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Abstract – We live in the information age. Claude Shannon, as the father of the information age, gave us a
theory of communications that quantified an “amount of information,” but, as he pointed out, “no concept of
information itself was defined.” Logical entropy provides that definition. Logical entropy is the natural measure
of the notion of information based on distinctions, differences, distinguishability, and diversity. It is the
(normalized) quantitative measure of the distinctions of a partition on a set-just as the Boole–Laplace logical
probability is the normalized quantitative measure of the elements of a subset of a set. And partitions and sub-
sets are mathematically dual concepts – so the logic of partitions is dual in that sense to the usual Boolean logic
of subsets, and hence the name “logical entropy.” The logical entropy of a partition has a simple interpretation
as the probability that a distinction or dit (elements in different blocks) is obtained in two independent draws
from the underlying set. The Shannon entropy is shown to also be based on this notion of information-as-
distinctions; it is the average minimum number of binary partitions (bits) that need to be joined to make all
the same distinctions of the given partition. Hence all the concepts of simple, joint, conditional, and mutual
logical entropy can be transformed into the corresponding concepts of Shannon entropy by a uniform non-linear
dit-bit transform. And finally logical entropy linearizes naturally to the corresponding quantum concept. The
quantum logical entropy of an observable applied to a state is the probability that two different eigenvalues are
obtained in two independent projective measurements of that observable on that state.

Keywords: Logical entropy, Shannon entropy, Partitions, MaxEntropy, Quantum logical entropy,
Von Neumann entropy

Introduction

This paper is an introduction to the concept of logical entropy as the direct measure of the definition of information in
terms of distinctions, differences, distinguishability, and diversity. The formula for logical entropy goes back to the early
twentieth century, but the current development comes out of seeing the formula as the quantification of information in
a partition as the normalized number of distinctions or dits (ordered pairs of elements in different blocks) of the partition.
Just as the Laplace–Boole notion of probability, as the normalized number of elements in a subset, quantifies the logic of
subsets, so logical entropy, as the normalized number of distinctions in a partition, quantifies the logic of partitions – and
hence the adjective “logical.” The logical entropy of a partition is, in fact, a probability measure – the probability of obtain-
ing a distinction of the partition in two independent draws from the universe set, just as the logical Laplace–Boole proba-
bility of a subset (or event) is the one-draw probability of obtaining an element of the subset.

Far from displacing the usual notion of Shannon entropy; the point is to show that the Shannon entropy of a partition is
a different quantification of the same notion of information-as-distinctions, i.e., the average minimum number of binary par-
titions (bits) that need to be joined together to make the same distinctions of a partition. In fact, there is a non-linear dit-to-
bit transformation that transforms all the concepts of simple, joint, conditional and mutual logical entropy into the corre-
sponding formulas for Shannon entropy, where the latter are especially suited for the theory of coding and communications.

Edwin Jaynes’MaxEntropy method is intended to generalize the Laplace indifference principle by determining the “best”
probability distribution consistent with given constraints (e.g., that rule out the uniform distribution of the indifference
principle) by maximizing Shannon entropy subject to those constraints. We show that maximizing logical entropy subject
to the same constraints gives a different probability distribution. The logical entropy solution is the closest to the uniform
distribution in terms of the usual notion of (Euclidean) distance while the Jaynes solution is the closest in terms of the
Kullback–Leibler (KL) divergence from the uniform distribution. The notion of information-as-differences also connects
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to ordinary statistical theory since the metrical version of logical entropy is just twice the usual notion of variance (or equals
the variance if one counts unordered pairs), and similarly for the notion of covariance.

There is a quasi-algorithmic method, linearization, that transforms set-based concepts into vector-space concepts.
Applied to the set-based concepts of “classical” logical entropy, the linearization to Hilbert spaces generates the quantum
versions of logical entropy. The quantum logical entropy of an observable applied to a quantum state is the probability
of getting different eigenvalues in two independent (projective) measurements of the observable on that state.

Logical entropy
Partitions on a set

A partition p = {B1, . . ., Bm} on a finite set U = {u1, . . .,un} is a set of non-empty subsets Bi � U called blocks that are
disjoint and whose union is all of U. A distinction or dit of p is an ordered pair (uj, uk) 2 U � U where uj and uk are in
different blocks of p. The set of all distinctions of p is the ditset dit(p) � U � U. An ordered pair (uj, uk) 2 U � U is an
indistinction or indit of p if uj and uk are in the same block of p, and the set of all indits of p is the inditset
indit pð Þ ¼ [m

j¼1 Bj � Bj

� �
. A binary relation E � U � U is an equivalence relation on U if it is reflexive (i.e., for all

u 2 U, (u, u) 2 E), symmetric (i.e., for all (u, u 0) 2 E, (u 0, u) 2 E), and transitive (i.e., if (u, u 0) 2 E and (u 0, u00) 2 E,

then (u 0, u00) 2 E). The inditset indit (p) of a partition on U is an equivalence relation on U. Given an equivalence relation
E on U, two elements are said to be equivalent, u ~ u 0, if (u,u 0) 2 E. Let [u]E � U be the set of elements of U equivalent to
u 2 U, i.e., an equivalence class of E. The set of equivalence classes of E is a partition on U and the inditset of that partition
is E. Hence the notion of an equivalence relation and an inditset of a partition are equivalent notions.

Since each ordered pair (uj, uk) 2 U � U is either an dit of p or an indit of p but not both, the ditset dit(p) = U � U �
indit(p) is the complement of the inditset in U � U = U2. As a binary relation dit(p) � U � U, the ditsets of a partition are
called a partition relation or an apartness relation. Partition relations P � U � U can be characterized as being irreflexive
(i.e., for any u 2 U, (u, u) 62 P), symmetric, and anti-transitive (i.e., for any (uj, uk) 2 P and for any sequence
uj ¼ uj0 ; uj1 ; :::; ujk ; ujkþ1

¼ uk of elements of U, there is a pair uji ; ujiþ1

� � 2 P ). Every ditset of a partition is a partition rela-
tion and vice-versa.

Given another partition r = {C1, . . ., Ck} on U, the partition p refines r, written r - p, if for every block B 2 p, there is
a block C 2 r such that B � C. Intuitively, p is obtained from r by splitting up some of the blocks of r which creates more
distinctions. Indeed, r- p if and only if (iff) dit(r)� dit(p). The refinement relation on the partitions onU is a partial order
in the sense that it is reflexive, anti-symmetric (i.e., if r - p and p - r then r = p), and transitive. The partial order has a
maximal or top partition and a minimal or bottom partition. The top is the discrete partition 1U = {{u}}(u2U) where all the
blocks are singletons, and the bottom is the indiscrete partition or “blob” 0U = {U} with only one block U. Both the join
(least upper bound) and meet (greatest lower bound) of two partitions always exist so the refinement partial order is a
lattice P(U).1 Only the join operation is used here, but all the Boolean operations on subsets can be extended to partitions
to form the logic of partitions [3, 4] that is the dual counterpart to the Boolean logic of subsets (which is usually presented in
the special case of propositional logic). Given p and r, the join p _ r is the partition on U whose blocks are all the non-empty
intersections B \ C for B 2 p and C 2 r.

One of the easiest ways to see the dual pairing of the concepts of a subset and a partition is to consider a function
f : X ? Y from a set X to a set Y. The image is the subset f(X) = {y 2 Y : $x 2 X, f(x) = y} of the codomain Y, and
the inverse-image or coimage is the partition {f�1(y)}y2f(X) on the domain X (Fig. 1).2

Logical entropy: the quantification of distinctions

The set of all subsets of a set U, the powerset }(U), also forms a lattice under the inclusion partial order with the top U,
the bottom ;, and the join and meet being set union and intersection respectively. Given the duality between subsets and
partitions, it is natural to see what concepts carry over from subsets to partitions. In particular, the quantitative measure of
a subset S � U is its cardinality |S|, and the normalized cardinality of a subset S is the logical notion of probability
Pr Sð Þ ¼ Sj j

Uj j developed by Boole and Laplace (where each point u 2 U is considered equiprobable). Gian-Carlo Rota in
his Fubini Lectures [6] and in his lectures at MIT on probability theory [7] argued that information or entropy should
be to partitions what probability was to subsets, i.e.,

Probability
Subsets

� Information
Partitions

: ð1Þ

1 In some of the older literature, the partial order is written in the opposite way as “unrefinement,” so that interchanges the top and
bottom and the join and meet [1, 2].
2 In category theory, the notion of a subset generalizes to the notion of a subobject or “part” and the “dual notion (obtained by
reversing the arrows) of ‘part’ is the notion of partition” ([5], p. 85).
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The quantitative notion attached to a subset is its number of elements |S|, so the question is; What is the quantitative
notion associated with a partition? The duality between subsets and partitions can be analyzed back to its conceptual build-
ing blocks which are the dual notions of elements (its) of a subset and the distinctions (dits) of a partition [8]. Hence, the
natural notion of information in a partition would, by this reasoning, be the normalized number of distinctions, and that is
our definition of the logical entropy of a partition p;

h pð Þ ¼ dit pð Þj j
U�Uj j ¼ U�Uj j� indit pð Þj j

U�Uj j

¼ 1� [i Bi�Bið Þj j
U�Uj j ¼ 1�Pm

i¼1

Bij j
Uj j

� �2
¼ 1�P

i
Pr Bið Þ2;

ð2Þ

where Pr Bið Þ ¼ Bij j
Uj j is the probability of a random draw from U will give an element of Bi (with equiprobable points).

When there are point probabilities p = (p1, . . ., pn) for pj as the probability of the outcome uj 2 U with
Pn

j¼1pj ¼ 1, then
Pr Bið Þ ¼P pj : uj 2 Bi

� �
in the formula for logical entropy. This also gives the definition of logical entropy for any prob-

ability distribution p = (p1, . . ., pn),

h pð Þ ¼ 1�
Xn
j¼1

p2j : ð3Þ

Logical entropy always has an ultra-simple and logical interpretation. Logical information theory is built on the idea that
information is about distinctions, differences, distinguishability, and diversity. The notion of difference requires two things in
order to have a difference. Hence, given a partition p = {B1, . . ., Bm} or a probability distribution p = (p1, . . ., pn), the
obvious measure for idea of information as distinctions or difference is the probability that in two independent samples
or draws from U or from the distribution p, one will obtain elements in different blocks of p, i.e., a distinction of p, or dif-
ferent outcomes pj, pk for j 6¼ k. And that is precisely the interpretation of logical entropy, the “probability of difference.” The
probability of obtaining elements from the same block of p is

P
iPr Bið Þ2 so the probability of getting elements from different

blocks is h(p) = 1�PiPr(Bi)
2. And similarly for the logical entropy of a probability distribution h pð Þ ¼ 1�Pjp

2
j . Another

way to express this result is the formula:

1 ¼ 12 ¼ p1 þ ::: þ pnð Þ p1 þ :::þ pnð Þ ¼
Xn
j¼1

p2i þ
X
j 6¼k

pjpk ð4Þ

so that:

h pð Þ ¼ 1�
Xn
j¼1

p2i ¼
Xn
j¼1

pj 1� pj
� � ¼X

j 6¼k

pjpk ¼ 2
X
j<k

pjpk ð5Þ

for j, k = 1, . . ., n. Thus, to be more specific, logical entropy is the probability of getting an ordered pair of distinct indices
pj and pk for j 6¼ k – which is twice the probability of getting an unordered pair of different indices such as pj and pk for
j < k.

There is a simple way to picture the logical entropy. Given partition p = {{u1, u2},{u3},{u4}} with the corresponding
point probabilities p = (p1, p2, p3, p4). Since the sum of the probabilities is 1, the logical entropy h(p) can be pictured in a
1 � 1 box, Figure 2, as the shaded area outside the boxed diagonal.

Figure 1. Image subset and inverse-image partition of a function f : X?Y.
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Logical entropy is also a measure, indeed, a probability measure, in the usual sense of measure theory ([9], p. 30)
(although terminology differs) which includes being non-negative. A finitely additive set function (the values on disjoint
sets add together) that can take negative values is usually called a “signed measure” ([9], p. 118) (or a “charge” [10]),
and, as we will see, Shannon mutual information can be negative.

Partitions often arise as the inverse-images of random variables X : U ! R. To use an example that we will have use of
later, consider the throw of one fair die followed by the throw of a second fair die. All that is recorded is whether the face up
on each die was even or odd, i.e., its parity (or mod(2) value). With even represented by 0 and odd by 1, then the space of
possible outcomes for the throws of the dice is U = {(0, 0), (0, 1), (1, 0), (1, 1)}. Let X : U ? 2 = {0,1} represent the out-
come of the first die, the X -die, and Y : U ? 2 the outcome of the second die, the Y -die. For instance, the point (1, 0) 2 U
represents that the first die came up with odd parity 1 and the second die with even parity 0.

A measure on a finite set is determined by just an assignment of a non-negative number to each point in the set. The set
on which logical entropy is a (probability) measure is U � U so it can again be represented in a box diagram with the
equiprobable outcome pairs in U along each edge. Each square in Figure 3, representing a pair ((x, y), (x 0, y 0)) of pairs,
has the probability weight of 1

4 � 1
4 ¼ 1

16 assigned to it. The inverse-image partition of the random variable X is

X�1 ¼ X�1 0ð Þ;X�1 1ð Þ� � ¼ 0; 0ð Þ; 0; 1ð Þf g; 1; 0ð Þ; 1; 1ð Þf gf g: ð6Þ

The ditset dit(X�1) is the set of pairs of pairs, i.e., points in U � U, that differ in the first coordinate:

dit X�1
� � ¼ 0; 0ð Þ; 1; 0ð Þð Þ; 0; 0ð Þ; 1; 1ð Þð Þ; 0; 1ð Þ; 1; 0ð Þð Þ; 0; 1ð Þ; 1; 1ð Þð Þ; . . .f g; ð7Þ

where the ellipsis . . . represents the pairs of pairs with the reversed order. The shaded squares in Figure 3 box diagram
are the ones included in the logical entropy h(X) since they are the ones which differ in the first coordinate of the ordered

Figure 2. Logical entropy box diagram.

Figure 3. Box diagram for h Xð Þ ¼P p x; yð Þp x 0; y0ð Þ : x 6¼ x 0f g ¼ 8
16 ¼ 1

2 which can also be seen as a Venn diagram.
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pairs of outcomes, i.e.,, the pairs where the first die’s outcomes had different parities. Each outcome (x, y) has probability
p x; yð Þ ¼ 1

4 and the only squares that count for the logical entropy of X are the ones for ((x, y), (x 0,y 0)) where x 6¼ x 0.
The logical entropy of the random variable Y : U ? 2 is computed and represented in Figure 4 in the same manner

except that the relevant pairs of pairs are those that differ in the second coordinate representing the parity of the second
die.

The logical entropy h(X) for X (the parity of the outcome for the first die) and h(Y) for Y (the parity of outcome for the
second die) is the probability that on two independent throws of the relevant die, one will obtain outcomes of different
parity.

History of the logical entropy formula

The concept of information as a measure of differences goes back to 1641, the year before Isaac Newton was born, when
the polymath John Wilkins (1614–1672) anonymously published one of the earliest books on cryptography, Mercury or the
Secret and Swift Messenger. This book not only pointed out the fundamental role of differences but noted that any (finite)
set of different things could be encoded by words in a binary code.

For in the general we must note, That whatever is capable of a competent Difference, perceptible to any Sense, may
be a sufficient Means whereby to express the Cogitations. It is more convenient, indeed, that these Differences
should be of as great Variety as the Letters of the Alphabet; but it is sufficient if they be but twofold, because
Two alone may, with somewhat more Labour and Time, be well enough contrived to express all the rest. ([11], Chap.
XVII, p. 69)

Wilkins explains that a five letter binary code would be sufficient to code the letters of the alphabet since 25 = 32:
Thus any two Letters or Numbers, suppose A.B. being transposed through five Places, will yield Thirty Two
Differences, and so consequently will superabundantly serve for the Four and twenty Letters... .([11], Chap. XVII, p. 69)

In James Gleick’s 2011 book, The Information: A History, A Theory, A Flood, he noted that:
Any difference meant a binary choice. Any binary choice began the expressing of cogitations. Here, in this arcane
and anonymous treatise of 1641, the essential idea of information theory poked to the surface of human thought, saw
its shadow, and disappeared again for [three] hundred years. ([12], p. 161)3

The idea that information is about differences was also expressed by the polymath, Gregory Bateson, who noted that
(the transmission of) “[i]nformation consists of differences that make a difference.” ([13], p. 99)

The formula that is a measure of differences, h pð Þ ¼ 1�Pjp
2
j (or its complementary form 1� h pð Þ ¼Pjp

2
j ), goes back

at least to Corrado Gini (1884–1965) who published it as an index of mutability [14] in 1912 (not to be confused with Gini’s
better-known index of inequality). Some of the immediate following history of the formula was connected to cryptology as
foreshadowed by Wilkins. William F. Friedman, an American cryptologist, devoted a 1922 book [15] to the “index of

Figure 4. Box/Venn diagram for h Yð Þ ¼P p x; yð Þp x 0; y0ð Þ : y 6¼ y0f g ¼ 1
2.

3 Gleick is referring to the old Pennsylvania Dutch superstition that on February 2 each year, if a groundhog emerges from its den and
sees its shadow, then it will go back in for six more weeks.
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coincidence” (i.e.,
P

p2i ). Solomon Kullback worked as an assistant to Friedman and wrote a book on cryptology which used
the index [16].

During World War II, Alan M. Turing worked for a time in the Government Code and Cypher School at the Bletchley
Park facility in England. Probably unaware of the earlier work, Turing used q ¼P p2i in his cryptoanalysis work and called
it the repeat rate since it is the probability of a repeat in a pair of independent draws from a population with those
probabilities. Polish cryptographers had independently used the repeat rate in their work on the Enigma [17]. After WWII,
Edward H. Simpson, a British statistician, proposed

P
B2pp

2
B as a measure of species concentration (the opposite of

diversity) where p is the partition of animals or plants according to species and where each animal or plant is considered
as equiprobable. And Simpson gave the interpretation of this homogeneity measure as “the probability that two individuals
chosen at random and independently from the population will be found to belong to the same group.” ([18], p. 688) Hence
1�PB2pp

2
B is the probability that a random ordered pair will belong to different species, i.e., will be distinguished by the

species partition. The biodiversity literature [19] refers to the formula as “ Simpson’s index of diversity” or sometimes, the
“Gini-Simpson diversity index.” In the bioinformatics literature, Masatoshi Nei [20] introduced the logical entropy formula
as a measure of gene diversity.

But the Simpson story has a twist. Simpson along with I.J. Good worked at Bletchley Park during WWII, and, accord-
ing to Good, “E.H. Simpson and I both obtained the notion [the repeat rate] from Turing.” ([21], p. 395) When Simpson
published the index in 1948, he (again, according to Good) did not acknowledge Turing “ fearing that to acknowledge
him would be regarded as a breach of security.” ([22], p. 562) Perhaps logical entropy should be called “Turing entropy”
to compete with the “big names” attached to Shannon entropy and von Neumann entropy. But given its frequent discovery
and rediscovery, Good also negated that idea.

If p1, p2, . . ., pn are the probabilities of mutually exclusive and exhaustive events, any statistician of this century who
wanted a measure of homogeneity would have taken about two seconds to suggest

P
p2i , which I shall call q. . . .

Thus it is unjust to associate q with any one person. It would be better to use such names as “repeat rate” or “quad-
ratic index of homogeneity” for q and perhaps “quadratic index of heterogeneity or diversity” for 1 � q. ([22], pp.
561–2]

Thus the name “logical entropy” seems appropriate, particularly in view of Stigler’s Law of Eponymy, i.e., “No scientific
discovery is named after its original discoverer” [23], and since it is the quantitative measure associated with partitions in the
logic of partitions just as finite probability is the quantitative measure associated with subsets in the usual Boolean logic of
subsets.

In economics, Albert O. Hirschman ([24], p. 159) suggested in 1945 using
ffiffiffiffiffiffiffiffiffiffiffiP

p2i
p

as an index of trade concentration
(where pi is the relative share of trade in a certain commodity or with a certain partner). A few years afterwards, Orris
Herfindahl [25] independently suggested using

P
p2i as an index of industrial concentration (where pi is the relative share

of the ith firm in an industry). In the literature on industrial economics, the index H ¼P p2i is variously called the
Hirschman–Herfindahl index, the HH index, or just the H index of concentration.

Another way to look at logical entropy is that two elements from U = {u1, . . ., un} are either identical or distinct. Gini
[14] introduced dij = 1 � dij (the complement of the Kronecker delta function) as the “distance” between the ith and jth
elements where dij = 1 for i 6¼ j and dii = 0. Then Gini’s index of mutability, h pð Þ ¼Pi;jdijpipj, is the average (logical) dis-
tance between a pair of independently drawn elements. But one might generalize by allowing other non-negative distances

dij = dji for i 6¼ j (but always dii = 0) so that Q ¼Pi;jdijpipj would be the average distance between a pair of independently

drawn elements from U . In 1982, C.R. (Calyampudi Radhakrishna) Rao introduced precisely this concept as quadratic
entropy [26]. The logical entropy is also the quadratic special case of the Tsallis–Havrda–Charvat entropy [27, 28].

Časlav Brukner and Anton Zeilinger have also developed the logical entropy formula 1�Pn
i¼1p

2
i in their treatment of

quantum information [29, 30] and have also used the normalized form of the (Euclidean) distance squared of a probability
distribution from the uniform distribution, which is closely related to the logical entropy since:

Pn
i¼1 pi � 1

n

� �2 ¼
1� 1

n

� �� h pð Þ.

Compound notions of logical entropy

We now consider a joint probability distribution {p(x, y)} on the finite sample space X � Y (where to avoid trivialities,
assume |X|, |Y| � 2), with the marginal distributions {p(x)} and {p(y)} where p xð Þ ¼Py2Y p x; yð Þ and p yð Þ ¼Px2X p x; yð Þ.
The setting is a pair of random variables X and Y where we also consider X as the set of possible values x of the r.v. X and
similarly for the r.v. Y. Then the joint probability distribution is p(x, y) = Pr(X = x, Y = y), and the marginals are
p(x) = Pr(X = x), and p(y) = Pr(Y = y). For notational simplicity, the entropies can be considered as functions of the
random variables or of their probability distributions, e.g., h({p(x)}) = h(X) and h({p(y)}) = h(Y). Logical entropy is
characterized in terms of the probability that in two independent draws (x, y) and (x 0, y 0) from the sample space, one will
get different outcomes. Hence in this case,
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h Xð Þ ¼
X
x;y

p x; yð Þp x0; y0ð Þ : x 6¼ x0f g; ð8Þ

h Yð Þ ¼
X
x;y

p x; yð Þp x0; y 0ð Þ : y 6¼ y 0f g: ð9Þ

Then the joint entropy h(X, Y) is just the logical entropy h({p(x, y)}((x, y) 2 X � Y)) of the joint probability distribution
which can also be characterized as:

h X ; Yð Þ ¼
X
x;y

p x; yð Þp x0; y 0ð Þ : x 6¼ x0 or y 6¼ y0f g: ð10Þ

In the previous even-odd dice example of throwing an X-die and a Y-die, each die had an outcome set of {0, 1} so
X � Y = {(0, 0), (0, 1), (1, 0), (1, 1)} = U. The space on which the probabilities are assigned is U � U = (X � Y) �
(X � Y) so the probability assigned to each point ((x, y),(x 0, y 0)) is p(x, y)p(x 0, y 0). The points in the space (X � Y)2 whose
probabilities add up to give h(X, Y) are just the union of the points for h(X), i.e., where x 6¼ x 0, and for h(Y), i.e., where
y 6¼ y 0. Since each point in (X � Y)2 is represented by a square with probability 1

16, the shaded squares for h(X, Y) are just
the union of the squares for h(X) and h(Y) as shown in Figure 5.

The usual interpretation carries over to the compound notions such as the joint entropy; in two independent throws of
the pair of dice, the probability that one will get a different parity in the X-die or in the Y-die (or both) is h X ; Yð Þ ¼ 3

4.
In a Venn diagram that is merely illustrative, the logical entropies would be represented as circles and the union of the

circles would represent the joint entropy as in Figure 6.
Figure 6 also illustrates the “formulas” for the other compound logical entropies. The conditional logical entropy

h X jYð Þ ¼
X
x;y

p x; yð Þp x0; y0ð Þ : x 6¼ x0 and y ¼ y0f g ð11Þ

represents the distinctions made by X (i.e., the cases where the two throws of X-die had different parities) after the dis-
tinctions made by Y are taken away (so y = y 0), and vice-versa for h(Y|X). And the mutual logical information

m X ; Yð Þ ¼
X
x;y

pðx; yÞpðx0; y 0Þ : x 6¼ x0 and y 6¼ y0f g ð12Þ

is the probability that in the two throws of the pair of dice, the pair of pairs of outcomes will have different parity in the
X-die and in the Y-die – as one can easily see from the shaded squares for m(X, Y) in Figure 7.

These specific box/Venn diagrams illustrate general relationships such as the two conditional entropies and mutual
information all being disjoint and adding to the joint entropy. In general (not just for this example), the compound logical
entropies stand in the relationships shown by the areas in the illustrative Figure 6:

h X ; Yð Þ ¼ h X jYð Þ þ h Y jXð Þ þ m X ; Yð Þ; ð13Þ

h Xð Þ ¼ h X jYð Þ þ m X ; Yð Þ; ð14Þ

h Yð Þ ¼ h Y jXð Þ þ m X ; Yð Þ ð15Þ

h X ; Yð Þ ¼ h Xð Þ þ h Yð Þ � m X ; Yð Þ: ð16Þ

Figure 5. Union of Box/Venn diagrams for h(X) and h(Y) gives the box diagram for joint entropy h X ;Yð Þ ¼ 12
16 ¼ 3

4.
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Shannon entropy
The basic definitions

Both the logical and the Shannon entropies are defined for probability distributions regardless of whether the distribu-
tion is derived from the blocks of a partition Pr(Bi) or the values of a random variable Pr(X = x). Hence we can start the
treatment of Shannon entropy [31, 32] defined on a probability distribution p = (p1, . . ., pn):

H pð Þ ¼ �
Xn
i¼1

pilog2 pið Þ ¼
Xn
i¼1

pilog2
1
pi

	 

ð17Þ

where for pi ¼ 0, pilog2
1
pi

� �
is defined to be 0. Henceforth, the logs are to base 2 unless otherwise specified. For a random

variable X with p(x) = Pr(X = x), then:

H Xð Þ ¼
X
x2X

p xð Þ log 1
p xð Þ
	 


: ð18Þ

Given a joint probability distribution p(x, y) on X � Y, the joint Shannon entropy is:

H X ; Yð Þ ¼
X

x;yð Þ2X�Y

p x; yð Þ log 1
p x; yð Þ
	 


: ð19Þ

The conditional Shannon entropy H(X|Y) is defined as the average of the Shannon entropies for conditional probability
distributions. Given the joint distribution {p(x, y)} on X � Y, then for a specific y0 2 Y, then the conditional probability

distribution is p xjy0ð Þ ¼ p x;y0ð Þ
p y0ð Þ which has the Shannon entropy: H X jy0ð Þ ¼Px2X p xjy0ð Þ log 1

p xjy0ð Þ

� �
. Then the Shannon

conditional entropy is defined as the average of these entropies:

H X jYð Þ ¼
X
y2Y

p yð Þ
X
x

p x; yð Þ
p yð Þ log

p yð Þ
p x; yð Þ
	 


¼
X
x;y

p x; yð Þ log p yð Þ
p x; yð Þ
	 


: ð20Þ

Figure 6. Illustrative Venn diagram for the compound logical entropies.

Figure 7. Box diagrams representing the two conditional logical entropies and the mutual logical information all with the
value 1

4.
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Since the Venn diagram for any measure like logical entropy satisfies a relationship like h(X) + h(Y) � h(X,Y) = m(X,Y),
Shannon defined the mutual Shannon information as:

I X ; Yð Þ ¼
X

x2X ;y2Y
p x; yð Þ log

1
p xð Þ
	 


þ log
1

p yð Þ
	 


� log
1

p x; yð Þ
	 
� �

: ð21Þ

Then it is perhaps no surprise that these compound Shannon entropies satisfy the Venn diagram relationship as if the
Shannon entropy was defined as a measure on a set. Hence one finds in the textbooks on Shannon’s theory of communica-
tions, a Venn diagram like Figure 8 to serve at least as a mnemonic about the interrelationships.

Shannon’s communications theory and “information theory”

This paper presents a different version of “information theory” than the received version. There is no difference in the
part of information theory where Shannon entropy actually does its work, namely the theory of coding and communication.
Shannon himself did not name his original paper or book as “information theory” but rather as the “mathematical theory of
communication” ([31, 32]). Thus the notion that the theory of communications (including coding theory) was an “informa-
tion theory” was a creation of the science press, science popularizers, and textbook writers. Shannon even reacted against the
“bandwagon” that inflated “information theory” far beyond the actual technical results of communications theory.

Information theory has, in the last few years, become something of a scientific bandwagon. Starting as a technical
tool for the communication engineer, it has received an extraordinary amount of publicity in the popular as well as
the scientific press. In part, this has been due to connections with such fashionable fields as computing machines,
cybernetics, and automation; and in part, to the novelty of its subject matter. As a consequence, it has perhaps been
ballooned to an importance beyond its actual accomplishments. Our fellow scientists in many different fields,
attracted by the fanfare and by the new avenues opened to scientific analysis, are using these ideas in their own
problems. Applications are being made to biology, psychology, linguistics, fundamental physics, economics, the the-
ory of organization, and many others. In short, information theory is currently partaking of a somewhat heady
draught of general popularity. ([33], p. 462)

Shannon repeated the points in a 1961 interview with Myron Tribus.

In 1961 Professor Shannon, in a private conversation, made it quite clear to me that he considered applications of his
work to problems outside of communication theory to be suspect and he did not attach fundamental significance to
them. ([34], p. 1)

Moreover, while Shannon noted that while his entropy formula indicates the “amount of information” (i.e., the average
numbers of binary distinctions needed to distinguish all the “messages”), “no concept of information itself was defined” ([35],
p. 458) in communications theory. Perhaps the most common idea about Shannon entropy is that it a measure of “amount
of uncertainty.” But there are many other interpretations.

Other terms used to convey an intuitive feeling for entropy include randomness, disorganization, “ mixed-up-ness”
(Gibbs), missing information, in-complete knowledge, complexity, chaos, ignorance, and uncertainty. ([36], p. 9)

Figure 8. Venn diagram mnemonic for the compound Shannon entropies.
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There is also the view that entropy and information were in fact opposites or complements; “Gain in entropy always
means loss of information, and nothing more.” ([37], p. 573) That view was later popularized by Leon Brillouin who claimed
that:
information must be considered as a negative term in the entropy of a system; in short, information is negentropy. ...
Entropy measures the lack of information. ([38], p. xii)

However, there is no need for this conceptual chaos; the (simple) Shannon entropy is another way to quantify the notion
of information-as-distinctions. That is, Shannon entropy is the minimum average number of binary partitions (bits) that
need to be joined in order to make the distinctions that distinguish all the “messages.” And simple logical entropy is the
direct measure of distinctions.

Is Shannon entropy a “measure”?

Shannon entropy and a host of other entropy “formulas” (sans interpretation) are routinely called “measures” of infor-
mation [39]. A prominent information theorist, Lorne Campbell, has noted in 1965 the analogies between Shannon entropy
and measures (in the usual non-negative sense).

Certain analogies between entropy and measure have been noted by various authors. These analogies provide a con-
venient mnemonic for the various relations between entropy, conditional entropy, joint entropy, and mutual infor-
mation. It is interesting to speculate whether these analogies have a deeper foundation. It would seem to be quite
significant if entropy did admit an interpretation as the measure of some set. ([40], p. 112)

We only need be concerned with the simplest case of a measure [9] on a finite set where for any finite set U, a measure l
is a function from the powerset of U (the subsets of U) to the reals l: }ðUÞ ! R such that:

1. l(;) = 0,
2. for any E � U, l(E) � 0, and
3. for any disjoint subsets E1 and E2, l(E1 [ E2) = l(E1) + l(E2).

The whole measure is determined by the values on singletons and simply summed over larger finite subsets.
It would be desirable for Shannon entropy to be a measure in this technical sense so:

that H(a) and H(b) are measures of sets, that H(a, b) is the measure of their union, that I(a, b) is the measure of
their intersection, and that H(a|b) is the measure of their difference. The possibility that I(a, b) is the entropy of the
“ intersection” of two partitions is particularly interesting. This “ intersection,” if it existed, would presumably con-
tain the information common to the partitions a and b. ([40], p. 113)

Logical entropy satisfies all those desiderata.
There are some differences in the use of the word “measure.” It would seem that the usual notion of a measure is always

non-negative [9,41] and then there is an extended notion of a “signed measure” that can take on negative values. Other
authors define a “measure” to allow negative values and then define a “positive measure” to have only non-negative values.
The most general usage, adopted here, is that a measure is non-negative and the generalized notion to allow negative value
is a “signed measure.” This is important since logical entropy is defined as a measure, indeed a probability measure, while
Shannon entropy is not defined as a measure on a set. Given any Venn diagram of Shannon entropies, then, as with
any Venn diagram, an ex post measue or signed measure can always be trivially constructed. Both measures and signed
measures can be represented as additive set functions ([42], Part 8, Chap. 1, Prob. 26) [43] ([44], Chap. 2) [45] that satisfy
the inclusion-exclusion principle (or overcount-undercount relationships) that can be associated with Venn diagrams (if we
allow negative areas).

For logical entropy, consider a set U = {u1, . . ., un} with point probabilities pif gni¼1 and a random variable X : U ! R
which induces a partition X�1 onU and similarly for Y : U ! R. The set on which the logical entropy measure is defined is
U � U and the value assigned to a point (uj, uk) 2 U � U is l({(uj, uk)}) = pj pk. The logical entropy associated with the
random variable is:

h Xð Þ ¼ l dit X�1
� �� � ¼ X

uj;uk2U
pjpk : uj; uk

� � 2 dit X�1
� �� �

; ð22Þ

namely the sum of all the products pj pk for which X(uj) 6¼ X(uk). Thus it is interpreted as the probability that on
two independent trials, the random variable X will give different values. That illustrates how logical entropy
measures differences. If the values of X have no differences, i.e., if it is constant, then X�1 = 0U and h(0U) = 0. The more
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refined the inverse-image partition X�1, the higher the logical entropy. Then all the usual Venn diagram relationships
hold such as

h Xð Þ ¼P pjpk : uj; uk
� � 2 dit X�1ð Þ� �

¼ P
uj;uk2U

pjpk : uj; uk
� � 2 dit X�1ð Þ and uj; uk

� � 62 dit Y �1ð Þ� �
þ P

uj;uk2U
pjpk : uj; uk

� � 2 dit X�1ð Þ and uj; uk
� � 2 dit Y �1ð Þ� �

¼ h X jYð Þ þ m X ; Yð Þ

ð23Þ

and all of Campbell’s desiderata are satisfied. For instance, the logical conditional entropy is the measure on the differ-
ence of the sets for h Xð Þ and h Yð Þ:

h X jYð Þ ¼
X

uj;uk2U
pjpk : uj; uk

� � 2 dit X�1
� �� dit Y �1

� �� �
: ð24Þ

To see why Shannon entropy is not in general a (non-negative) measure, consider the previous even-odd dice example of
two random variables X ; Y : U ! 2 for U = {(0, 0), (0, 1), (1, 0), (1, 1)} where X was the parity of the first die thrown
and Y the parity of a second die thrown. Each point (x, y) 2 U = X � Y has probability p x; yð Þ ¼ 1

4 and marginal distri-
butions have p xð Þ ¼ 1

2 ¼ p yð Þ. A two-variable joint distribution p(x, y) has the independence property if p(x, y) = p(x)p(y)
for all (x, y) 2 U. Hence the two r.v.s X and Y are independent. One of the original “selling points” of Shannon entropy
was that for independent r.v.s, H(X, Y) = H(X) + H(Y), i.e., independent r.v.s have “no information in common” so that
I(X, Y) = 0. It might be noted that having an overlap of H(X) and H(Y) of 0 is not the same as the Venn diagrams for
H(X) and H(Y) not overlapping.

Consider a third random variable Z : U ? 2 whose value is the parity of the sum X + Y so Z((0, 0)) = Z((1, 1)) = 0
and Z((0, 1)) = Z((1, 0)) = 1. Then Pr Z ¼ 0ð Þ ¼ Pr Z ¼ 1ð Þ ¼ 1

2 ¼ p zð Þ and p(x, z) = p(x)p(z) for all x, z 2 {0, 1} = 2 so
X and Z are also independent and similarly for Y and Z. Thus the three variables are pair-wise independent but they are not
mutually independent for the simple reason that if you know the values of any two of them, you know the value of the third
variable. Hence in the Venn diagram for the Shannon entropies ofX,Y, and Z, each pair of areas must have zero overlap but
the three areas must intersect in non-zero overlap. The only way this can happen is for the three-way overlap to be negative
and the two-way overlaps be the sum of that negative triple overlap and the equal positive remaining two-way overlap so all
the two-way overlaps are zero as shown in Figure 9.

Thus the intuitively satisfactory idea of the two-way overlaps for independent variables being zero (“no information in
common”) leads to the interpretive “problem” of three-way mutual information being possibly negative. Shannon dealt with
this problem in the simplest possible way; he never defined mutual information for more than two variables. Or, as perhaps
the most definitive monograph on information theory casually put it; “There isn’t really a notion of mutual information
common to three random variables.” ([46], p. 49) But the three-way definition is automatically given by the usual inclusion-
exclusion formulas that hold for measures and signed measures. For two variables, H(X, Y) = H(X) + H(Y) � I(X; Y), and
for three variables, it is:

H X ; Y ; Zð Þ ¼ H Xð Þ þ H Yð Þ þ H Zð Þ � I X ; Yð Þ � I X ; Zð Þ � I Y ; Zð Þ þ I X ; Y ; Zð Þ; ð25Þ
where Shannon defined all the terms in the equation except the last one I(X; Y; Z) which is thus determined. The
Shannon entropy for each variable X, Y, and Z, is:

H Xð Þ ¼ H Yð Þ ¼ H Zð Þ ¼ p 0ð Þ log 1=p 0ð Þð Þ þ p 1ð Þ log 1=p 1ð Þð Þ ¼ 1
2
log 2ð Þ þ 1

2
log 2ð Þ ¼ 1: ð26Þ

And all the two-way overlaps have the values:

I X ; Yð Þ ¼ I X ; Zð Þ ¼ I Y ;Zð Þ ¼ 0: ð27Þ
The three-way joint entropy is the Shannon entropy of the probability distribution p(x, y, z) which is easily computed in
Table 1. Since the values of any two variables determine the third, the probabilities are either 1

4 if the third value agrees with
the values of the other two or 0 otherwise.

The sum of the last column gives the three-way joint Shannon entropy of H(X, Y, Z) = 2. Hence the inclusion-exclusion
formula gives:

I X ; Y ; Zð Þ ¼ H X ; Y ; Zð Þ � H Xð Þ � H Yð Þ � H Zð Þ þ I X ; Yð Þ þ I X ; Zð Þ þ I Y ; Zð Þ

¼ 2� 1� 1� 1þ 0þ 0þ 0 ¼ �1: ð28Þ
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Thinking in term of underlying points, the three-way overlap has points that are common to H(X), H(Y), and H(Z), so
some of the points must have negative values. Thus all three, H(X), H(Y), and H(Z), cannot be the value of a (non-negative)
measure on some set. Moreover, the intuitive appeal of I(X; Y) = 0 as meaning “no information in common” for independent
variables is lessened when it turns out to mean not disjoint or non-overlapping areas but that the positive information in
each of the three two-way overlap of these independent random variables must be balanced by “negative information” in the
three-way overlap, which, as Csiszar and Kröner remark, has “no natural intuitive meaning.” ([47], p. 53)

Finally, we might consider how this example is treated by logical entropy. The r.v. Z has a logical entropy h(Z) as the
sum of the shaded 1

16 squares in Figure 10.
The two-way mutual logical information, say for m(X, Y), is given by the shaded squares that are in common, i.e., the

two-way overlap of h(X) and h(Y), and the three-way mutual logical entropy m(X, Y, Z) is given by the shaded squares in
common to all three. But since logical entropy is a measure (in the usual non-negative sense), we can compute the three-way
mutual information by using the undercount-overcount formula:

m X ; Y ; Zð Þ ¼ h X ; Y ; Zð Þ � h Xð Þ � h Yð Þ � h Zð Þ þ m X ; Yð Þ þ m X ; Zð Þ þ m Y ; Zð Þ: ð29Þ
The three-way joint logical entropy includes all squares except the diagonal so its value is 12

16 ¼ 3
4. The single logical entropies

are all 1
2 and the two-way mutual informations are all 4

16 ¼ 1
4 so the formula yields:

m X ; Y ; Zð Þ ¼ 3
4
� 1
2
� 1
2
� 1
2
þ 1
4
þ 1
4
þ 1
4
¼ 6

4
� 3
2
¼ 0: ð30Þ

The two-way logical mutual informations for independent variables are not zero since logical entropy is a probability dis-
tribution – so for independent variables, it is multiplicative, e.g., m(X, Y) = h(X)h(Y). The calculation of the three-way
mutual logical information can be intuitively checked by considering the three areas for h(X), h(Y), and h(Z) in Figure 11.

It can then be checked by inspection that there is no shaded square common to all three diagrams so the three-way over-
lap is zero.

Figure 9. Venn diagram for three-way negative Shannon mutual information I(X; Y; Z).

Table 1. Probability distribution p(x, y, z) and computation of H(X, Y, Z).

X Y Z p(x, y, z) p(x, y, z)log(1/p(x, y, z))

0 0 0 1/4 1/4 � 2 = 1/2
0 0 1 0 0
0 1 0 0 0
0 1 1 1/4 1/2
1 0 0 0 0
1 0 1 1/4 1/2
1 1 0 0 0
1 1 1 1/4 1/2
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It is interesting to note that all two-way mutual logical informations such as m(X, Y), m(X, Z), and m(Y, Z), are in
general never zero when all point probabilities are positive. This is the result of the Common-Dits Theorem that any
two non-empty ditsets have a non-empty intersection.4

Theorem 3.1. Common Dits. Any two non-empty ditsets intersect, i.e., have some dits in common.

Proof. A ditset dit(p) = ; iff p = 0U, the indiscrete partition or blob. Consider any two non-empty ditsets dit(p) and dit(r).
Since p is not the blob 0U, consider two elements u and u 0 distinguished by p but identified by r; otherwise (u, u 0) 2 dit(p)\
dit(r) and we are finished. Since r is also not the blob, there must be a third element u00 not in the same block of r as u and
u 0, as shown in Figure 12.

But since u and u 0 are in different blocks of p, the third element u00 must be distinguished from one or the other or both in
p, e.g., distinguished from u 0 in both partitions as in Figure 12. Hence (u, u00) or (u 0, u00) must be distinguished by both
partitions and thus must be in dit(p) \ dit(r). h

The three non-trivial partitions on a three-element set show that there are no common dits to all three of them (as in the
dice example), only to each pair of partitions.

The connection between the logical and Shannon entropies

One question lingers. If, as we have seen, Shannon entropy is not defined as a measure in the usual non-negative sense,
then what accounts for the compound Shannon entropies satisfying the Venn diagram relationships? As one author
surmised: “Shannon carefully contrived for this ‘accident’ to occur” ([49], p. 153), and Campbell asked “whether these analo-
gies have a deeper foundation.” ([40], p. 112) Since Shannon arranged or “contrived” for the compound entropies to satisfy
the Venn diagram relationships for two random variables, they can be extended to any number of variables using the inclu-
sion-exclusion formulas [50, 51]. As we have seen, mutual information can be negative for three or more variables.

Figure 11. The box diagrams for h(X), h(Y), and h(Z).

Figure 10. Venn diagram for logical entropy h Zð Þ ¼ 8
16 ¼ 1

2.

4 This is a restatement of the graph-theoretic result that the complement of any disconnected graph is connected ([48], p. 30). In
terms of inditsets or equivalence relations E and E 0, if E [ E 0 = U � U, then E = U � U or E 0 = U � U.

D. Ellerman: 4open 2022, 5, 1 13



But there is an interesting twist to the story. Information theorists do not define Shannon entropy as a signed measure
on a given set. But such a set can be trivially constructed ex post in the manner shown by Hu [43] and Yeung [52] but
the underlying mathematical fact about additive set functions goes back at least to the 1925 first edition of Polya-Szego’s
book [42]. In the Venn diagram showing all possible overlaps of three “circles” for three random variables, there are 23 = 8
atomic areas (2n in the general finite case of n random variables), each of which can trivially be taken as a single element in a
set. Then numbers (positive or negative) can be assigned arbitrarily to those points and then summed to get the values
attached to the circles. Then all the Venn diagram relationships are automatically satisfied. Since these sets are constructed
in terms of the independently defined Shannon entropies, the set and value assignments may change when more variables
come into play. In the even–odd dice example, as long as only X and Y are considered, then all the compound Shannon
entropies are non-negative and a set with a (non-negative) measure on it can be constructed to yield the values of
H(X) and H(Y). But when the variable Z is brought into consideration, then the underlying set must be reconstructed
to have a negative-valued point representing I(X; Y; Z) so that the signed measure on that set will give the values of all
the compound Shannon entropies.5 This serves to underline the fact that Shannon entropy is not defined as a measure
on a set in the first place.

In contrast, the logical entropy defines the set beforehand, namely U � U, and the values assigned to the points is deter-
mined beforehand, namely pi pj is assigned to (ui, uj), and then the simple and compound logical entropies are defined by
collections of those points and their values. Nothing changes when new random variables are considered; it just means con-
sidering a different set of points. Thus it is not a simple matter of saying logical entropy is a (non-negative) measure and
Shannon entropy is a signed measure. Logical entropy is defined as a probability measure on a set given beforehand, and the
Shannon entropies are only a signed measure on a set ex post constructed for the purpose after all the numerical values are
independently given in the Venn diagram formulas for a given set of random variables.

There is, however, a deeper connection between the two entropies since there is a transform from all the compound log-
ical entropy formulas to the corresponding compound Shannon entropy formulas that preserves the Venn diagram relation-
ships. To understand this transform, consider the canonical examples of 2m equiprobable points in U. For any m such as
m = 3, the binary partitions required to distinguish the 23 = 8 “messages” (or leaves) can be pictured in the (upside–down)
binary tree of Figure 13.

It was previously asserted that logical entropy and Shannon entropy are two different ways to quantify the definition of
information-as-distinctions. Logical entropy is the direct (normalized) count of the distinctions or dits in a partition and
Shannon entropy is the minimum average number of binary partitions that need to be joined together to make the same
distinctions.

This connection can be easily demonstrated using Figure 13 example. Let p = {{u1}, . . ., {u8}} be the discrete partition
on the equi-probable outcomes (messages or leaves in the tree) in U = {u1, . . ., u8}. The number of distinctions |dit(p)| is
|U � U � D| = 64 – 8 = 56 (where D is the diagonal of self-pairs {(u1, u1), . . ., (u8, u8)}), and the logical entropy h(p) of p is
dit pð Þj j
U�Uj j ¼ 56

64 ¼ 7
8 ¼ 1� 1

8, the probability that in two independent draws from U, different elements of U are obtained, i.e., the

probability 1� 1
8 that the second draw isn’t the same as the first draw. Since the outcomes ui are the leaves of the tree in

Figure 13, one could image a marble rolling down from the root (like on a Galton board) and then going one way or the
other with equal probability at each branching. The logical entropy is the probability that two such marbles will end up
in different leaves.

We need to show that the Shannon entropy of p is the minimum number of binary partitions (corresponding to yes-or-no
questions in the game of 20-questions) necessary to make all the same distinctions of p. Recall that given p and r partitions

Figure 12. Solid circles = blocks of p, dashed circles = blocks of r, and (u 0, u 0 0) as a common dit to p and r.

5 The construction is easy; take the seven atomic areas inside the three circles in Figure 9 as containing one point having the value
assigned to that atomic area. The eighth area outside the three circles can have an arbitrary value – at least until another random
variable appears.
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on U, the join p _ r is the partition on U whose blocks are all the non-empty intersections B \ C for B 2 p and C 2 r. Since
dit(p _ r) = dit(p) [ dit(r), the join of partitions accumulates the distinctions made by each of the partitions. Gian-Carlo
Rota formulated the problem as the Devil selecting a particular ui or message and not revealing it to the questioner but
having to answer any yes-or-no question truthfully. Or less colorfully, “To determine an object, we need to ensure that
the responses to the sequence of questions uniquely identifies the object from the set of possible objects” ([46], p. 120).
But the problems of 1) making all the distinctions, and 2) uniquely determining any given outcome or message, are equiv-
alent. If the binary partitions or binary questioning does not distinguish ui from uj, then it would not determine the hidden
message if it happened to be ui or uj – and if the questioning cannot determine the message if it was ui or uj, then the cor-
responding binary partitions do not distinguish ui and uj. This means that the usual Shannon interpretation about the min-
imum average number of binary questions necessary to uniquely determine the message is also the minimum average
number of binary partitions necessary to make all the distinctions between messages.

This can be illustrated with the example of Figure 13. The first binary partition p1 corresponds to the first branching
point in Figure 13 and the first binary digit in the codes (reading from left to right in the code words):

p1 ¼ u1; :::; u4f g; u5; :::; u8f gf g; ð31Þ
where u1, . . ., u4 have 0 as the first digit and u5, . . ., u8 have 1 as the first digit. The binary partition p1 corresponds to the
yes-or-no question, “Is the first letter in the code for ui a 0?”. The partition has 16 distinctions from {u1, . . ., u4} � {u5,
. . ., u8} and another 16 from the reverse ordering for a total of 32 distinctions.
The second binary partition p2 in effect asks about the second digit in the codes for the ui, and it is:

p2 ¼ u1; u2; u5; u6f g; u3; u4; u7; u8f gf g ð32Þ
so the join is:

p1 _ p2 ¼ u1; u2f g; u3; u4f g; u5; u6f g; u7; u8f gf g: ð33Þ
Comparing p1 _ p2 to p1, we see the splitting {u1, . . ., u4} into {u1, u2} and {u3, u4} so that creates the new distinctions
|{u1, u2} � {u3, u4}| � 2 = 8 and similarly for {u5, u6} and {u7, u8}, so p2 makes 8 + 8 = 16 new distinctions for
32 + 16 = 48 distinctions. Equivalently, one could compute the distinctions of p1 _ p2 from scratch to get the same total.

The third binary partition p3 in effect asks about the third digit in the codes for the ui, and it is:

p3 ¼ u1; u3; u5; u7f g; u2; u4; u6; u8f gf g ð34Þ
and the final join is:

p1 _ p2 _ p3 ¼ u1f g; :::; u8f gf g ¼ p: ð35Þ
Since p3 distinguishes each of the four pairs in p1 _ p2, it introduces |{u1} � {u2}| � 4 � 2 = 8 new distinctions for a total of
48 + 8 = 56 distinctions. Thus the three partitions together make the same 56 distinctions, but Shannon entropy counts the
number of those binary partitions (bits) necessary to make the distinctions instead of counting the distinctions or dits them-

selves. This illustrates that Shannon entropy H pð Þ ¼P8
i¼1

1
8 log2

1
1=8

� �
¼ log2

1
1=8

� �
¼ 3 is also quantifying distinctions in the

Figure 13. Three equiprobable binary partitions distinguish the 23 = 8 leaves on the tree.
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sense of counting the minimum number of binary partitions, namely three in this case, needed to make the same distinc-
tions. Hence Shannon entropy is a different quantification of the same notion of information, information-as-distinctions
(of a partition). It is not just a quantification of the “amount of uncertainty” – whatever that may be.

Moreover, the example shows how to transform the dit-quantification of information-as-distinctions (logical entropy)

into the bit-quantification of information-as-distinctions (Shannon entropy). In this canonical case (all pi ¼ 1
2n), h pð Þ ¼

1� pi and H pð Þ ¼ log2
1
pi

� �
so the dit-count and bit-count are precisely related: hðpÞ ¼ 1� 1

2H pð Þ and H pð Þ ¼ log2
1

1�h pð Þ

� �
.

In general, the two entropies are the probability averages
P

ipi � � �ð Þ of those canonical values 1� pi and log2
1
pi

� �
. Hence

the transform

1� pi , log2
1
pi

	 

ð36Þ

transforms logical entropy into Shannon entropy in general:

h pð Þ ¼
X
i

pi 1� pið Þ,H pð Þ ¼
X
i

pilog2
1
pi

	 

:

TheDit� Bit Transform: ð37Þ
Since the dit-bit transform works for the simple entropies, let us consider the conditional entropies where Shannon con-
structed H(X|Y) as the average of the Shannon entropies for the conditional probability distributions for y 2 Y,

H X jYð Þ ¼
X
y

p yð Þ
X
x

p x; yð Þ
p yð Þ log

p yð Þ
p x; yð Þ
	 


¼
X
x;y

p x; yð Þ log p yð Þ
p x; yð Þ
	 


: ð38Þ

First, we express the logical conditional entropy as a probability average:

h X jYð Þ ¼ h X ; Yð Þ � h Yð Þ ¼P
x;y

p x; yð Þ 1� p x; yð Þð Þ �P
y
p yð Þ 1� p yð Þð Þ

¼P
x;y

p x; yð Þ 1� p x; yð Þð Þ � 1� p yð Þð Þ½ �; ð39Þ

and then we make the substitutions of the dit-bit transform: 1� p x; yð Þ, log 1=p x; yð Þð Þ and 1� p yð Þ, log 1=p yð Þð Þ to
get: X

x;y

p x; yð Þ log 1=p x; yð Þð Þ � log 1=p yð Þð Þ½ � ¼
X
x;y

p x; yð Þ log p yð Þ
p x; yð Þ
	 


¼ H X jYð Þ: ð40Þ

The other dit-bit transforms go in the same manner at indicated in Table 2.
As one can see, the preservation of the Venn diagram relationships is built into the dit-bit transformation. For instance,

m X ; Yð Þ ¼
X
x;y

p x; yð Þ 1� p xð Þ½ � þ 1� p yð Þ½ � � 1� p x; yð Þ½ �½ � ¼ h Xð Þ þ h Yð Þ � h X ; Yð Þ ð41Þ

Table 2. The dit-bit transform from the compound logical entropies to the corresponding Shannon entropies.

The Dit-Bit Transform: 1� pi, log 1
pi

� �
h(p) =

P
i pi (1 � pi)

H(p) =
P

i pi log(1/pi)

h(X,Y) =
P

x,y p(x, y) [1 � p(x,y)]

H(X,Y) =
P

x;ypðx; yÞ log 1
pðx;yÞ
� �

m(X,Y) =
P

x,y p(x,y)[[1 �p(x)] + [1 – p(y)] � [1 � p(x,y)]]

I(X,Y) =
P

x;yp x; yð Þ log 1
p xð Þ
� �

þ log 1
p yð Þ
� �

� log 1
p x;yð Þ
� �h i
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transforms to:

I X ; Yð Þ ¼P
x;y

p x; yð Þ log 1
p xð Þ

� �
þ log 1

p yð Þ

� �
� log 1

p x;yð Þ

� �h i
¼ H Xð Þ þ H Yð Þ � H X ; Yð Þ

ð42Þ

so that Venn diagram relationships are preserved. The dit-bit transform thus provides the “deeper foundation” ([40],
p. 112) sought more than a half-century ago by Lorne Campbell for the Shannon entropies satisfying the Venn diagram
relationships in spite of not being defined as a measure on a set.

A basic inequality in Shannon’s communications theory is that for positive x, 1 – x 	 ln(1/x). Substituting logs to base 2
for natural logs, it is still true that 1 � pi 	 log2 (1/pi) for 0 < pi 	 1 as shown in Figure 14.

The dit-bit transform is just replacing the left-hand side with the right-hand side of the inequality so the transform is
highly nonlinear – unlike converting units of measurement like feet and meters. Hence Shannon is correct when he terms his
entropy as the “amount of information” ([35], p. 458) denominated in bits. The logical entropy h(p) of a partition is a direct
measure of the distinctions made by a partition and the Shannon entropy H(p) of a partition is statistically the minimum
average number of binary partitions that must be joined to make all the distinctions of the partition.

Boltzmann and Shannon entropies: A conceptual connection?

When Shannon showed his formula to John von Neumann, then von Neumann suggested calling it “entropy” for two
reasons: there is a similar formula in Boltzmann’s statistical mechanics and you can win more arguments using the name
“entropy” since no one knows what it really is. (34], pp. 2–3) How does the Shannon formula

Pm
i¼1pi ln 1=pið Þ (using natural

logs) arise in Boltzmann’s statistical mechanics?
The context is n particles that can be in m different states (e.g., energy levels) with a configuration (or macrostate)

being defined by having ni particles in the ith state so
Pm

i¼1ni ¼ n. If all the mn possible assignments (“microstates”) of
the n particles to the m states are equiprobable, then Boltzmann’s idea was that the system would evolve to the macrostate
that had the highest probability. Since the number of microstates for any configuration is the multinomial coefficient

n
n1; :::; nm

	 

¼ n!

n1!:::nm!
, the larger the multinomial coefficient, the larger the probability of that configuration. Hence to find

the equilibrium configuration, the problem is to maximize the multinomial coefficient subject to the relevant constraints. In
addition to

Pm
i¼1ni ¼ n, each of the m states would have an associated energy level ei and the total energy

Pm
i¼1niei should

equal a constant value E. Where did the Shannon formula come from in Boltzmann’s nineteenth-century statistical
mechanics?

Since the natural log is a monotonic transformation, it is equivalent to maximize ln n!
n1!:::nm!

� �
. Moreover, the log gives an

additive quantity to be associated with the extensive quantity of entropy in thermodynamics. However, maximizing

ln n!
n1!:::nm!

� �
subject to the constraints is not very analytically tractable due to the presence of the factorials n! and ni!.

But there is the Stirling infinite series expression for ln(n!) and for large n, just the first few terms in the series will give

Figure 14. Dit-bit transform and inequality: 1 – p 	 log2 (1/p) for 0 < p 	 1.
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a “for all practical purposes” good approximation. In particular, the first two terms give the approximation: nln(n) – n � ln
(n!). Using that numerical approximation, normalizing by dividing by n, and ignoring the physical Boltzmann’s constant,
yields a familiar expression as the approximation:

S ¼ 1
n ln

n!
n1!:::nm!

� �
¼ 1

n lnðn!Þ �Pm
i¼1

lnðni!Þ
� �

� 1
n n ln nð Þ � 1½ � �Pm

i¼1
ni ln nið Þ � 1½ �

� �
¼ 1

n n lnðnÞ �P
i
ni lnðniÞ

� �
¼ 1

n

P
ni ln nð Þ �P ni ln nið Þ½ � ¼ � 1

n

P
i
ni ln ni

n

� �
¼ �Pm

i¼1
pi ln pið Þ ¼Pm

i¼1
pi ln 1=pið Þ ¼ He pð Þ where pi ¼ ni=n:

ð43Þ

That is how the two-term Stirling approximation brings the Shannon formula into the statistical mechanics of Boltzmann
(and Gibbs). It should be noted that the two probability distributions are quite different. For the exact maximal configura-
tion (n1, . . ., nm), there are n!

n1!:::nm!
terms in the equiprobable distribution over the microstates. For the two-term Stirling

approximate probability distribution, there are only m terms (p1, . . ., pm). It is the total quantity 1
n ln

n!
n1!:::nm!

� �
that is

approximated by the Shannon formula He(p) for large n.
And by taking more terms in the Stirling approximation, one information theorist notes that one would have an even

better approximation ([53], p. 2), and a prominent physical chemist notes that ln n!ð Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 2pð Þp þ nþ 1

2

� �
ln nð Þ � n is a

much better approximation ([54], p. 533). But neither uses those formulas since the purpose at hand is analytical tractabil-
ity, not better approximations, and the Shannon formula leads to a very nice development in statistical mechanics – in par-
ticular to the beautiful partition function Z that connects statistical mechanics to thermodynamics. Unfortunately, the role
of what became later known as the Shannon formula as a very convenient numerical approximation to Boltzmann entropy
is often “forgotten” in the literature where one even sees expressions like “Shannon-Boltzmann entropy” ([46], p. 11) or
“Boltzmann–Gibbs–Shannon entropy” (e.g., [36]). Perhaps nowhere else in mathematical physics has a numerical approx-
imation been attributed such conceptual significance.

Another way to emphasize the conceptual difference is to consider a small n example where we can compute both
entropies since the original Boltzmann problem is a tractable integer programming problem not using any approximation.
Consider an example of n = 10 particles with three possible energy levels of e = (e1, e2, e3) = (1, 2, 3) and a total energy of
E = 22. For ni as the number of particles at energy level i, the energy constraint is

P3
i¼1eini ¼ E and of course

P3
i¼1ni ¼ n.6

There are only four non-negative integer solutions satisfying the two constraints (see Tab. 3).
The exact Boltzmann solution giving the maximum multinomial coefficient is (n1, n2, n3) = (2, 4, 4) and the (normal-

ized) Boltzmann entropy is:

S ¼ 1
10

ln
10!

2!4!4!

	 

¼ 1

10
ln 3150ð Þ ¼ 1

10
8:055 ¼ 0:8055; ð44Þ

while maximizing the usual Shannon approximation gives the non-integer result (n1, n2, n3) = (2.3837, 3.2326, 4.3837)
(to four decimal places) with the Shannon entropy of He(p) = 1.0684 (where pi = ni/n). The probability distribution in
the Boltzmann case has 3150 equal terms with the value 1

3150 while the probability distribution in the “Shannon case” has
3 terms, 1

10 2:3837; 3:2326; 4:3837ð Þ. The maximization of the multinomial coefficient (or its normalized logarithm) and
the Shannon expression are obviously different for low n. But for the enormous number of particles in a system of sta-
tistical mechanics, that numerical difference fades into insignificance – unless one forgets about it altogether and
attaches conceptual significance to the Shannon formula in Boltzmannian statistical mechanics.

Table 3. Feasible integer solutions.

n1 n2 n3 n!/(n1!n2!n3!)

1 6 3 840
2 4 4 3150
3 2 5 2520
4 0 6 210

6 The example was inspired by Eric Johnson’s excellent treatment of Boltzmann’s entropy [55].
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MaxEntropy with which entropy for discrete distributions?

Edwin T. Jaynes [56] started a whole “MaxEntropy” subdiscipline in information theory by arguing that the classical
indifference principle used to give an equiprobable probability distribution (in the lack of other knowledge) should be gen-
eralized to other more constrained contexts by choosing the probabilities that maximize the Shannon entropy subject to
those constraints. His motivation was based, in significant part, on attaching conceptual significance to the maximizing
of Shannon entropy in Boltzmannian statistical mechanics:
the “method of the most probable distribution” dating back to Boltzmann ... which turns out in the end to be math-
ematically equivalent to maximum [Shannon] entropy. ([56], p. 441)

The question naturally arises: “What about maximizing logical entropy subject to the same constraints?” If there are no
constraints, then maximizing both entropies yields the classical result of the equiprobable distribution, i.e., the indifference
principle. But when there are constraints, then the two maximums yield different probability distributions.

Consider a function X : U ! R with values X uið Þ ¼ xi for i ¼ 1; :::; n with unknown probabilities p = (p1, . . ., pn). A
standard discrete MaxEntropy problem is to find the “best” probabilities so that the average value

Pn
i¼1pixi ¼ m for some

given value of m (which must be between the maximum and minimum values of the xi).
Where “best” is defined by maximizing the Shannon entropy, the procedure is to maximize the Lagrangian:

L ¼ �
X

pi ln pið Þ þ k 1�
X

pi
� �

þ s m�
X

pixi
� �

ð45Þ

so the first-order conditions are:

oL=opi ¼ � ln pið Þ � pi
1
pi
� k� xis ¼ 0; ð46Þ

where it should be noted at the outset that the use of the log function ln(pi) (and the term 1/pi in the first-order con-
ditions) assumes pi 6¼ 0 for all i. Then exponentiating gives: pi ¼ e� 1þkþsxið Þ. Substituting into the constraints to deter-
mine the Lagrange multipliers:

1 ¼
X

pi ¼
X

e� 1þkþsxið Þ ¼ e�ð1þkÞX e�sxi so e1þk ¼
X

e�sxi ð47Þ

which yields pMaxH in terms of the Lagrange multiplier s as:

pi ¼ e�sxi=
Xn
j¼1

e�sxj : ð48Þ

And m ¼P xie� 1þkþsxið Þ ¼P xie�sxi=
P

e�sxi . Rather than trying to solve directly for s, it is best to let w = e�s and then
numerically solve for a real root w (aside from w = 0) of the equation:

X
i

xiwxi � m
X
i

wxi

 !
¼ 0: ð49Þ

Given such a real w, s = �ln(w) and then the pMaxH = (p1, . . ., pn) for maximizing Shannon entropy H(p) are determined by
the above formula: pi ¼ e�sxi=

Pn
j¼1e

�sxj . Moreover, it is clear from the formula that all the pi are positive (and sum to 1).
Where “best” is defined by maximizing logical entropy, the procedure is to solve the quadratic programming problem of

maximizing hðpÞ ¼ 1�Pip
2
i subject to the same constraints

P
ipixi = m and

P
ipi = 1 plus the additional non-negativity

constraints 0 	 pi for i = 1, . . ., n. For a certain range of values of m, the non-negativity constraints will be automatically
satisfied so one can approach that part of the problem using the Lagrangian approach.

L p1; :::; pnð Þ ¼ 1�
X
i

p2i � k 1�
X

pi
� �

þ s m�
X

pixi
� �

ð50Þ

so the first-order conditions are:

oL=opi ¼ �2pi þ k� sxi ¼ 0; ð51Þ
so

pi ¼
1
2

k� sxið Þ: ð52Þ
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Using the first constraint:

1 ¼
X

pi ¼
1
2

nk� s
X

xi
� �

¼ n
2
k� 1

2
s
X

xi; ð53Þ

and using the second constraint:

m ¼
X

pixi ¼
X

xi
1
2

k� sxið Þ ¼ k
1
2

X
xi � s

1
2

X
x2i ð54Þ

so we have two linear equations that can be used to solve for the Lagrange multipliers k and s. Before going forward, it is

useful to consider the mean and variance of the xi’s if they were equiprobable. Then l ¼
P

xi
n and Var Xð Þ ¼

E X2
� �� l2 ¼

P
x2i

n � l2 ¼ r2 so nVar Xð Þ ¼P x2i � nl2. Then the two equations are:

1 ¼ n
2
k� nl

2
s and m ¼ nl

2
k� n

2
Var Xð Þ þ l2
 �

s: ð55Þ

After a bit of algebra, one arrives at the informative formula for the pi in pMaxh = (p1, . . ., pn) that results from maximizing
logical entropy subject to the same constraints:

pi ¼
1
n
þ l� mð Þ l� xið Þ

nVar Xð Þ ¼ 1
n
þ 1
n

m� l
r

� � xi � l
r

� �
: ð56Þ

Since all the operations in the formula are rational (e.g., no square roots, not to mention transcendental functions), the
probabilities are all rational if all the xi are rational. One test of intuitiveness is: if xi is equal to the equiprobable mean l,
then shouldn’t that pi equal the equiprobable value 1

n regardless of the other values? That is true aswe see from the formula
for pi. If any xi = l then that pi ¼ 1

n and if m = l, then all the pi ¼ 1
n, the equiprobable solution. The condition for all the

pi � 0 is that l�mð Þ l�xið Þ
nVar Xð Þ � � 1

n or l� mð Þ l� xið Þ � �Var Xð Þ for all i. If that condition is not satisfied for some pi, then the

non-negativity constraints must be enforced by using quadratic programming techniques instead of the Lagrangian
technique used above.7

One of the best-known examples is Jaynes’s Brandeis dice problem ([59], p. 47 or [60], p. 427). If a die was fair, then the
average of the equiprobable outcomes is l = 3.5. But suppose that it is a given constraint that the average outcome is 4.5,
then what is the “best” estimate of the probabilities for the six sides?

To maximize Shannon entropy, the xi’s are 1, 2, 3, 4, 5, 6 so the equation to be numerically solved is:

X6
i¼1

iwi � m
X6
i¼1

wi

 !
¼ 0: ð57Þ

for m = 4.5. In addition to w = 0, the relevant real root to four decimal places is w = 1.4493. Then s =
�ln(1.449 3) = �0.371 08 and the Jaynes solution for the probabilities to four decimal places is:

pMaxH ¼ 0:0543; 0:0788; 0:1142; 0:1654; 0:2398; 0:3475ð Þ: ð58Þ
To maximize logical entropy, l ¼ 7

2, m ¼ 9
2 ¼ 4:5, and Var Xð Þ ¼ 35

12, so the formula pi ¼ 1
n þ l�mð Þ l�xið Þ

nVar Xð Þ can be used to solve for
the rational maximum logical entropy solution:

pMaxh ¼ 1
210 5; 17; 29; 41; 53; 65ð Þ

¼ 0:0238; 0:0810; 0:1381; 0:1952; 0:2524; 0:3095ð Þ: ð59Þ

In this case, l� mð Þ l� xið Þ ¼ 7
2 � 9

2

� �
7
2 � xi
� � ¼ � 7

2 � xi
� � � �Var Xð Þ ¼ � 35

12. The RHS is the smallest for x1 = 1 where

� 7
2 � 2

2

� � ¼ � 30
12 � � 35

12 so all the probabilities are positive. Equality holds when l� m ¼ � 35
12

2
5 ¼ � 7

6 or

m ¼ 7
2 þ 7

6 ¼ 28
6 ¼ 4 2

3. Hence for any m > 4 2
3, p1 and possibly other pi will be 0 so quadratic programming must be used.

A little calculation shows that 7
3 is the lower bound so that for m < 7

3, there will be some zero probabilities. For instance,
for m = 5, the probabilities for logical entropy are: pMaxh ¼ 1

10 0; 0; 1; 2; 3; 4ð Þ, while the Jaynes solution is pMaxH = (0.0205,
0.0385, 0.0723, 0.1357, 0.2548, 0.4781) to four decimal places.

It is interesting that the only alternative to maximizing Shannon entropy that Jaynes considers ([56], pp. 345–6) is
minimizing

P
ip

2
i which is the same as maximizing logical entropy h pð Þ ¼ 1�Pip

2
i . But then he criticizes it because some

of the pi may be negative if one uses only the Lagrangian method.

7 Microsoft Excel with the Solver application is sufficient. For a thorough treatment, see [57] or [58].
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The formal solution for minimum
P

ip
2
i lacks the property of non-negativity. We might try to patch this up in

an ad hoc way by replacing the negative values by zero and adjusting the other probabilities to keep the constraint
satisfied. [56], p. 346]

It is unclear if Jaynes was aware of the field of quadratic programming which was well-developed in the 1960s ([61],
p. 490) and which hardly proceeds in “an ad hoc way by replacing the negative values by zero and adjusting the other
probabilities to keep the constraint satisfied.”

Clearly the two solutions are different in general8 and each one maximizes the corresponding type of entropy. How can
one determine which probability distribution is “best”? One criterion that immediately suggests itself is the distribution
(p1, . . ., pn) of numbers that is the most uniform in the sense of having the least variance Var(p) where each of the numbers
pi is considered equally probable. The minimum is Var(p) = 0 for the uniform probability distribution which maximizes
both entropies in the absence of constraints. In the two cases where m = 4.5 and m = 5, the logical entropy maximizing
distribution pMaxh has the lower variance Var(p). But is that true in general?

At first, it seems rather intractable to prove in general which of the two distributions has least variance in the discrete
case since the Jaynes solution involves finding the roots of a high-degree polynomial. But there is an easy and general proof
that the logical entropy solution has a variance less than (or equal to) the Jaynes solution when both are maximized subject
to the same constraints – and similarly for being closest to the uniform distribution in terms of the usual notion of Euclidean
distance in Rn.

Proposition 3.2. Var(pMaxh) 	 Var(pMaxH).

Proof. For any constraint set on the probability distributions p = (p1, . . ., pn), minimize the variance itself over all the fea-
sible distributions (rather than maximize either of the two entropies – or any other entropy for that matter), and then show
that the minimum variance distribution pMinVar is the same as the maximum logical entropy distribution pMaxh. The equal-
ity pMinVar = pMaxh is shown by computing the relationship between Var(p) and h(p). Looking at (p1, . . ., pn) as just a set of
equiprobable numbers with

P
i pi = 1, it has the variance:

Var pð Þ ¼Pn
i¼1

1
n pi � 1

n

� �2 ¼ E p2ð Þ � E pð Þ2

¼ 1
n

P
i
p2i � 1

n

P
i
pi

	 
2

¼ 1
n

P
i
p2i � 1

n

� �2 ¼ 1
n 1� 1

n

� �� h pð Þ � ð60Þ

since
Pn

i¼1p
2
i ¼ 1� h pð Þ. Since h(p) appears with a negative sign in the expression for Var(p), minimizing Var(p) is the

same as maximizing h(p) over the set of feasible probability distributions, so pMinVar = pMaxh. h

Corollary 3.3. pMaxh minimizes the (Euclidean) distance to the uniform distribution 1
n ; :::;

1
n

� �
.

Proof. Minimizing Euclidean distance is the same as minimizing the distance squared and
Pn

i¼1 pi � 1
n

� �2 ¼ 1� 1
n

� �� h pð Þ.
h

There is another specialized notion of “distance,” namely the Kullback–Leibler divergence [62] D pjjqð Þ ¼Pn
i¼1pi log

pi
qi

� �
(p and q are probability distributions on the same index set with all qi > 0) which is neither symmetrical nor satisfies the

triangle inequality. But D pjj 1
n ; :::;

1
n

� �� � ¼ log nð Þ � H pð Þ so that maximizing H(p) subject to the constraints is equivalent to

minimizing the Kullback–Leibler divergence of p from the uniform distribution.
The corresponding asymmetrical divergence formula for logical entropy, also for probability distributions p and q where

qi > 0 for all i, is the directed logical divergence:

d
 pjjqð Þ :¼
Xn
i¼1

1
qi

qi � pið Þ2 ¼
X
i

pi
pi
qi
� 1

	 

¼
X
i

p2i
qi

� 1 � 0 with equality iff p ¼ q: ð61Þ

Another way to prove non-negativity is to note that qi � pið Þ 1� pi
qi

� �
� 0 since both terms are negative or both are non-

negative, and
P

i qi � pið Þ 1� pi
qi

� �
¼Pi

p2i
qi
� 1. Since the KL divergence uses probability ratios inside the log term, we do

the same for dit-bit transform so that: 1� pi
qi
, log 1

pi=qi

� �
and thus:

�d
 pjjqð Þ ¼
X
i

pi 1� pi
qi

	 

,
X
i

pi log
1

pi=qi

	 

¼
X
i

pi log
qi
pi

	 

¼ �D pjjqð Þ ð62Þ

8 For n = 2, the two solutions are identical but diverge in general for n � 3.
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so d
 pjjqð Þ,D pjjqð Þ, i.e., the KL divergence is the dit-bit transform of the directed logical divergence. What is the
probability distribution closest to the uniform distribution using the directed logical divergence?

d
 pjj 1
n ; :::;

1
n

� �� � ¼P
i
pi npi � 1ð Þ ¼ n

P
i
p2i � 1

¼ n 1� 1
n

� �� h pð Þ � ¼ n
Pn
i¼1

pi � 1
n

� �2 ð63Þ

so it is the logical entropy solution that is the closest to the uniform distribution by the logical notion of directed
divergence.

Metrical logical entropy = (twice) variance

The above results suggest a broader connection between the usual notion of the variance of a random variable and the
logical entropy of “differences” when the differences have metrical significance. The logical entropy h(X) of a random vari-
able X : U ! R with n distinct values (x1, . . ., xn) with the probabilities p = (p1, . . ., pn) is computed as h(X) =

P
i 6¼ jpipj

which only takes notice of when values are the same or different. Logical entropy in that sense is a special case of C.R. Rao’s
notion of quadratic entropy

P
i,jdij pi pj, where dij is a non-negative “distance function” such that dii = 0 and dij = dji [26, 63],

for the logical distance function dij = 1 � dij, the complement of the Kronecker delta. A naturalmetrical distance function is
the Euclidean distance squared dij = (xi � xj)

2.

Proposition 3.4.
P

j 6¼ipipj xi � xj
� �2 ¼ 2Var Xð Þ.

Proof. Firstly, since for i ¼ j, xi � xj
� �2 ¼ 0, we can sum over all i; j.P

j 6¼ipipj xi � xj
� �2 ¼P

i;j

pipj xi � xj

� �2
¼P

i;j

pipj x2i � 2xixj þ x2
j

� �
¼ E X2

� �� 2E Xð Þ2 þ E X2
� � ¼ 2Var Xð Þ

ð64Þ

h

It was previously noted that when counting distinctions (ui, uj) 2 dit(p), both (ui, uj) and (uj, ui) are included. If only the
distinctions (ui, uj) for i < j are counted, then one get half the number as is evident in the logical entropy box diagrams such
as Figure 2.

Corollary 3.5.
P

i<jpipj xi � xj
� �2 ¼ Var Xð Þ.

Thus the variance of a metrical random variable X is the average distance squared between the values in an unordered
pair of independent trials.

The result extends to covariances as well. Consider two real-valued random variables X with distinct values xi for i = 1,
. . ., n and Y with distinct values yj for j = 1, . . ., m with the joint probability distribution p xi; yj

� �
: X � Y ! R. Two

ordered draws from X � Y gives two ordered pairs: (xi, yj) and xi0 ; yj0
� �

. For this bivariate distribution, the generalization
of
P

j 6¼ i pi pj (xi �xj)
2 is: X

i;jð Þ6¼ i0 ;j0ð Þ
p xi; yj
� �

p xi0 ; yj0
� �

xi � xi0
� �

yj � yj0
� �

: ð65Þ

Metrical logical entropy for bivariate distributions of metrical random variables which is no longer a special case of quadratic
entropy since xi � xi0

� �
yi � yi0
� �

can be negative. The (unordered) two-draw notion of metrical variation for a bivariate dis-
tribution reproduces the usual notion of covariance Cov(X, Y) = E(XY) � E(X)E(Y).9

Proposition 3.6.
P

i;jð Þ6¼ i0 ;j0ð Þp xi; yj
� �

p xi0 ; yj0
� �

xi � xi0
� �

yj � yj0
� �

¼ 2Cov X ; Yð Þ.
Proof. Since xi � xi0

� �
yj � yj0
� �

¼ 0 if i = i 0 or j = j 0, we can sum over all i, j. Abbreviating p(xi, yj) = pij, we have:

9 These formulas, for the equiprobable case, were derived using the “difference method” by Zhang et al. [64] as new formulas for
variance and covariance although the formulas may be much older “folk theorems.”
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P
i;j;i0 ;j0

pijpi0 j0 xi � xi0
� �

yj � yj0
� �

¼ P
i;j;i0;j0

pijpi0 j0 xiyj � xiyj0 � xi0 yj þ xi0 yj0
h i

¼ P
i;j;i0 ;j0

pijpi0 j0 xiyj �
P

i;j;i0 ;j0
pijpi0 j0 xiyj0 �

P
i;j;i0 ;j0

pijpi0 j0 xi0 yj þ
P

i;j;i0 ;j0
pijpi0 j0 xi0 yj0 :

ð66Þ

Then using: X
i;j;i0 ;j0

pijpi0 j0 xiyj ¼
X
i;j

pijxiyj
X
i0 ;j0

pi0 j0 ¼
X
ij

pijxiyj ¼ E XYð Þ; ð67Þ

and P
i;j;i0 ;j0 pijpi0 j0 xiyj0 ¼

P
i;j0

xiyj0
P
i0

P
j
pijpi0 j0 ¼

P
i;j0

xiyj0
P
i0
pipi0 j0

¼P
i;j=

pixiyj0 pj0 ¼
P
i
pixi

	 
 P
j0
pj0 yj0

 !
¼ E Xð ÞE Yð Þ

ð68Þ

and similarly for the other cases, so we have:X
i;jð Þ6¼ i0 ;j0ð Þ

p xi; yj
� �

p xi0 ; yj0
� �

xi � xi0
� �

yj � yj0
� �

¼ E XYð Þ � E Xð ÞE Yð Þ � E Yð ÞE Xð Þ þ E XYð Þ ¼ 2CovðX ; Y Þ: ð69Þ

h

The linear ordering on indices i and j can be extended to the linear lexicographic (or dictionary) ordering on ordered
pairs of indices where (i, j) < (i 0, j 0) if i < i 0 or if i = i 0, then j < j 0. Then for each pair of distinct ordered pairs
(i, j) 6¼ (i 0, j 0), either (i, j) < (i 0, j 0) or (i 0, j 0) < (i, j) but not both, so (i, j) < (i 0, j 0) picks out half the cases of
(i, j) 6¼ (i 0, j 0).

Corollary 3.7.
P

i;jð Þ< i0 ;j0ð Þp xi; yið Þp xi0 ; yj0
� �

xi � xi0
� �

yj � yj0
� �

¼ Cov X ; Yð Þ.

In the switch from logical entropy to metrical logical entropy, the interpretation switches from being a two-draw prob-
ability (and thus always non-negative) to being a two-draw average metrical quantity which, like the covariance, might be
positive or negative.

Thus logical entropy connects naturally with the notions of variance and covariance in statistics. Although beyond the
scope of this paper, the metrical logical entropy for a discrete random variable g Xð Þ, Pj 6¼ipipj g xið Þ � g xj

� �� �2 ¼
2Var g Xð Þð Þ, shows how to generalize to the logical entropy of a continuous random variable g(X) where X has the prob-
ability density f xð Þ:

h g Xð Þð Þ ¼
Z

f xð Þ
Z

f x
0� �

g xð Þ � g x
0� �� �2

dx
0
dx ¼ 2Var g Xð Þð Þ: ð70Þ

The interpretation of h g Xð Þð Þ is the average (Euclidean) distance squared between the values of g(X) on two independent
trials – which is twice the variance.

Quantum logical entropy
Logical entropy via density matrices

The transition from “classical” (i.e., non-quantum) logical entropy to quantum logical entropy is facilitated by reformu-
lating logical entropy using density matrices over the real numbers. A stepping stone in that reformulation is the notion of
an incidence matrix of a binary relation. For a finite U = {u1, ..., un}, a binary relation R on U is a subset R � U � U. The
n � n incidence matrix In(R) is defined by:

In Rð Þij ¼
1 if ui; uj

� � 2 R

0 if ui; uj
� � 62 R:

(
ð71Þ
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Then the incidence matrix associated with a partition p = {B1, . . ., Bm} is In(indit(p)), the incidence matrix of the parti-
tion’s inditset, i.e., the associated equivalence relation. And then for equiprobable points in U, the density matrix q(p) asso-
ciated with p is the incidence matrix In(indit(p)) rescaled to be of trace 1 (trace = sum of diagonal elements):

q pð Þ ¼ 1
n
In indit pð Þð Þ: ð72Þ

Each off-diagonal element has two associated diagonal elements in its row and column. If an off-diagonal element in In(indit
(p)) or q(p) is non-zero, then the corresponding diagonal elements are for elements ui, uj 2 Bk for some block Bk 2 p.

For U with point probabilities p = (p1,...,pn), the density matrix q(p) can be constructed block by block. For a block

Bi 2 p, let Biij be the column vector with the jth entry being
ffiffiffiffiffiffiffiffiffi
pj

Pr Bið Þ

q
if uj 2 Bi and otherwise 0. Then the q(Bi) is the

n � n matrix formed by the product of column vector |Bii times its row vector transpose |Biit, and the density matrix q
(p) is the probability-weighted sum:

q pð Þ ¼
X
Bi2p

Pr Bið Þq Bið Þ: ð73Þ

Then each jk entry in q(p) is:

q pð Þjk ¼
ffiffiffiffiffiffiffiffipjpk

p if uj; uk
� � 2 indit pð Þ

0 otherwise:

�
ð74Þ

These values are the square roots of the unshaded squares in the logical entropy box diagrams, e.g., Figures 2–5.
For instance, if p = {{u1, u3},{u2, u4}}, then:

q pð Þ ¼

p1 0
ffiffiffiffiffiffiffiffiffi
p1p3

p
0

0 p2 0
ffiffiffiffiffiffiffiffiffi
p2p4

p
ffiffiffiffiffiffiffiffiffi
p3p1

p
0 p3 0

0
ffiffiffiffiffiffiffiffiffi
p4p2

p
0 p4

2
6664

3
7775; ð75Þ

where the non-zero off-diagonal elements indicate which elements are in the same block of the partition. With a suitable
interchange of rows and columns, the matrix would become block-diagonal – where the entries squared correspond to the
values of the unshaded squares in the box diagram for logical entropy. The density matrix is symmetric, has trace 1, and
all non-negative elements.

The most important calculation for our purposes is the trace of the square q(p)2 of a density matrix. Consider a diagonal
element (q(p)2)jj where uj 2 Bi which is the product of the jth row times the jth column of q(p):

q pð Þ2� �
jj
¼
X
uk2Bi

ffiffiffiffiffiffiffiffi
pjpk

p ffiffiffiffiffiffiffiffi
pkpj

p ¼ pj
X
uk2Bi

pk ¼ pjPr Bið Þ: ð76Þ

Then summing over all those diagonal elements for uj 2 Bi gives
P

uj
pjPr Bið Þ ¼ Pr Bið Þ2. These block probabilities squared

were the values assigned to the unshaded blocks in the box diagrams for logical entropy. Finally summing over all the diag-
onal elements yields the basic result about the trace of q(p)2:

tr q pð Þ2 � ¼X
Bi2p

Pr Bið Þ2: ð77Þ

This result immediately yields the translation of the logical entropy h(p) into the density matrix formalism:

h pð Þ ¼ 1� tr q pð Þ2 �
; ð78Þ

i.e., the sum of the shaded squares in the box diagrams for logical entropy.
We will define the tensor product of matrices by considering the example of a 2 � 2 matrix A times a 3 � 3 matrix B:
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A�B ¼ a11 a12
a21 a22

� �
�

b11 b12 b13
b21 b22 b23
b31 b32 b33

2
64

3
75 ¼ a11B a12B

a21B a22B

� �

¼

1; 1ð Þ
1; 2ð Þ
1; 3ð Þ
2; 1ð Þ
2; 2ð Þ
2; 3ð Þ

a11b11 a11b12 a11b13 a12b11 a12b12 a12b13
a11b21 a11b22 a11b23 a12b21 a12b22 a12b23
a11b31 a11b32 a11b33 a12b31 a12b32 a12b33
a21b11 a21b12 a21b13 a22b11 a22b12 a22b13
a21b21 a21b22 a21b23 a22b21 a22b22 a22b23
a21b31 a21b32 a21b33 a22b31 a22b32 a22b33

2
666666664

3
777777775

: ð79Þ

In particular, it might be noted that all the diagonal elements have the form aii bjj but their (row, column) designators are
(i, j)(i, j). Thus a11 b33 is the diagonal element in the (1, 3) row and the (1, 3) column, i.e., a diagonal element of the tensor
product A � B.

One can take the tensor product of an n � n density matrix q(p) (where p = f -1 for some f : U ! R) with itself to
obtain a n2 � n2 matrix whose diagonal elements are q pð Þ � q pð Þð Þ i;jð Þ i;jð Þ ¼ pipj. Let Pdit(p) be the n

2 � n2 diagonal (pro-

jection) matrix with diagonal elements P dit pð Þ
� �

i;jð Þ i;jð Þ ¼ vdit pð Þ ui; uj
� �

. Then the matrix product P dit pð Þq pð Þ � q pð Þ will have
the non-zero diagonal elements pi pj for ui; uj

� � 2 dit pð Þ, and thus:

h f �1
� � ¼ h pð Þ ¼

X
ui;ujð Þ2dit pð Þ

pipj ¼ tr P dit pð Þq pð Þ � q pð Þ �
: ð80Þ

That formula will carry over to the quantum case.
In general, a density matrix q is said to represent a pure state if tr[q2] = 1, and otherwise a mixed state. For partitions,

the only pure state density matrix is q(0U), the density matrix of the indiscrete partition 0U ¼ Uf g on U which has zero
logical entropy.

Given another partition r ¼ C1; :::;Cm0f g on U, the join partition p _ r is the partition whose blocks are all the non-
empty intersections Bi \ Cj for Bi 2 p and Cj 2 r. Then dit p _ rð Þ ¼ dit pð Þ [ dit rð Þ so that indit p _ rð Þ ¼
indit pð Þ \ indit rð Þ. The logical entropy h p _ rð Þ, also the joint logical entropy h(p, r), is: h p _ rð Þ ¼
1�PBi2p;Cj2rPr Bi \ Cj

� �2
. This has an elegant formulation in the density matrix formalism which implies the earlier result

since p _ p ¼ p.

Lemma 4.1. h p _ rð Þ ¼ 1� tr q pð Þq rð Þ½ �.

Proof. The kth diagonal entry in q(p)q(r) is the scalar product
P

jq pð Þkjq rð Þjk with q pð Þkj ¼ ffiffiffiffiffiffiffiffipkpj
p if, uj; uk

� � 2 indit pð Þ
and otherwise 0, and similarly for q rð Þjk. Hence the only non-zero terms in that sum are for
uk; uj
� � 2 indit pð Þ \ indit rð Þ ¼ indit p _ rð Þ. Hence

tr q pð Þq rð Þ½ � ¼
X

uj;ukð Þ2indit p_rð Þ
pjpk ¼ 1�

X
uj;ukð Þ2dit p_rð Þ

pjpk ¼ 1� h p _ rð Þ ð81Þ

so

h p _ rð Þ ¼ 1� tr q pð Þq rð Þ½ �: ð82Þ
h

In coding theory, the difference-based notion of distance between two 0,1 n-vectors is the Hamming distance ([65], p. 66)
which is just the number of places where the corresponding entries in the two vectors are different. If we think of the
0,1 n-vectors as characteristic functions of subsets S and T of an n-element set, then the Hamming distance is the cardinality
of the symmetric difference: S � Tj j þ T � Sj j ¼ S [ Tj j � S \ Tj j. This motivates the definition of the logical distance
(or Hamming distance) between two partitions as: h pjrð Þ þ h rjpð Þ ¼ h p _ rð Þ � m p; rð Þ, the product probability measure
on the dits that in one partition but not the other. But there is the Hilbert-Schmidt distance measure, tr q� sð Þ2 �

between
density matrices q and s which does not mention logical entropy at all (see [66]). Taking the two density matrices as
q(p) and q(r), we have the following result that the logical (Hamming) distance between partitions is the Hilbert-Schmidt
distance between the partitions.
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Proposition 4.2. tr q pð Þ � q rð Þð Þ2 � ¼ h pjrð Þ þ h rjpð Þ.

Proof. tr q pð Þ � q rð Þð Þ2 � ¼ tr q pð Þ2 �� tr q pð Þq rð Þ½ � � tr q rð Þq pð Þ½ � þ tr q rð Þ2 �
so:

tr q pð Þ � q rð Þð Þ2 � ¼ 2 1� tr q pð Þq rð Þ½ �½ � � 1� tr q pð Þ2 �� 1� tr q rð Þ2 �� �� �
¼ 2h p _ rð Þ � h pð Þ � h rð Þ ¼ h rjpð Þ þ h pjrð Þ: ð83Þ

h

One point of developing these results in this classical case, is that the same theorems hold, mutatis mutandis, for
quantum logical entropy [67].

Another set of classical results about logical entropy that extend to the quantum case are concerned with the quantum
notion of (projective) measurement which is described by the Lüders mixture operation ([68], p. 279)]. For the partition
r ¼ C1; :::;Cm0f g on U, let PC be the diagonal n � n projection matrix whose diagonal entries are just the characteristic
function vC (ui) for C 2 r. Then the Lüders mixture operation of performing a “r-measurement” on q(p) is defined as:P

C2rPCq pð ÞPC.

Theorem 4.3. Luders mixture operation = partition join operation.
P

C2rPCq pð ÞPC ¼ q p _ rð Þ.
Proof. A non-zero entry in q(p) has the form q pð Þjk ¼ ffiffiffiffiffiffiffiffipjpk

p iff there is some block B 2 p such that uj; uk
� � 2 B� B, i.e., if

uj; uk 2 B. The matrix operation PC q(p) will preserve the entry ffiffiffiffiffiffiffiffipjpk
p if uj 2 C, otherwise the entry is zeroed. And if the

entry was preserved, then the further matrix operation PCq pð Þð ÞPC will preserve the entry ffiffiffiffiffiffiffiffipjpk
p if uk 2 C, otherwise it is

zeroed. Hence the entries ffiffiffiffiffiffiffiffipjpk
p in q(p) that are preserved in PCq pð ÞPC are the entries where both uj; uk 2 B for some B 2 p

and uj; uk 2 C. These are the entries in q p _ rð Þ corresponding to the non-empty blocks B \ C of p _ r for some B 2 p, so
summing over C 2 r gives the result:

P
C2rPCq pð ÞPC ¼ q p _ rð Þ. h

Thus projective quantum measurement is modeled classically by the distinction-creating partition join. Hence the
logical information created by the r-measurement of q(p) is h r _ pð Þ � h pð Þ ¼ h rjpð Þ. Moreover, this increase in logical
entropy can be computed from the changes in the entries in the density matrices. A non-zero off-diagonal entry in a density
matrix q(p) indicates that the uj and uk for the corresponding diagonal elements must “cohere” together in the same block of
p. If such a non-zero off-diagonal element of q(p) was zeroed in the transition to the density matrix q p _ rð Þ of the
r-measurement result, then it means that uj and uk were “decohered” by r, i.e., were in different blocks of r.

Corollary 4.4.The sum of all the squares pj pk of all the non-zero off-diagonal entries ffiffiffiffiffiffiffiffipjpj
p of q(p) that were zeroed in the

Lüders mixture operation that transforms q(p) into
P

C2rPCq pð ÞPC ¼ q p _ rð Þ is h p _ rð Þ � h pð Þ ¼ h rjpð Þ.
Proof. All the entries ffiffiffiffiffiffiffiffipjpj

p that got zeroed were for ordered pair uj; uk
� �

that were indits of p but not indits of p _ r, i.e.,
uj; uk
� � 2 indit pð Þ \ indit p _ rð Þc ¼ dit pð Þc \ dit p _ rð Þ ¼ dit p _ rð Þ � dit pð Þ. The sum of products pj pk for those pairs
(uj, uk) is just the product probability measure on that set dit p _ rð Þ � dit pð Þ which is h p _ rjpð Þ. And since
dit pð Þ � dit p _ rð Þ, the measure on dit p _ rð Þ � dit pð Þ is h p _ rjpð Þ ¼ h p _ rð Þ � h pð Þ ¼ h rjpð Þ. h

It might be noted that nothing about logical entropy was used in the definition of the Lüders mixture operation that
describes the “r-measurement of q(p).” Yet the logical information created by the r-measurement of q(p) is h rjpð Þ, the log-
ical information that is in r over and above the information in p. And that logical entropy h rjpð Þ can be computed directly
from the terms in the density matrix q(p) that were zeroed in the Lüders operation.

Now we are ready to make the transition to quantum logical information theory where all the corresponding results will
hold.

Linearizing “classical” to quantum logical entropy

One of the developers of quantum information theory, Charles Bennett, said that information was fundamentally about
distinguishability.

[Information] is the notion of distinguishability abstracted away from what we are distinguishing, or from the carrier
of information. ... And we ought to develop a theory of information which generalizes the theory of distinguishability
to include these quantum properties... ([69], pp. 155–157)

Given a normalized vector wij in an n-dimensional Hilbert space V, a pure state density matrix is formed as
q wð Þ ¼ wij wjh ¼ wij wijð Þy (where ðÞy is the conjugate-transpose) and mixed state density matrix is a probability mixture
q ¼Pipiq wið Þ of pure state density matrices. Any such density matrix always has a spectral decomposition into the form
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q ¼P piq wið Þ where the different vectors wi and wi0 are orthogonal. The general definition of the quantum logical entropy of

a density matrix is: h(q) = 1 � tr[q2], where if q is a pure state if and only if tr[q2] = 1 so h(q) = 0, and tr[q2] < 1 for mixed

states so 1 > h(p) > 0 for mixed states. The formula h(q) = 1� tr[q2] is hardly new. Indeed, tr[q2] is usually called the purity

of the density matrix so the complement 1 � tr[q2] has been called the “ mixedness” ([70], p. 5) or “ impurity” of the state q.

The seminal paper of Manfredi and Feix [71] approaches the same formula 1 � tr[q2] (which they denote as S2) from the
advanced viewpoint of Wigner functions, and they present strong arguments for this notion of quantum entropy.

While that definition is an easy generalization of the classical one formulated using density matrices, our goal is to
develop quantum logical entropy in a manner that brings out the analogy with classical logical entropy and relates it closely
to quantum measurement.

There is a method (or what Gian-Carlo Rota would call a “yoga”) to linearize set concepts to vector-space concepts:

The Yoga of Linearization:
Apply the set concept to a basis-set of a vector space (i.e., treat the basis set as a set universe U) and whatever is
generated is the corresponding vector-space concept.

For instance, there is the classical Boolean logic of subsets, and a subset of a basis set generates a subspace so the
Boolean logic of subsets linearizes to vector spaces as the logic of subspaces, and specializing to Hilbert spaces yields the
usual quantum logic of subspaces [72].

In view of the category-theoretic duality of subsets of a set and partitions on a set (e.g., the image subset of the
codomain and the inverse-image partition on the domain of a set function), there is a dual “classical” logic of partitions
on a set ([3, 4]). To linearize the set concept of a partition to vector spaces, one considers a set partition on a basis set
of a vector space and then sees what it generates. Each block generates a subspace and the set of subspaces corresponding
to the blocks form a direct-sum decomposition (DSD) of the vector space. A direct-sum decomposition of a vector space V
is a set V if gi2I of subspaces such that V i \

P
i0 6¼iV i ¼ 0f g (where

P
i0 6¼iV i is the subspace generated by those V i0 , and {0} is

the zero subspace), and which span the space V and is written V ¼ �i2IV i. Then every non-zero vector v 2 V is a unique
sum of vectors from the subspaces {Vi}. That is the vector-space version of characterizing a partition p on a set U as a
collection of subsets Bi (blocks) of U such that every non-empty subset S � U is uniquely expressed as a union of subsets
of the blocks, i.e., S \ Bi for Bi 2 p. Hence the logic of partitions linearizes to the dual logic of DSDs of a vector space which
specialized to Hilbert spaces yields the quantum logic of DSDs [74] dual to the usual Birkhoff–von-Neumann quantum logic
of subspaces.

Another basic set concept is the notion of a numerical attribute f : U ! K that evaluates the points of U in a field K.
Taking U to be a basis set of a vector space V over the field K, the corresponding vector-space notion that can be seen as
generated is the notion of a diagonalizable linear operator F : V ! V defined by Fu = f(u)u linearly extended to V.
The values of f linearize to the eigenvalues of F, the constant sets of f linearize to the eigenvectors of F, and the set of
constant sets for a specific value linearizes to the eigenspace of eigenvectors for that eigenvalue. For instance, if we
let “rS” stand for assigning the value r to each element of the subset S � U , then the set version of the eigenvector equation
Fv = kv is f(S) = rS.

The Cartesian product of two basis sets of two vector spaces (same base field) generates the tensor product of the two
vector spaces – so the linearization of the direct or Cartesian product of sets is not the direct product (as might be suggested
by category theory) but the tensor product of vector spaces. And the cardinality of sets linearizes to the dimension of vector
spaces and so forth as illustrated in Table 4. Those examples show how the set-based classical logical information theory will
linearize to vector spaces and particularly to Hilbert spaces for the logical version of quantum information theory.10

Let F : V ! V be a self-adjoint (or Hermitian) operator (observable) on a n-dimensional Hilbert space V with the real
eigenvalues /1,. . .,/I, and let U={u1,. . .,un} be an orthonormal (ON) basis of eigenvectors of F. The quantum version of a
“dit” is a “qudit.” A qudit is defined by the DSD of eigenspaces of an observable, just as classically, a distinction or dit is
defined by the partition f �1 rð Þf gr2f Uð Þ determined a numerical attribute f : U ! R. Then, there is a set partition
p ¼ Bif gi¼1;...;I on the ON basis U so that Bi is a basis for the eigenspace of the eigenvalue /i and Bij j is the “ multiplicity”
(dimension of the eigenspace) of the eigenvalue /i for i= 1,. . .,I. The eigenspaces Vi generated by the blocks Bi for the eigen-
values /i form a direct-sum decomposition of V. Note that the real-valued numerical attribute or eigenvalue function
f : U ! R that takes each eigenvector in uj 2 Bi � U to its eigenvalue /i so that f �1 /ið Þ ¼ Bi contains all the information
in the self-adjoint operator F : V ! V since F can be reconstructed by defining it on the basis U as Fuj ¼ f uj

� �
uj. The

important information-theoretic aspect of the eigenvalues is not their numerical value but when they are the same or
different, and that information is there in the eigenspaces V if gi2I of the direct-sum decomposition.11

10 Since set-concepts can be formulated in vector spaces over Z2, that means there is a pedagogical or “toy” model of quantum
mechanics over Z2 , i.e., over sets [73].
11 That is why the quantum logic of DSDs [74] is essentially the quantum logic of observables – in much the same sense that the logic
of partitions on U is essentially the logic of numerical attributes f : U ! R on U.
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Classically, a dit of the partition f �1 /ið Þf gi2I on U, defined by f : U ! R, is a pair uk; uk0
� � 2 U � U of points in distinct

blocks of the partition, i.e., f ukð Þ 6¼ f uk0
� �

. Hence, a qudit of F is a pair uk; uk0
� �

(interpreted as uk � uk0 2 V � V ) of vectors

in the eigenbasis distinguished by F, i.e., f ukð Þ 6¼ f uk0
� �

for the eigenvalue function f : U ! R. Let G : V ! V be another
self-adjoint operator on V, which commutes with F so that we may then assume that U is an orthonormal basis of simul-
taneous eigenvectors of F and G ([75], p. 177). The assumption that F and G commute plays the role of considering
partitions p = f�1 for f : U ! R and r = g�1 for g : U ! R being defined on the same universe U. Let cj

� �
j2J be the

set of eigenvalues of G, and let g : U ! R be the eigenvalue function so a pair uk; uk0
� �

is a qudit of G if g ukð Þ 6¼ g uk0
� �

,

i.e., if the two eigenvectors have distinct eigenvalues of G.
As Kolmogorov suggested:

Information theory must precede probability theory, and not be based on it. By the very essence of this discipline,
the foundations of information theory have a finite combinatorial character. ([76], p. 39)

In classical logical information theory, information is defined prior to probabilities by certain subsets (e.g., ditsets and
differences between and intersections of ditsets) or, in the quantum case, quantum information is defined by certain sub-
spaces prior to the introduction of any probabilities (unlike the case with Shannon or von Neumann entropies). Since
the transition from classical to quantum logical information theory is straightforward, it will be first presented in a table
(which does not involve any probabilities), where the qudits uk; uk0

� �
are interpreted as uk � uk0 . The qudit space, the vec-

tor-space analogue of the ditset, associated with F (the vector-space analogue of f : U ! R) is the subspace
qudit Fð Þ½ � � V � V generated by the qudits uk � uk0 of F.

If F = kI is a scalar multiple of the identity I (the vector-space analogue of a constant function f : U ! R), then it has
no qudits, so its qudit subspace [qudit(kI)] is the zero subspace (the analogue of the empty ditset of the indiscrete partition).
The Common Dits Theorem says that any two non-empty ditsets have a non-zero intersection. In the quantum case, this
means any two non-zero qudit spaces [qudit(F)] and [qudit(G)] for commuting F and G have a non-zero intersection, i.e.,
have a non-zero mutual information space. That is, for commuting F andG, there are always two simultaneous eigenvectors
uk and uk0 that have different eigenvalues both by F and by G.

The observables do not provide the point probabilities in a measurement; the probabilities come from the pure (normal-
ized) state w being measured. Let wij ¼Pn

j¼1 ujjw
� �

uj
��� ¼Pn

j¼1aj uj
��� be the resolution of wij in terms of the orthonormal

basis U = {u1,. . ., un} of simultaneous eigenvectors for F and G. Then, pj ¼ aja
j (a


j is the complex conjugate of aj) for j =

1,. . ., n are the point probabilities onU, and the pure state density matrix q wð Þ ¼ wij wjh (where wjh ¼ wij y is the conjugate-
transpose) has the entries: qjk wð Þ ¼ aja
k , so the diagonal entries qjj wð Þ ¼ aja
j ¼ pj are the point probabilities. Then we
have Table 5 giving the remaining parallel development with the probabilities provided by the pure state w where we write
q wð Þyq wð Þ as q wð Þ2.

The definition of quantum logical entropy

h F : wð Þ ¼ tr P qudit Fð Þ½ �q wð Þ � q wð Þ � ð84Þ

is just the quantum version of the formulation of the classical logical entropy

h f �1
� � ¼ h pð Þ ¼

X
ui;ujð Þ2dit pð Þ

pipj ¼ tr P dit pð Þq pð Þ � q pð Þ � ð85Þ

Table 4. Linearization of set concepts to corresponding vector-space concepts.

Set concept Vector-space concept

Universe set U Basis set of a space V
Cardinality of a set U Dimension of a space V
Subset of a set U Subspace of a space V
Partition of a set U Direct-sum decomposition of a space V
Numerical attribute f : U ! K Diagonalizable linear op. F : V ? V
Value r in image f(U) of f Eigenvalue ki of F
Constant set S of f Eigenvector v of F
Set of constant r-sets }(f�1(r)) Eigenspace Vi of ki
Direct product of sets Tensor product of spaces
Elements uk ; uk0

� �
of U � U Basis vectors uk � uk0 of V�V
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for f : U ! R with the point probabilities (p1,..., pn) on U and thus p�p on U�U. The tensor product q wð Þ � q wð Þ is an
n2 � n2 matrix with the diagonal entries q wð Þ � q wð Þð Þ j;kð Þ; j;kð Þ ¼ q wð Þjjq wð Þkk ¼ pjpk where pj ¼ aja
j for
wij ¼Pn

j¼1 uj jw
� �

uj

��� ¼Pn
j¼1aj uj

��� where U = {u1,..., un} is an ON basis of eigenvectors of the observable F. The
n2 � n2 diagonal projection matrix P[qudit(F)] has a diagonal element P qudit Fð Þ½ �

� �
j;kð Þ j;kð Þ ¼ 1 if uj � uk 2 qudit Fð Þ½ �. i.e.,

if the eigenvectors uj and uk have different eigenvalues, and 0 otherwise. Hence the product P qudit Fð Þ½ �q wð Þ � q wð Þ will
pick out the products pj pk for uj � uk 2 qudit Fð Þ½ � and the trace will sum them. Hence we have the result that:

h F : wð Þ ¼ tr P qudit Fð Þ½ �q wð Þ � q wð Þ �
¼P

j;k
pjpk : uj � uk 2 qudit Fð Þ½ �� � ¼P

j;k
pjpk : f uj

� � 6¼ f ukð Þ� � ð86Þ

where f : U ! R is the eigenvalue function taking each eigenvector to its eigenvalue.
With those preliminaries, the definitions in Table 6 might be better motivated and the statements clearer.

Some basic results about quantum logical entropy

A self-adjoint operator F on V, i.e., an observable, alone defines the eigenvalue partition f �1 ¼ f �1 /ið Þf gi2I on a basis U
of ON eigenvectors for F. But the points have no probabilities associated with them. The probabilities are supplied by a
normalized vector wij 2 V as pi ¼ aia
i for ai ¼ uijwh i. Then we have a completely classical situation, a set partition f -1

on a set U with point probabilities provided by wij which will be denoted p(F : w). Hence that partition will have a (clas-
sical) logical entropy h(p(F : w)). Since the blocks in that p(F : w) partition on U are the sets of basis vectors each for a
certain eigenvalue, the probabilities for those blocks are

P
j pj : f uj

� � ¼ /i

� � ¼ Pr f �1 /ið Þð Þ ¼ Pr Bið Þ for i = 1,..., I. Hence
we have:

h p F : wð Þð Þ ¼ 1�P
i2I

Pr f �1 /ið Þð Þ2 ¼ 1�P
i2I

P
j

pj : f uj
� � ¼ /i

� � !2

¼ 1�P
i

P
f ujð Þ¼/i

p2j þ
P
j 6¼k

pjpk : f uj
� � ¼ /i ¼ f ukð Þ� �0

@
1
A

¼P
j;k

pjpk : f uj
� � 6¼ f ukð Þ� � ¼ h F : wð Þ ¼ tr P qudit Fð Þ½ �q wð Þ � q wð Þ �

ð87Þ

And there is another way to arrive at this logical entropy, namely perform the F-measurement on the pure state density
matrix q(w). The results of the F-measurement is given by the Lüders mixture operation ([68], p. 279) on the density matrix
q(w). The block Bi 2 p F : wð Þ generates the eigenspace Vi corresponding to the eigenvalue /i so PV i is the projection matrix
to that eigenspace for i = 1, . . ., I. Then the Lüders mixture operation, representing the F-measurement of w, gives the
mixed state density matrix:

q̂ wð Þ ¼
X
i2I

P V iq wð ÞPV i : ð88Þ

Table 5. Ditsets and qudit subspaces without probabilities.

Classical logical information Quantum logical information

f ; g : U ! R Commuting self-adjoint ops. F, G
U = {u1, ..., un} ON basis simultaneous eigenvectors F, G
Values {/i}i2I of f Eigenvalues {/i}i2I of F
Values {cj}j2J of g Eigenvalues {cj}j2J of G
Partition {f�1(/i)}i2I Eigenspace DSD of F
Partition {g�1(cj)}j2J Eigenspace DSD of G
dits of p : uk ; uk0

� � 2 U2, f ukð Þ 6¼ f uk0
� �

Qudits of F: uk � uk0 2 V � V , f ukð Þ 6¼ f uk0
� �

dits of r : uk ; uk0
� � 2 U2, g ukð Þ 6¼ g uk0

� �
Qudits of G: uk � uk0 2 V � V , g ukð Þ 6¼ g uk0

� �
dit(p) � U � U [Qudit(F)] = subspace gen. by qudits of F
dit(r) � U � U [Qudit(G)] = subspace gen. by qudits of G
dit(p) [ dit(r) � U � U [Qudit(F) [ Qudit(G)] � V�V
dit(p) � dit(r) � U � U [Qudit(F) � Qudit(G)] � V�V
dit(p) \ dit(r) � U � U [Qudit(F) \ Qudit(G)] � V�V
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To show that h q̂ wð Þð Þ ¼ 1� tr q̂ wð Þ2 � ¼ h p F : wð Þð Þ for q̂ wð Þ ¼PI
i¼1PV iq wð ÞPV i , we need to compute tr q̂ wð Þ2 �

. An off-

diagonal element in qjk wð Þ ¼ aja
k of q(w) survives (i.e., is not zeroed and has the same value) the Lüders operation if and

only if f(uj) = f(uk). Hence, the j-th diagonal element of q̂ wð Þ2 is:Xn
k¼1

a
jakaja


k : / uj

� � ¼ / ukð Þ
n o

¼
Xn
k¼1

pjpk : f uj
� � ¼ f ukð Þ� � ¼ pjPr Bið Þ ð89Þ

where uj2Bi. Then, grouping the j-th diagonal elements for uj2Bi gives
P

uj pjPr Bið Þ ¼ Pr Bið Þ2. Hence, the whole trace is:

tr q̂ wð Þ2 � ¼PI
i¼1Pr Bið Þ2, and thus:

h q̂ wð Þð Þ ¼ 1� tr q̂ wð Þ2 � ¼ 1�
XI
i¼1

Pr Bið Þ2 ¼ h F : wð Þ: ð90Þ

This completes the proof of the following theorem which shows the different ways to characterize h(F: w).

Theorem 4.5. h F : wð Þ ¼ h p F : wð Þð Þ ¼ h q̂ wð Þð Þ:

Like the classical join operation on partitions, quantum measurement creates distinctions, i.e., turns coherences into
“decoherences,”12 which, classically, is the operation of distinguishing elements by classifying them according to some
attribute like classifying the faces of a die by their parity. The fundamental theorem about quantum logical entropy and
projective measurement, in the density matrix version, shows how the quantum logical entropy created (starting with
h(q(w)) = 0 for the pure state w) by the measurement can be computed directly from the coherences of q(w) that are
decohered in q̂ wð Þ.

Theorem 4.6. Fundamental theorem about quantum measurement and logical entropy.

The increase in quantum logical entropy, h q̂ wð Þð Þ ¼ h F : wð Þ due to the F-measurement of the pure state w is the sum of the
absolute squares of the non-zero off-diagonal terms (coherences) in q(w) (represented in an ON basis of F-eigenvectors) that
are zeroed (“decohered”) in the post-measurement Lüders mixture density matrix q̂ wð Þ ¼PI

i¼1PV iq wð ÞPV i .

Proof. h q̂ wð Þð Þ � h q wð Þð Þ ¼ 1� tr q̂ wð Þ2 �� �� 1� tr q wð Þ2 �� � ¼Pj;k qjk wð Þ�� ��2 � q̂ wð Þj j2
� �

since tr q2½ � ¼Pi;j qij

�� ��2 is
the sum of the absolute squares of all the elements of q ([78], p. 77). If uj and uk are a qudit of F, then and only

then are the corresponding off-diagonal terms zeroed by the Lüders mixture operation
PI

i¼1PV iq wð ÞPV i to obtain q̂ wð Þ from
q(w). h

Example: For a simple quantum example, consider a system with two spin-observable r eigenstates "ij and #ij (like electron

spin up or down along the z-axis) where the given normalized superposition state is wij ¼ a" "ij þ a# #ij ¼ a"
a#

� �
so the

density matrix is q wð Þ ¼ p" a"a
#
a#a
" p#

� �
where p" ¼ a"a
" and p# ¼ a#a
#. Using the Lüders mixture operation, the measure-

ment of that spin-observable r goes from the pure state q(w) to

Table 6. Probabilities applied to ditsets and qudit spaces.

“Classical” Logical Entropy Quantum Logical Entropy

Pure state density matrix, e.g., q(0U) Pure state density matrix q(w)
U = {u1, . . ., un} ON basis simultaneous eigenvectors F, G
p � p on U � U q(w)�q(w) on V � V
h(0U) = 1 � tr[q(0U)

2] = 0 h(q(w)) = 1 � tr[q(w)2] = 0
h(p) = p � p(dit(p)) h(F:w) = tr[P[qudit(F)] q(w) � q(w)]
h(p, r) = p � p(dit(p) [ dit(r)) h(F,G:w) = tr[P[qudit(F) [ qudit(G)] q(w)�q(w)]
h(p|r) = p � p(dit(p) � dit(r)) h(F|G:w) = tr[P[qudit(F) � qudit(G)] q(w) � q(w)]
m(p, r) = p � p(dit(p) \ dit(r)) m(F,G:w) = tr[P[qudit(F) \ qudit(G)] q(w) � q(w)]
h(p) = h(p|r) + m(p,r) h(F:w) = h(F|G:w) + m(F,G:w)
h(p) = 2-draw prob. diff. f-values h(F:w) = 2-meas. prob. diff. F-eigenvalues
q pð Þ ¼PiPBiq 0Uð ÞPBi q̂ wð Þ ¼PiP V iq wð ÞPV i

h(p) = 1 � tr[q(p)2] h F : wð Þ ¼ 1� tr q̂ wð Þ2
h i

h(p) = sum sq. zeroed q 0Uð Þ,q pð Þ h(F:w) = sum ab. sq. zeroed q wð Þ, q̂ wð Þ

12 This notion of “decoherence” is used in an older sense, not the recent sense given by the work of Zurek [77] and others.
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P "q wð ÞP " þ P #q wð ÞP # ¼ 1 0

0 0

� �
p" a"a
#
a#a
" p#

" #
1 0

0 0

� �
þ 0 0

0 1

� �
p" a"a
#
a#a
" p#

" #
0 0

0 1

� �

¼ p" 0

0 p#

" #
¼ q̂ wð Þ

: ð91Þ

The logical entropy of any pure state such as q(w) is 0. The logical entropy of q̂ wð Þ is h q̂ wð Þð Þ ¼ 1� tr q̂ wð Þ2 � ¼
1� p2" � p2#. The entries that were zeroed in the Lüders mixture operation were the two off-diagonal elements a"a
# and
a#a
" so the sum of their absolute squares is 2a"a
#a#a



" ¼ 2p"p# which equals 1� p2" � p2# since 1 ¼ p" þ p#

� �2 ¼
p2" þ p2# þ 2p"p#.

Conclusions

The underlying thesis is that information is defined in terms of distinctions, differences, distinguishability, and diversity –
or, with similar uses of the di-prefix (which means “two”), discriminations, divisions, or differentiations. Yet those are all
vague concepts so this notion of information-as-distinctions is made precise using the basic mathematical concept that
represents differences and non-differences (or equivalences), namely partitions (including the inverse-image partitions of
random variables). The elements in the same block of a partition are similar or equivalent (block = equivalence class),
and the ordered pairs of elements in different blocks are the distinctions or dits. Hence logical entropy measures informa-
tion-as-distinctions by the probability measure on distinctions, so the logical entropy of a partition is the probability that a
distinction of the partition is obtained in two independent draws from the underling universe set of elements. This notion of
information-as-distinctions then encompasses the Shannon notion of entropy as the average minimum number of binary
partitions (bits) that have to be joined to make the same distinctions of the partition. Moreover, there is the dit-bit
transform that derives all of Shannon’s definitions of entropy, joint entropy, conditional entropy, and mutual information
from the corresponding definitions of logical entropy that are based on logical entropy being defined as a (probability)
measure in the sense of measure theory. A few applications were discussed; distinguishing the Boltzmann and Shannon
entropies, developing the MaxEntropy method with logical entropy, and showing how the metrical notion of logical entropy
gives the notion of variance in statistical theory.

There is a method, linearization, to lift set-based concepts to the corresponding vector-space concepts, and that provides
the method to develop the corresponding quantum notions from the “classical” or non-quantum notions of logical entropy.
There are two equivalent formulations of quantum mechanics; one using wave functions and the other using density
matrices ([79], p. 102). But only one of those formulations maps naturally to the mathematics of partitions, namely the
density matrix formulation.

At the beginning of our presentation, density matrices were foreshadowed by the box diagrams representing logical
entropy. The box diagrams led to the incidence matrices for indit pð Þ, or the complementary ones for dit pð Þ, and then point
probabilities are introduced into the matrices so that when normalized by their trace, the matrices are density matrices. In
that manner, a reformulation of the classical logical entropy framework is first presented using density matrices over the real
numbers to foreshadow the later quantum results over the complex numbers. Every density matrix over the complex
numbers has a spectral decomposition into a probability mixture of orthogonal pure states which correspond classically
to the disjoint blocks and block probabilities of a partition.

The fundamental theorem for logical entropy and measurement shows there is a simple, direct and quantitative
connection between density matrices and logical entropy. The theorem directly connects the changes in the density matrix
due to a projective measurement (sum of absolute squares of zeroed off-diagonal terms) with the increase in logical entropy
due to the F -measurement h F : wð Þ ¼ h q̂ wð Þð Þ (where h q wð Þð Þ ¼ 0 for the pure state w). Moreover, the quantum logical
entropy has a simple “ two-draw probability” interpretation, i.e., h F : wð Þ ¼ h q̂ wð Þð Þ is the probability that two independent
F-measurements of w will yield distinct F-eigenvalues, i.e., will yield a qudit of F. In contrast, the von Neumann entropy has
no such simple interpretation, and there seems to be no such intuitive connection between pre- and post-measurement
density matrices and von Neumann entropy, although von Neumann entropy also increases in a projective measurement
([79], Thm. 11.9, p. 515).

This direct quantitative connection between state discrimination and quantum logical entropy reinforces the judgment
of Boaz Tamir and Eliahu Cohen [66, 80] that quantum logical entropy is a natural and informative entropy concept for
quantum mechanics.

We find this framework of partitions and distinction most suitable (at least conceptually) for describing the
problems of quantum state discrimination, quantum cryptography and in general, for discussing quantum channel
capacity. In these problems, we are basically interested in a distance measure between such sets of states, and this is
exactly the kind of knowledge provided by logical entropy (reference to [81]). ([80], p. 1])
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In summary, the basic idea of information as distinctions, differences, distinguishability, and diversity is naturally quan-
tified at the “classical” level in terms of logical entropy and then naturally linearized to the quantum notion of logical
entropy.13
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