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parity-measurement of ‘the solid figure’ by both the odd and even parities is
represented as:3

In indit In
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

In In
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

0 0 0 0
0 1 0 1
0 0 1 0
0 1 0 1

.

The result is the mixture or sum of incidence matrices for ‘the even-sided solid
figure’ 4 6 and ‘the odd-sided solid figure’ 5 . The important thing to
notice is the action on the off-diagonal elements where the action 1 0 in the -
entry means that a distinction between and has been created; and have
been deblobbed, decohered, distinguished, or differentiated–in this case by parity in
the number of sides:

In In indit In

In In

0 0 0 0

0 1 1 0 1

0 1 0 1 1 0

0 1 1 0 1

Differentiating solid figures by parity.

We could also classify the figures as to having 4 or fewer sides (few sides) or
more (many sides) so that partition is 1 2 3 4 3 4 5 6
which is represented by:

In indit

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

and

In indit In indit In
In indit In In indit In

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

In .

3This classifying or measuring operation using the pre- and post-multiplication by projection matrices
foreshadows the Lüders mixture representation of projective measurement in QM (see below).
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Thus the parity and the few-or-many-sides partitions suffice to classify the solid
figures uniquely and thus to yield the representation In of the distinct elements
of 2 3 4 4 5 6 . Thus making all the distinctions (i.e., decohering
the entities that cohered together in ) takes In In .

In QM jargon, the parity and few-or-many-sides attributes constitute a “complete
set of commuting operators” (CSCO) so that measurement of the ‘pure,’ blobbed-out,
superposition figure, ‘the solid figure,’ by those observables will sharpen ‘the solid
figure,’ to the ‘mixture’ of the three separate solid ‘eigen-figures’:

‘the few- and even-sided solid figure’ (the square 2 4 ),
‘the many- and odd-sided solid figure’ (the pentagon 3 5 ), and
‘the many- and even-sided solid figure’ (the hexagon 4 6 ).

8 From Incidence to Density Matrices

To move from Boolean logic to probability theory for ordinary and superposition
events, we move from incidence matrices to density matrices. The incidence matri-
ces In representing the subset and In representing the paradigm or
superposition state can be turned into density matrices by dividing through by
their trace (sum of diagonal elements):

1

tr [In ]
In and

1

tr [In ]
In .

In terms of probabilities, this means treating the outcomes in as being equiprob-
able with probability 1 . But now we have the #1 and #2 interpretations of the sample
space for finite discrete probability theory.

1. The #1 interpretation, represented by , is the classical version with as
the sample space of six equiprobable outcomes. For instance, the 6 6 diagonal
matrix with diagonal entries 1

6 is “the statistical mixture describing the state of a
classical dice [die] before the outcome of the throw” [1, p. 176];

2. The #2 interpretation replaces the “sample space” with the one indefinite ‘the
sample outcome’ represented by (a 6 6 matrix with the 1

6 diago-
nal entries ‘blobbed out’ to fill the whole matrix with 1

6 entries) and, in a trial
that distinguishes the six outcomes, the indefinite outcome ‘sharpens to’ or
becomes a definite outcome with probability 1 .

Let be a real-valued random variable with distinct values for
1 ... and let 1 ... where 1 , be the partition of

according to the -values as in [5]. As before with incidence matrices, we want
the classification or differentiation of according to the different -values. It
could be obtained as In indit where the meet takes the minimum of the
corresponding entries of the matrices. But if is the diagonal (projection) matrix
with diagonal elements , then the classified, differentiated, or
measured density matrix is also obtained by the Lüders mixture operation of pre- and
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post-multiplying by the projection matrices [1, p. 279] to get the mixed-
state density matrix:

1

and the probability of a trial returning is:

Pr tr .

There are two interpretations of that probability corresponding to the #1 or #2
abstracts:

1. It is the probability that given the #1 abstract, i.e., the event , a trial leads to the
#1 abstract, the event , occurring, or

2. It is the probability that given the #2 abstract, i.e., the entity , a trial or -
measurement leads to (or sharpens to) the #2 superposition event, the entity

that is definite on the ‘eigen’ -value of .

For instance, in the previous example, where gives the parity partition
with the two values and , then:

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

0 0 0 0
0 1

3
1
3

1
3

0 1
3

1
3

1
3

0 1
3

1
3

1
3

0 0 0 0
0 1

3
1
3

1
3

0 0 0 0
0 1

3
1
3

1
3

so tr [ ] 2
3 which, under the #2 (quantum-like) interpretation, is the con-

ditional probability that a trial or ‘parity-of-sides-measurement’ sharpens ‘the solid
figure’ to ‘the even-sided solid figure’. And under the #1 (standard) interpretation,
Pr tr [ ] 2

3 is the probability of a trial yielding an even-
sided solid figure starting with the subset of equiprobable solid figures represented
by . Thus we have two different interpretations of events in finite probability
theory, the conventional one using the #1 events and the new superposition events
interpretation using #2 abstracts .

The mixed state density matrix resulting from ‘measuring’ or classifying the
solid figures according to the parity of their sides is:

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

0 0 0 0
0 1

3
1
3

1
3

0 1
3

1
3

1
3

0 1
3

1
3

1
3

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

0 0 0 0
0 1

3
1
3

1
3

0 1
3

1
3

1
3

0 1
3

1
3

1
3

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
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0 0 0 0
0 1

3 0 1
3

0 0 0 0
0 1

3 0 1
3

0 0 0 0
0 0 0 0
0 0 1

3 0
0 0 0 0

0 0 0 0
0 1

3 0 1
3

0 0 1
3 0

0 1
3 0 1

3

.

9 Logical Entropy

In the density matrix formulation of classical or quantum logical information theory
([6]; [7]), the logical entropy of a density matrix is: 1 tr 2 . Intuitively,
logical information is information-as-distinctions. Since the non-zero off-diagonal
amplitudes in a density matrix represent indistinctions–whose squares are indistinc-
tion probabilities–the gain in logical entropy due to the measurement or classification
process is the sum of the squares of the non-zero off-diagonal terms that are zeroed,
i.e., turned into distinctions, in the change .

In the example, there were four off-diagonal terms that were zeroed in the parity
classification each with an amplitude of 1

3 , so the change in logical entropy is 4

1
3

2
4
9 . This can be checked by directly computing the two logical entropies. All

density matrices have trace 1 and a pure state density matrix is one where 2 ;
otherwise it is a mixed state density matrix. The initial state is a pure state
since 2 so tr 2 1 and 1 1 0. For the post-
classification density matrix , we have:

2

0 0 0 0
0 2

9 0 2
9

0 0 1
9 0

0 2
9 0 2

9

so tr 2 5
9 and 1 5

9
4
9 . Logical entropies always have the

interpretation of getting a distinction in two independent trials, so in this case, the
probability of the solid figure sharpening to solid figures of distinct parities in two
independent trials is 4

9 . This can be intuitively checked since the probability of getting
two odd-parity solid figures is 2

3
2
3

4
9 and of getting two even-parity solid figures

is 1
3

1
3

1
9 so the probability of getting different parities is: 1 4

9
1
9

4
9 .

These two interpretations of finite discrete probability theory extend easily to the
case of point probabilities4 for (instead of equiprobable points), where
Pr :

1. Pr , so tr [ ] probability of getting
an even-sided solid figure starting with the set of solid figures, and

2. Pr , so tr [ ] probability of
getting ‘the even-sided solid figure’ starting with ‘the solid figure.’

4Point probabilities are given by a probability density function [0 1] where and
1.
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The whole of finite discrete probability theory can be developed in this manner,
mutatis mutandis, for the #2 abstract superposition events in addition to the usual #1
events.

10 Density Matrices in QuantumMechanics

This indefiniteness interpretation of finite probability with superposition events leads
directly to the use of probability in finite-dimensional quantum mechanics. The jump
to quantum mechanics (QM) is to replace the reals in the density matrices
by complex amplitudes. Instead of the set represented by a column of real
‘amplitudes’ , we have a normalized column of complex numbers whose

absolute squares are probabilities: 2 , e.g.,

0
2

3

4

1

2

3

4

where 1 0 and 2 for 2 3 4.

1. The density matrix has the absolute squares 2 laid out along
the diagonal.

2. The density matrix (where is the conjugate-tranpose of
) has the -entry as the product of and (complex conjugate of ),

so the diagonal entries are 2.

Thus:

0 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

and

0 0 0 0
0 2 2 3 2 4
0 3 2 3 3 4
0 4 2 4 3 4

.

Some modern quantum mechanics texts, such as [3, Vol. 1, p. 302] or [1], call
attention to the special significance of the “coherences” represented by the non-zero
off-diagonal terms.

[The] off-diagonal terms of a density matrix...are often called quantum coher-
ences because they are responsible for the interference effects typical of
quantum mechanics that are absent in classical dynamics. [1, p. 177]

In the analogy between paradigm-universals in mathematics and superposition
states in QM, the point is that an indefinite superposition QM state is a single entity
that ‘blobs out,’ ‘blurs out,’ renders indefinite, or coheres together the differences
between the definite eigenstates in the superposition. We previously noted that there
is both the ‘half-full’/paradigm description or the ‘half-empty’/indefinite descrip-
tion of the same entity . It is the indefiniteness description that best applies to
the quantum case, not the classical-Platonic notion of a ‘paradigm.’ The notion of

829On Abstraction in Mathematics and...



Table 4 Parallel operations in probability theory with superposition events and in quantum mechanics

#2 abstraction could be applied to any collections of distinct entities. In the quan-
tum case, it is also not a zero-one affair whether two elements are equated as in the
incidence matrices In of the ‘blobbed-out’ sets; the off-diagonal elements in
the density matrix give the ‘amplitude’ of the equating or cohering together of the
eigenstates in the superposition state.

The classifying or measuring operation In indit could still be defined
taking the minimum of corresponding entries in absolute value, but in QM it is
obtained by what Auletta et al. [1, p. 279] call the Lüders mixture operation. If

1 ... is a partition according to the eigenvalues 1 ... on 1 ...
(where is an orthonormal basis set for the observable being measured), let
be the diagonal (projection) matrix with diagonal entries . Then
In indit is obtained as:

The Lüders mixture.

The probability of getting the result is:

Pr tr .

These results are summarized in Table 4 (where is the projection to the
subspace generated by , and is the corresponding projection to the subset

).

11 Intuitive Example: Distinguishing States

The two versions of give us two versions of the starting point in this expanded
finite discrete probability theory. The #1 version of is the classical sample space
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Fig. 8 Outcome set for classical coin-flipping trial

of possible outcomes, and the #2 version of is which represents the indefinite
sample outcome.

1. The #1 classical version of flipping a fair coin where and getting
head or tails with equal probability (Fig. 8)–like the mixed state:

1

2
[ ]

1
2 0
0 1

2
.

2. The #2 superposition version starts with the indefinite entity , ‘the indefi-
nite outcome’, and a trial renders it into one of the definite outcomes with
some probability so that could be represented by the density matrix

where . In the case at hand, this is like a coin
with the difference between heads or tails rendered indefinite, blurred out, or
superposed (which in QM is the pure state with the blobbed-out cross-terms

and in the density matrix), and the trial results in it sharpening or
‘decohering’ to definitely heads or definitely tails with equal probability (Fig. 9):

1
2
[ ] [ ] 1

2

1
2

1
2

1
2

1
2

.

By a heads-or-tail trial or measurement, one cannot distinguish from
. The probability of getting heads in each case is:

Pr tr tr
1 0
0 0

1
2 0
0 1

2
tr

1
2 0
0 0

1
2

Fig. 9 ‘the outcome state’ for the coin-flipping trial
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Pr tr tr
1 0
0 0

1
2

1
2

1
2

1
2

tr
1
2

1
2

0 0
1
2

and similarly for tails. They both give heads and tails with probability 1 2. This
is not a bug but a feature since the same thing happens in QM. To distinguish such
states in QM, we need to measure in a different basis. But for finite probability theory
with both ordinary and superposition events, there is no ‘different basis.’

However, that can be changed by moving to the pedagogical model of quantum
mechanics over sets or QM/Sets [5] using vector spaces 2 over the base field of

2 0 1 . In the two dimensional version, 2
2, we can take the computational

-basis as and . But there is a different basis of where
and since (mod

2) so all the non-zero states can also be expressed in the -basis. The vector
is expressed in the -basis by the column vector 1

0 (the subscript indicating the

basis) and in the -basis by the column vector 1
1 . The basis conversion matrix is

1 0
1 1

so
1 0
1 1

1
0

1
1

.

Hence converting the superposition 1
1 or to the -basis gives:

1
1

1 0
1 1

1
1

1
0

or so its density matrix (computing

in the reals) is
1
0

1 0
1 0
0 0

. The classical mixed event is the half-

half mixture of and . The basis conversion for gives
1
0

1 0
1 1

1
0

1
1

so the associated real density matrix is:

1
2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

.

For , the basis conversion gives
0
1

1 0
1 1

0
1

0
1

so its

real density matrix is:
0
1

0 1
0 0
0 1

.

Their half-half mixture has the density matrix in the -basis:

1

2

1
2

1
2

1
2

1
2

1

2
0 0
0 1

1
4

1
4

1
4

3
4

.

We then measure by the partition with half-half probabilities
so the probability of for the superposition event or in the -basis is:

tr
1 0
0 0

tr
1 0
0 0

1 0
0 0

tr
1 0
0 0

1
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and for the classical mixture of half and half which in the -basis is the
mixture of half and half , is:

tr
1
4

1
4

1
4

3
4

tr
1 0
0 0

1
4

1
4

1
4

3
4

tr
1
4

1
4

0 0
1

4
.

The first calculation makes intuitive sense since the superposition in the
-basis is the singleton event in the -basis, so measuring in the -basis

for the event will give with probability 1. The second calculation makes
intuitive sense since it is half-half in the mixture whether we get the event
or the event and then the probability of getting is zero for the

event and 1
2 for the event so the overall probability of is 1

2 0

1
2

1
2

1
4 . Thus the two events, the classical mixture of half and half ,

and the superposition , which cannot be distinguished by measurements in the
-basis, can be distinguished by measurement in the -basis.

12 Simplest Quantum Example

Consider a system with two spin-observable eigenstates and (like electron
spin up or down along the -axis) where the given normalized superposition state

is 1
2

1
2

1
2
1
2

so the density matrix is

1
2

1
2

1
2

1
2

where and . Using the Lüders

mixture operation, the measurement of that spin-observable goes from the pure
state to

1 0
0 0

1 0
0 0

0 0
0 1

0 0
0 1

0
0

1
2 0
0 1

2
.

The gain in quantum logical entropy due to the spin mea-
surement is the sum of the (absolute) squares of the off-diagonal terms that were

zeroed in the change: . In this case, that is 2 1
2

2
1
2 . That is

also since is a pure state so 0.
Experimentally, it is not possible to distinguish between the #1 and #2 versions by
-measurements–since, in either case, the result will be spin up or spin down (heads

or tails) with equal probability. But in QM the two states and can
be distinguished by measuring other observables like spin along a different axis as
emphasized by Auletta et al. [1, p. 176] and as we illustrated above using QM/Sets.
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13 Conclusions

We have approached the paradigm/indefinite interpretation of probability theory with
superposition events by starting with the logical situation of a universe of distinct
entities. Given a property on , we can associate with it:

1. the #1 abstract object , the set of -entities, or
2. the #2 abstract object which is the abstract paradigm-

entity expressing the properties common to the -entities but “abstracting
away from,” “rendering indefinite,” “cohering together,” or “blobbing or blurring
out” the differences between those entities.

We argued that the mathematical machinery that could distinctly treat both
abstractions was incidence matrices in logic and density matrices in probability
theory:

1. #1 representation as In in logic or in probability theory; and
2. #2 representation as In in logic or in probability theory.

Quantum mechanics can be equivalently formulated using wave-function state
vectors or using density matrices [10, p. 102]. Our development above, using the
analogy with #2 abstractions, dove-tailed precisely into density-matrix mathemati-
cal treatment in QM where the state vector is rendered as which can be
interpreted as an objectively indefinite state (according to the off-diagonal elements).
This exemplifies the objectively-indefinite or literal interpretation of QM proposed
by Abner Shimony.

From these two basic ideas alone – indefiniteness and the superposition princi-
ple – it should be clear already that quantum mechanics conflicts sharply with
common sense. If the quantum state of a system is a complete description of
the system, then a quantity that has an indefinite value in that quantum state
is objectively indefinite; its value is not merely unknown by the scientist who
seeks to describe the system. [12, p. 47]
But the mathematical formalism ... suggests a philosophical interpretation

of quantum mechanics which I shall call “the Literal Interpretation.” ...This
is the interpretation resulting from taking the formalism of quantum mechan-
ics literally, as giving a representation of physical properties themselves, rather
than of human knowledge of them, and by taking this representation to be
complete.[13, pp. 6-7]

This objective-indefiniteness or literal interpretation of QM could also be
described as density-matrix realism since, as we have tried to show, density matri-
ces can be interpreted as representing an objectively indefinite reality (the attempt
to interpret the wave function as representing some sort of physical wave has been
abandoned for almost a century now). Unfortunately, this natural (but hard to intu-
itively imagine) interpretation of QM is ignored in the literature of the philosophy of
quantum mechanics in favor of fantasies about ‘many worlds’ or last-gasp attempts
to retain the image of reality as definite ‘all the way down’ in Bohmian mechanics.
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Since the ancient Greeks, we have had the #2 Platonic notion of the abstract
paradigm-universal ‘the -entity’, paradigmatically definite on what is common to
the entities with the property , and indefinite on where they differ, i.e., abstracting
away from how they differ. By using incidence and density matrices to differentiate
the #1 abstraction (e.g., the equivalence class of distinct but parallel lines) and the
#2 abstraction (e.g., the direction of the lines), we can cross the conceptual bridge to
better understand indefiniteness in quantum mechanics by seeing the analogy:

The paradigm , ‘the -entity’ represented by In
the superposition state represented by the density matrix .

This may recall Whitehead’s quip that Western philosophy is “a series of footnotes
to Plato.” [17, p. 39]
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