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Abstract

Logical information theory is the quantitative version of the logic of partitions just as logical
probability theory is the quantitative version of the dual Boolean logic of subsets. The resulting
notion of information is about distinctions, differences, and distinguishability, and is formalized
as the distinctions of a partition (a pair of points distinguished by the partition). All the de-
finitions of simple, joint, conditional, and mutual entropy of Shannon information theory are
derived by a uniform transformation from the corresponding definitions at the logical level.

The purpose of this paper is to give the direct generalization to quantum logical informa-
tion theory that similarly focuses on the pairs of eigenstates distinguished by an observable,
i.e., qubits of an observable. The fundamental theorem for quantum logical entropy and mea-
surement establishes a direct quantitative connection between the increase in quantum logical
entropy due to a projective measurement and the eigenstates (cohered together in the pure
superposition state being measured) that are distinguished by the measurement (decohered in
the post-measurement mixed state). Both the classical and quantum versions of logical entropy
have simple interpretations as “two-draw” probabilities. The conclusion is that quantum logi-
cal entropy is the simple and natural notion of information for a quantum information theory
focusing on the distinguishing of quantum states.
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1 Duality of Subsets and Partitions

The logical foundations for classical and quantum information theory are built on the logic of
partitions—which is dual (in the category-theoretic sense) to the usual Boolean logic of subsets.
F. William Lawvere called a subset or, in general, a subobject a “part” and then noted: “The dual
notion (obtained by reversing the arrows) of ‘part’ is the notion of partition.” [19, p. 85] That suggests
that the Boolean logic of subsets should have a dual logic of partitions ([9], [10]).

This duality can be most simply illustrated using a set function f : X — Y. The image f (X) is
a subset of the codomain Y and the inverse-image (or coimage) f~! (Y) is a partition on the domain
X—where a partition m = {B1,...,Br} on a set U is a set of subsets or blocks B; that are mutually
disjoint and jointly exhaustive (U;B; = U). But the duality runs deeper than between subsets and
partitions. The dual to the notion of an “element” (an ‘it’) of a subset is the notion of a “distinction”
(a ‘dit’) of a partition, where (u,u’) € U x U is a distinction or dit of 7 if the two elements are in
different blocks. Let dit (7) € U x U be the set of distinctions or ditset of 7. Similarly an indistinction
or indit of w is a pair (u,u’) € U x U in the same block of 7. Let indit (v) C U x U be the set
of indistinctions or inditset of w. Then indit (7) is the equivalence relation associated with m and
dit (m) = U x U — indit (7) is the complementary binary relation that might be called a partition
relation or an apartness relation. The notions of a distinction and indistinction of a partition are
illustrated in Figure 1.

indit =

indistinction
=2 points in
same block.

dit=
distinction
=2 points
in distinct
blocks.

Figure 1: Distinctions and indistinctions of a partition.

The element-distinction duality can be illustrated by noting that the very notion of a function
f: X — Y can be defined in a dual manner using those concepts. A function f: X — Y is a binary
relation R C X x Y that transmits elements and dually reflects distinctions—where:

e a binary relation R C X X Y transmits elements if for each element x € X, there is an ordered
pair (z,y) € R for some y € Y, and

e a binary relation R C X X Y reflects distinctions if for any pairs (x,y) and (2/,y’) in R, if
y £y, then z # .

f: XY Subsets Partitions
General case Image f(X) Inverse-image f1(Y)
= Subset of codomain Y | = Partition on domain X

Definition of | Binary relation f — XxY | +Binary relation f — XxY
a function | that transmits elements | that reflects distinctions

Basic duality Elements of Subset Distinctions of Partition

Table 1: Duality of Subsets and Partitions &
Duality of Elements and Distinctions ("Its" & "Dits")



The Boolean logic of subsets is usually treated in modern texts solely in terms of the special case
of “propositional logic.” For instance, Given a formula ® (7, 0, ...) composed with Boolean operations
(e.g., V, A, =, () on the atomic variables 7, o, ..., then a Boolean tautology would be defined as
a formula such that no matter what subsets of the nonempty universe U are substituted for the
atomic variables, then the whole formula evaluates (using the corresponding set operations) to the
universe U, the top of the power-set Boolean algebra p (U). It is then a theorem (not a definition)
that the same set of valid formulas is obtained if one only considers the one-element universe U = 1,
in which case it is convenient to interpret the variables and formulas as being propositions. Most
modern texts just start with this propositional special case and define a valid formula as a truth table
tautology, i.e., as a formula such that no matter what subsets (), 1 of the universe 1 are substituted
for the atomic variables, the whole formula will evaluate to the universe 1. This neglect of the
general Boolean logic of subsets in favor of the propositional special case is one of the reasons for the
long delay in developing the dual logic of partitions—since propositions, unlike subsets, don’t have a
category-theoretic dual [9].

The algebra associated with the subsets S C U is the power-set Boolean algebra p (U) of subsets
of U with the partial order as the inclusion of elements. The corresponding algebra of partitions m
on U is the partition algebra [] (U) defined as follows:

e the partial order o X 7 of partitions o = {C},...,C;} and 7 = {By,..., By} holds when 7
refines o in the sense that for every block B; € 7 there is a block C; € ¢ such that B; C Cj,
or, equivalently, using the element-distinction (‘its’ & ‘dits’) pairing, the partial order is the
inclusion of distinctions: o < 7 if and only if (iff) dit (o) C dit ();

e the minimum or bottom partition is the indiscrete partition (or blob) 0 = {U} with one block
consisting of all of U;

e the maximum or top partition is the discrete partition 1 = {{u}},c,; consisting of singleton
blocks;

e the join 7V o is the partition whose blocks are the non-empty intersections B; N C; of blocks
of m and blocks of o, or, equivalently, using the element-distinction pairing, dit(wV o) =
dit (7) U dit (o);

e the meet m A o is the partition whose blocks are the equivalence classes for the equivalence
relation generated by: u ~ v’ if u € B; € m, v € Cj € 0, and B, N C; # 0; and

e o = 7 is the implication partition whose blocks are: (1) the singletons {u} for v € B; € 7 if
there is a C; € o such that B; C Cj, or (2) just B; € 7 if there is no C; € ¢ with B; C C}, so
that trivially: c = 7 =1iff 0 < 7.

The same formulas ® (7, 0,...) can be interpreted as subset formulas or partition formulas. A
partition tautology is analogously defined as a formula such that no matter what partitions on any
U (|U| > 2) are substituted for the variables, the whole formula will evaluate by the partition
operations to the discrete partition 1, the top of the partition algebra [] (U). For instance, modus
ponens, (o A (0 = m)) = m, is a partition tautology. There is no U, analogous to U = 1, such that
a formula is a partition tautology if and only if it always evaluates to 1 for partitions on U [9,
Proposition 1.18].

There is a better way to connect subsets and partitions to propositions by considering a generic
element u and a generic distinction (u,u’) (with v # ' understood). If a formula ® (,0,...) is
construed as a subset formula, then “u is an element of ® (7,0,...)” [i.e., u € ® (7, 0,...)] is the
corresponding proposition that is always true when ® (7, g, ...) is a Boolean tautology. If the formula
® (7, 0,...) is construed as a partition formula, then the corresponding proposition “(u,u’) is a



distinction of @ (m,0,...)”

summarized in Table 2.

Table 2

is always true if @ (7,0, ..

.) is a partition tautology.! These results are

Subset Logic

Partition Logic

Logic of...

Subsets Sc U

Partitions m on U

Elements (its or dits)

Elements u of a subset S

Distinctions (u,u') of a partition 7

All elements

Universe set U (all elements)

Discrete partition 1 (all dits)

No elements

Empty set & (no elements)

Indiscrete partition 0 (no dits)

Partial order on...

S < T = Inclusion of elements

Refinement 6 < 7 of partitions =
inclusion of distinctions: dit(c) < dit(r)

Formula variables

Subsets of U

Partitions on U

Logical operations
U, N, =,...

Operations on subsets

Operations on partitions

Propositional interp.

Subset O(7,0,...) contains an

Partition ®(r,G,...) makes a distinction

of ®(m,o,...) element u. (u,u).
Valid formula ®(m,0,...) = U for any subsets | ®(n,5,...) = 1 for any partitions 7,G,... on
d(m,o,...) n,6,... of any U (JU| > 1),i.e,, |any U (U] >2), i.e., makes all

contains all elements u.

distinctions (u,u').

Table 2: Dual Logics: Boolean subset logic of subsets and partition logic.

2 From the logic of partitions to logical information theory

George Boole [4] developed the quantitative version of his logic of subsets by starting with the size
or number of elements |S| in a subset S C U, which could then be normalized to I‘%‘\
the probabilistic interpretation as the probability that a randomly drawn element from U would be
an element of S. The algebra of partitions 7 on U is isomorphically represented by the algebra of
ditsets dit (w) € U x U, so the parallel quantitative development of the logic of partitions would

start with the size or number of distinctions |dit (7)| in a partition 7 on U, which could then be
\dit ()|
|UxU]|
drawn elements from U (with replacement) would be a distinction of .

In Gian-Carlo Rota’s Fubini Lectures [22] (and in his lectures at MIT), he remarked in view
of duality between partitions and subsets that, quantitatively, the “lattice of partitions plays for
information the role that the Boolean algebra of subsets plays for size or probability” [18, p. 30] or
symbolically:

and given

normalized to

and given the probabilistic interpretation as the probability that two randomly

information : partitions :: probability : subsets.

Since “Probability is a measure on the Boolean algebra of events” that gives quantitatively the
“intuitive idea of the size of a set”, we may ask by “analogy” for some measure to capture a property
for a partition like “what size is to a set.” Rota goes on to ask:

How shall we be led to such a property? We have already an inkling of what it should
be: it should be a measure of information provided by a random variable. Is there a
candidate for the measure of the amount of information? [22, p. 67]

We have just seen that the parallel development suggests the normalized number of distinctions of
a partition as “the measure of the amount of information”.

1See [9] for how to use this propositional connection to develop a consistent and complete system of semantic
tableaus for partition tautologies.



3 The logical theory of information
Andrei Kolmogorov has suggested that information theory should start with sets, not probabilities.

Information theory must precede probability theory, and not be based on it. By the very
essence of this discipline, the foundations of information theory have a finite combinato-
rial character. [17, p. 39]

The notion of information-as-distinctions does start with the set of distinctions, the information
set, of a partition m = {By, ..., By} on a finite set U where that set of distinctions (dits) is:

dit (71') = {(u, ’U,/) :dB;, By € m, B; # B, u € BZ',U/ S Bz’}

The normalized size of a subset is the logical probability of the event, and the normalized size of
the ditset of a partition is, in the sense of measure theory, “the measure of the amount of information”
in a partition. Thus we define the logical entropy of a partition # = {Bj..., B}, denoted h (), as
the size of the ditset dit (7) C U x U normalized by the size of U x U:

_ dit(m)] _ 11
h(m) = UxU] — Z(uj7uk)€dit(7r) IR
Logical entropy of 7 (equiprobable case).

This is just the product probability measure of the equiprobable or uniform probability distribution
on U applied to the information set or ditset dit (7). The inditset of 7 is indit (7) = UL_, (B; x B;)

so where p (B;) = ‘l‘?j“ in the equiprobable case, we have:

_Jdit(m)| _ [UxU|=1_|BixB;| _ I B\ I 2
h(ﬁ) - ||U>E7£f)|| - |U><U1| =1- Zi:l (l\U|l) =1- Zi:lp(Bi) :
In two independent draws from U, the probability of getting a distinction of 7 is the probability of
not getting an indistinction.
Given any probability measure p : U — [0,1] on U = {uy, ..., u, } which defines p; = p (u;) for
i=1,...,n, the product measure p x p: U x U — [0, 1] has for any S C U x U the value of:

p X p(S) = Z(u“uj)esp(ui)p (u]) = Z(q;,i77j,j)espipj'

The logical entropy of w in general is the product-probability measure of its ditset:

h’(ﬂ-) =pX p(dlt (7'(')) = Z(ui,u]')edit(ﬂ') bipj = 1- ZBGWp(B)2'

There are two stages in the development of logical information. Before the introduction of any
probabilities, the information set of a partition 7 on U is its ditset dit (7). Then given a probability
measure p : U — [0,1] on U, the logical entropy of the partition is just the product measure on the
ditset, i.e., h(w) = p x p(dit (7)). The standard interpretation of h () is the two-draw probability
of getting a distinction of 7—just as p (S) is the one-draw probability of getting an element of S.

4 Compound logical entropies

The compound notions of logical entropy are also developed in two stages, first as sets and then,
given a probability distribution, as two-draw probabilities. Given partitions 7 = {Bjy,..., Br},0 =
{C4,...,Cy} on U, the joint information set is the union of the ditsets which is the ditset for their
join is: dit () Udit (o) =dit (Vo) CU x U.

Given probabilities p = {p1, ..., pn }, the joint logical entropy is:



h(m,o) =h(rVo)=pxp(dit(r)Udit(o)) =1-3, ,p(B; ﬂC’j)2.
The information set for the conditional logical entropy h (m|o) is the difference of ditsets, and thus:
h(wlo) =p x p(dit (r) — dit (0)) = h (7,0) — h (o).
The information set for the logical mutual information m (w, o) is the intersection of ditsets, so:
m (m,0) =p x p(dit (m) Ndit (¢)) = h(m,0) — h(rw|o) — h(o|r) = h(7) + h(c) — h (7, 0).

Since all the logical entropies are the values of a measure p x p: U x U — [0, 1] on subsets of
U x U, they automatically satisfy the usual Venn diagram relationships.

h(r) h(m,0) h(o)

WA Ay

UxU

Figure 2: Logical entropies Venn diagram

At the level of information sets (w/o probabilities), we have the Information algebra T (w,0)
which is the Boolean subalgebra of o (U x U) generated by ditsets and their complements.

5 Deriving the Shannon entropies from the logical entropies

Instead of being defined as the values of a measure, the usual notions of simple and compound
entropy ‘burst forth from the brow’ of Claude Shannon [23] already satisfying the standard Venn
diagram relationships. Since the Shannon entropies are not the values of a measure, many authors
have pointed out that these Venn diagram relations for the Shannon entropies can only be taken
as “analogies” or “mnemonics” ([6]; [1]). Logical information theory explains this situation since all
the Shannon definitions of simple, joint, conditional, and mutual information can be obtained by a
uniform transformation from the corresponding logical definitions, and the transformation preserves
the Venn diagram relationships.

This transformation is possible since the logical and Shannon notions of entropy can be seen
as two different ways to quantify distinctions—and thus both theories are based on the foundational
idea of information as distinctions.

Consider the canonical case of n equiprobable elements, p; = % The logical entropy of 1 =
{Bi, ..., By} where B; = {u;} with p= {1, . 1} is:

n’

UxU—-A nZ—n
hp(By)) =il = wion =1 — L =1 p(By).

The normalized number of distinctions or ‘dit-count’ of the discrete partition 1 is 1 — % =1-p(By).
The general case 7 = { By, ..., B, } is the average of the dit-counts 1 — p (B;):

h(m)=>p(Bi) (L —p(Bi)).

In the canonical case of 2" equiprobable elements, the minimum number of binary partitions
(“yes-or-no questions”) or “bits” it takes to uniquely determine or encode each distinct element or
block is n, so the Shannon-Hartley entropy [14] is:



H(p(B;)) =n =logy (2™) = log, (1/%) = log, (p(]lgi)).

The general case is the average of the bit-counts log, (p(é,)):

H(m) = Eip (Bi) logy (p(}?i)>'

The Dit-Bit Transform essentially replaces the dit-counts by the bit-counts. First one expresses
any logical entropy concept (simple, joint, conditional, or mutual) as an average of dit-counts 1 —

p(B;), and then substitutes the bit-count log (ﬁ) = —log (p(B;)) to obtain the corresponding

formula as defined by Shannon. Table 3 gives examples of the dit-bit transform.

Table 3 The Dit-Bit Transform: 1-p(B,) ~~ log(1/p(B)))

Entropy | h(m) = £, p(B))(1-p(B))
H(m) = 2. p(B)(log(1/p(B,)))

Joint| h(r,0) = =, p(BNC)(1-p(BNC))
Entropy H(m,0) = =, p(BNC)log(1/p(BNC))

Conditional| h(n|c) = Zi‘jp(Biij)(l—p(Biij)) - Zip(Cj)(l—p(Cj))
Entropy| 11 i) = %, p(BNC)log(p(BAC)) — Zp(C)log(1/p(C)

Mutual | m(r.c) = %, p(BAC)[(1-p(B)) + (1-p(C)) ~ (1-p(BAC))]
nformation| 1z o) = 3 p(BAC)[og(1/p(B,) + (log(1/(C)) - (log(1/p(B,AC)]

Table 3: Summary of the dit-bit transform

For instance,
h(wlo) = h(m o) =h(o) =3 ;p(BinC)) [L—p(BinCy)] =32, p(C5) [1 = p(C))]

is the expression for h (7|o) as an average over 1 —p (B; N C;) and 1 —p (C}), so applying the dit-bit
transform gives:
>, P(BinCy)log (1/p(Bin Cj)) = 32;p(C)log (1/p (Cy)) = H (w,0) — H (0) = H (x|o).
The dit-bit transform is linear in the sense of preserving plus and minus, so the Shannon formulas

satisfy the same Venn diagram formulas in spite of not being a measure (in the sense of measure
theory):

H(n) H(r,0) H(o)

Figure 3: Venn diagram mnemonic for Shannon entropies



6 Logical entropy via density matrices

The transition to quantum logical entropy is facilitated by reformulating the logical theory in terms
of density matrices. Let U = {uq,...,u,} be the sample space with the point probabilities p =
(p1, .-y Pn). An event S C U has the probability p (S) = Zujes Dj-

For any event S with p (S) > 0, let |S) = pl(s) (xs (u1) \/P1s - X (un) v/Pn)" (the superscript

t indicates transpose) which is a normalized column vector in R™ where xs : U — {0,1} is the
characteristic function for S, and let (S| be the corresponding row vector. Since |S) is normalized,
(S|S) = 1. Then the density matriz representing the event S is the n X n symmetric real matrix:

p<S>—|S><S|—{ sy /PP for uj,u € S

0 otherwise

Then p(S)* = |S) (S]S) (S| = p(S) so borrowing language from quantum mechanics, p (S) is said
to be a pure state density matrix.

Given any partition m = {By, ..., By} on U, its density matrix is the average of the block density
matrices:

p(m)=3p(B:i)p(B:).

Then p (7) represents the mized state, experiment, or lottery where the event B; occurs with
probability p (B;). The connection with the logical entropy h () is:

h(r)=1—tr [p (71')2]

where p (7)? is substituted for p (B;)* and the trace is substituted for the summation.

Example 1 For the throw of a fair die, U = {uy,us,us, us, ug, ug} (note the odd faces ordered
before the even ones) where u; represents the number j coming up, the density matriz p (0) is the
“pure state” 6 X 6 matrix with each entry being %.

1/6 1/6 1/6 1/6 1/6 1/6] wuy
1/6 1/6 1/6 1/6 1/6 1/6| us
o) |1/6 /6 1/6 1/6 1/6 1/6| us
PO =16 176 1/6 1/6 1/6 1/6| uy
1/6 1/6 1/6 1/6 1/6 1/6| uy
1/6 1/6 1/6 1/6 1/6 1/6]| wug

The nonzero off-diagonal entries represent indistinctions or indits of partition 0, or in quantum

terms, “coherences,” where all 6 “eigenstates” cohere together in a pure “superposition” state. All
pure states have logical entropy of zero, i.e., h (0) =0 (i.e., no dits).

Example 2 (continued) Now classify or “measure” the elements by the parity (odd or even) par-
tition (observable) m = {Bodd, Beven} = {{u1,us,us}, {ua, us,us}}. Mathematically, this is done by
the Liders mixture operation where P,qq and Peyen are the projections to the odd or even components:

Poqap (0) Poga + Peyenp (O) Peyen

1/6 1/6 1/6 0 0 O 0 00 O 0 0
1/6 1/6 1/6 0 0 O 0 00 O 0 0
1/6 1/6 1/6 0 0 0 n 0 00 O 0 0
|0 0 0 0 0 O 0 0 0 1/6 1/6 1/6
0 0 0 0 0 O 0 0 0 1/6 1/6 1/6
0 0 0 0 0 O 0 0 0 1/6 1/6 1/6

= %p(Bodd) + %p (Beven) = p (7).



Theorem 3 (Fundamental) The increase in logical entropy due to a Liders mixture operation,
h(p(m)) — h(p(0)), is the sum of amplitudes squared of the non-zero off-diagonal entries of the
beginning density matrixz that are zeroed in the final density matrix.

Proof. Since for any density matrix p, tr [p?] = Do |pij|2[13, p. 77], we have: h (p (7)) —h (p(0)) =
(1 —tr [p (71')2D - (1 Ctr [p (0)2}) — tr [p (0)2} —tr [p (w)ﬂ =Y., (|pij 0))> = |pi; (W)F). n

The fundamental theorem connects the concept of information as distinctions to the process of

‘measurement’ or classification which uses some attribute (like parity in the example) or ‘observable’
to make distinctions.

Example 4 (continued) In comparison with the matriz p (0) of all entries %, the entries that got
zeroed in the Liiders operation p (0) ~ p (m) correspond to the distinctions created in the transition
0 ={U} ~ 7 = {{ur,us,us}, {ug,us,us}}, i.e., the odd-numbered faces were distinguished from
the even-numbered faces. The increase in logical entropy = sum of the squares of the off-diagonal
elements that were zeroed = h(w) —h(0) =2 x 9 X (%)2 = 18 = Z. The usual calculations of the

two logical entropies are: h(m) =1—2 x (%)2 =1 and h(0)=1-1%=0.

Since, in quantum mechanics, a projective measurement’s effect on a density matrix is the Liiders
mixture operation, that means that the effects of the measurement is the above-described “making
distinctions” by decohering or zeroing certain coherence terms in the density matrix, and the sum
of the absolute squares of the coherences that were decohered is the increase in the logical entropy.

7 Generalization to Quantum Information Theory: Commut-
ing Observables

The idea of information as being based on distinctions carries over to quantum mechanics.

[Information] is the notion of distinguishability abstracted away from what we are dis-
tinguishing, or from the carrier of information. ...And we ought to develop a theory of
information which generalizes the theory of distinguishability to include these quantum
properties... . [3, p. 155]

Let F : V — V be a self-adjoint operator (observable) on a n-dimensional Hilbert space V
with the real eigenvalues ¢4, ..., ¢ and let U = {uy, ..., u,} be an orthonormal basis of eigenvectors
of F. The basic idea of a qubit is pair of states definitely distinguishable by some observable?—
which is analogous classically to a pair (u,u’) of distinct elements of U that are distinguishable by
some partition (i.e., 1). In general, a qubit® can be relativized to an observable—just as classically a
distinction is a distinction of a partition (nor necessarily the discrete partition 1). Then there is a
set partition m = {B;},_; ; on U so that B; is a basis for the eigenspace of the eigenvalue ¢; and
| B;| is the "multiplicity" (di}nension of the eigenspace) of the eigenvalue ¢; for i = 1, ..., I. Note that
the real-valued function f : U — R that takes each eigenvector in u; € B; C U to its eigenvalue ¢;
so that f=1 (¢;) = B; contains all the information in the self-adjoint operator F': V — V since F
can be reconstructed by defining it on the basis U as Fu; = f (u;) u;.

The generalization of ‘classical’ logical entropy to quantum logical entropy is straight forward
using the usual ways that set-concepts generalize to vector-space concepts, e. g., subsets — subspaces,
set partitions — direct-sum decompositions of subspaces,?, Cartesian products of sets — tensor

2 Any nondegenerate self-adjoint operator such as She1 kP, where P, is the projection to the one-dimensional
subspace generated by uy, will distinguish all the vectors in the orthonormal basis U.

3This quantum version of a “dit” might be called a “qudit,” but qubit is closer to common usage.

4Hence the ‘classical’ logic of partitions on a set will generalize to the quantum logic of direct-sum decompositions
that is the dual to the usual quantum logic of subspaces [12].



products of vector spaces, and ordered pairs (ug,ur) € U X U — up @ upr € V ® V. The eigenvalue
function f : U — R determines a partition {f’1 (qbi)}ie] on U and the blocks in that partition
generate the eigenspaces of F' and they form a direct-sum decomposition of V. Classically, a dit of
the partition {f‘l (¢i)}z‘el on U is a pair (uk,uy ) of points in distinct blocks of the partition, i.e.,
S (uk) # f ().

Hence a qubit of F is a pair (uy,uy ) (interpreted as ug ® ugs in the context of V@ V') of vectors
in the eigenbasis definitely distinguishable by F, i.e., f (ur) # f (ug), distinct F-eigenvalues. Let
G : V. — V be another self-adjoint operator on V which commutes with F' so that we may then
assume that U is an orthonormal basis of simultaneous eigenvectors of F' and G. Let {~; }j < be the
set of eigenvalues of G and let g : U — R be the eigenvalue function so a pair (ug,ur/) is a qubit of
G if g (uk) # g (ur), i.e., if the two eigenvectors have distinct eigenvalues of G.

As in ‘classical’ logical information theory, information is represented by certain subsets—or, in
the quantum case, subspaces—prior to the introduction of any probabilities. Since the transition from
‘classical’ to quantum logical information theory is straight forward, it will be presented in table form
in Table 4a (which does not involve any probabilities)—where the qubits (ug,uy/) are interpreted as
U Q U’ -

Image values {yj}jgJ of g

Table 4a (w/o probs.) | 'Classical' Logical Info. Theory Quantum Logical Info. Theory
Universe U={u,..u} Orthonormal basis {u} Hilbert space V
Attribute/Observable | Real-valued 'random' variables Commuting self-adjoint operators F, G

f g USR {u} O.N. basis of simult. eigenvectors
Values Image values {¢},_ of f Eigenvalues {¢,},  of F

Eigenvalues {y} ofG

j’iel

Partitions / Direct-
sum decompositions

Inverse-image © = {f'1(9,)}.

i’ iel

Inverse-image ¢ = {g'l(“)’j)}jeJ

Eigenspace Direct-sum Decomp. F
Eigenspace Direct-sum Decomp. G

dit(m) M dit(c) = UxU

Distinctions Dits of 7 (u,,u,)€U?, f(u) = f(u,) | Qubits of F: u ®u e VYV, f(u ) = f(u,)
Dits of &: (uk,uk,)eUz, g(u) #g(u) | Qubits of G: u Bu, VAV, g(u,) # g(u,)
Information dit(m) ¢ UxU [qubit(F)] = subspace gen. by qubits of F
sets/spaces dit(c) = UxU [qubit(G)] = subspace gen. by qubits of G
: .JOiIlt =|dit(w) U dit(c) c UxU [qubit(F) U qubit(G] € V®V
Comil/}lonai =|dit(n) — dit(c) = UxU [qubit(F) — qubit(G)] = V&V
utual =

[qubit(F) N qubit(G)] = VOV

Table 4a: The parallel development of ‘classical’ and quantum logical information prior to
probabilities.

The information subspace associated with F' is the subspace [qubit (F')] C V ® V generated by the
qubits ug ® ugr of F. If FF = AI is a scalar multiple of the identity I, then it has no qubits so its
information space [qubit (AI)] is the zero subspace. It is an easy implication of the Common Dits
Theorem of classical logical information theory ([8, Proposition 1] or [9, Theorem 1.4]) that any
two nonzero information spaces have a nonzero intersection, i.e., have a nonzero mutual information
space.

In a measurement, the observables do not provide the point probabilities; they come from the
pure (normalized) state 1) being measured. Let |¢) = Z?:l (uj|) Ju;) = Z?:l o |u;) be the resolu-
tion of |¢) in terms of the orthonormal basis U = {u1, ..., un } of simultaneous eigenvectors for F' and
G. Then p; = a;aj (a; is the complex conjugate of a;) for j = 1,...,n are the point probabilities on
U and the pure state density matrix p (v0) = [¢) ()| (where (| = )T is the conjugate-transpose)
has the entries: pjx (1)) = a;jaj so the diagonal entries pj; (1)) = ajaf = p; are the point probabili-
ties. Table 4b gives the remaining parallel development with the probabilities provided by the pure
state 1.
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Table 4b (w/ probs.) | 'Classical' Logical Info. Theory Quantum Logical Info. Theory
Probability Pure state density matrix, e.g., p(0) | Pure state density matrix p(y)
distribution

Product prob. dist.

pxp on UxU

p(¥)®p(y) on VOV

Logical entropies

h(0,) = 1- tr[p(0)?] = 0

h(m) = pxp(dit(m))

h(m,o) = pxp(dit(n) L dit(c))
h(nt|o) = pxp(dit(r) — dit(c))
m(7,o) = pxp(dit(n) N dit(c))

h(p(y)) = 1-trp(y)*] =0

h(EFy) =P P@P(W)]

h(EGy) =P o PWOP(W)]
h(EIG:y) = tr[P - qubiyPCW®P(W)]
mEGy) =[P e i PW®PW)]

Venn diagram from
being prob. measure

h(m,0) = h(n|o) + h(co|n) + m(w,0)
h(n) = h(n|o) + m(n,0)

h(F,G) = h(F|G) + h(G|F) + m(F,G)
h(F) = h(F|G) + m(F,G)

Interpretation

h(r) = two-draw prob. of getting a dit
of , i.e., different f values.

h(F:y) = prob. in two indep. F meas. of y
in getting different eigenvalues.

Liiders Mixture

p(m) = ZPyp(0)Py and
h(m) = pxp(dit(m)) = 1- t[p(m)’]

p'(w) =ZP, p(y)P,, and
h(Fry) = 1 - trp'(w)?]

Fund. Theorem on
logical entropy and
measurement.

h(w) = sum of squares of terms
zeroed in measurement operation:

p(0)—>p(n).

h(F:y) = sum of absol. squares of terms
zeroed in the measurement operation:

P(W)—p'(y).

Table 4b: The parallel development of classical and quantum logical entropies for commuting F
and G.

The formula h(p) = 1 — tr [pﬂ is hardly new. Indeed, tr [/ﬂ is usually called the purity of
the density matrix since a state p is pure if and only if tr [p2] = 1s0 h(p) = 0, and otherwise
tr [pQ] < 1s0 h(p) > 0 and the state is said to be mized. Hence the complement 1 — tr [pQ] has
been called the “mixedness” [16, p. 5] or “impurity” of the state p.”> What is new is not the formula
but the whole backstory of partition logic outlined above which gives the logical notion of entropy
arising out of partition logic as the normalized counting measure on ditsets—just as logical probability
arises out of Boolean subset logic as the normalized counting measure on subsets. The basic idea
of information is differences, distinguishability, and distinctions ([8], [11]), so the logical notion of
entropy is the measure of the distinctions or dits of a partition and the corresponding quantum
version is the measure of the qubits of an observable. The dit-bit transform connecting the logical
theory to the Shannon theory also carries over to the quantum version. Writing the quantum logical
entropy of a density matrix p as h (p) = tr[p (1 — p)], the quantum version of the dit-bit transform
(1 =p) ~ —log(p) yields the usual Von Neumann entropy S (p) = —tr[plog (p)][20, p. 510]. The
fundamental theorem connecting logical entropy and the operation of classification-measurement
also carries over to the quantum case.

8 Fundamental Theorem about logical entropy and measure-
ment

Classically, a pair of elements (uy,ug ) either ‘cohere’ together in the same block of a partition
on U, i.e., are an indistinction of the partition, or they don’t and thus are a distinction of the
partition. In the quantum case, the nonzero off-diagonal entries oo in the pure state density matrix
p (¢) are called quantum "coherences" ([7, p. 303]; [2, p.177]) because they give the amplitude of
the eigenstates |u;) and |uy) "cohering” together in the coherent superposition state vector |¢) =
> {ujl) luz) = 3, o luy). The coherences are classically modelled by the nonzero off-diagonal

5Tt is also called by the misnomer “linear entropy” [5] even though it is obviously a quadratic formula-so we will
not continue that usage. The logical entropy is also the quadratic special case of the Tsallis-Havrda-Charvat entropy
([15], [26]), and the logical special case [8] of C. R. Rao’s quadratic entropy [21].
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entries /p;py for the indistinctions (u;,ux) € S x S, i.e., coherences ~ indistinctions. The off-
diagonal elements of p(¢) that are zeroed by the measurement to yield p’ (1) are the coherences
(like quantum indistinctions) that are turned into ‘decoherences’ (like quantum distinctions).

Measurement creates distinctions, i.e., turns coherences into ‘decoherences’-which, classically,
is the operation of distinguishing elements by classifying them according to some attribute like
classifying the faces of a die by their parity.

Theorem 5 (Fundamental) The increase in quantum logical entropy, h(F : 1) = h(p' (¥)) —
h(p()), due to the F-measurement of the pure state 1 is the sum of the absolute squares of the
nonzero off-diagonal terms in p () that are zeroed in the post-measurement mized state density

matric ,0/ (TZ}) = Zz P¢7’,p (1/)) P¢7’, .

Proof. h (o' (1)) ~h (p (1)) = (1= tx o/ (@)°] )= (1= tr [p ()] ) = 24 (Ias @) = |}y )[*).
]

This Fundamental Theorem for logical entropy and measurement directly connects the basis
eigenstates from U that are distinguished by F' (i.e., indicated by the zeroed off-diagonal terms) with
the increase in logical entropy due to the measurement h (F : ¢) = h(p’ (¢)) (where h(p(¢)) =0
for the pure state ). This direct quantitative connection between state discrimination and quantum
logical entropy reinforces the judgment of Boaz Tamir and Eli Cohen ([24], [25]) that quantum logical
entropy is a natural and informative entropy concept for quantum mechanics.

We find this framework of partitions and distinction most suitable (at least conceptually)
for describing the problems of quantum state discrimination, quantum cryptography and
in general, for discussing quantum channel capacity. In these problems, we are basically
interested in a distance measure between such sets of states, and this is exactly the kind
of knowledge provided by logical entropy [Reference to [8]]. [24, p. 1]

Moreover, the quantum logical entropy has a simple “two-draw probability” interpretation, i.e.,
h(F :1) is the probability that two independent F-measurements of ¢ with yield distinct F-
eigenvalues.

9 Generalization to Quantum Information Theory: Non-commuting
Observables

9.1 Classical logical information theory with two sets X and Y

The usual (‘classical’) logical information theory for a probability distribution {p (z,y)} on X x Y
(finite) in effect uses the discrete partition on X and Y [11]. For the general case of quantum logical
entropy for not-necessarily commuting observables, we need to first briefly develop the classical case
with general partitions on X and Y.

Given two finite sets X and Y and real-valued functions f : X — R with values {qﬁi}f:l and

g:Y — R with values {~; };.]:1, each function induces a partition on its domain:

= {ffl (ﬁbi)}iel ={Bi,..,Br}on X, and 0 = {g*l (Vj)}jeJ ={C4,...,Cs;}tonY.

We need to define logical entropies on X XY but first we need to define the ditsets or information
sets.

A partition 7 = {By,...,Br} on X and a partition o = {C1,...,C;} on Y define a product
partition ™ X o on X x Y whose blocks are {B; x C;}, ;. Then 7 induces 7 X Oy on X x Y (where
Oy is the indiscrete partition on Y') and ¢ induces Ox x o on X X Y. The corresponding ditsets or
information sets are:

12



o dit (m x 0y) = {((z.y), (@,9)) : f () # f (')} € (X x ¥)*;
o dit (0x x o) = {((z,), (=, ¥)) : 9 () # 9 ()} € (X xYV);
e dit (7 x o) = dit (m x Oy ) Udit (0x X o); and so forth.

Given a joint probability distribution p: X x Y — [0, 1], the product probability distribution is
pxp: (X xY) —[0,1].

All the logical entropies are just the product probabilities of the ditsets and their union, differ-
ences, and intersection:

7 X 0y) =p X p(dit (7 x 0y));

Ox xo)=pxp(dit (0x x 0));

h(
h(
e himxo)=pxp(dit(m x o)) =pxp(dit (r x 0y)Udit (0x X 0));
h(m x 0y|0x x o) =p x p(dit (7 x 0y) —dit (0x x 0));

h(

e h(0x xo|jmr x 0y) =p xp(dit (0x x o) — dit (7 x Oy));

e m(mx0y,0x xo)=pxp(dit(m x 0y)Ndit(0x x 0)).

All the logical entropies have the usual two-draw probability interpretation where the two in-
dependent draws from X x Y are (z,y) and (2/,3’) and can be interpreted in terms of the f-values
and g-values:

e h(m x Oy) = probability of getting distinct f-values;

O0x X o) = probability of getting distinct g-values;

e h(m x 0y|0x X o) = probability of getting distinct f-values but same g-values;

(
h(

e h(m x o) = probability of getting distinct f or g values;
h(
h(

Ox X o|m x 0y) = probability of getting distinct g-values but same f-values;

e m (7 x 0y,0x X o) = probability of getting distinct f and g values.

We have defined all the logical entropies by the general method of the product probabilities
on the ditsets. In the first three cases, h (7 x Oy ), h (0x X ¢), and h (7 X ), they were the logical
entropies of partitions on X x Y so they could equivalently be defined using density matrices. The
case of h(m x o) illustrates the general case. If p (7) is the density matrix defined for 7 on X and
p (o) the density matrix for o on Y, then p (7 x o) = p(7) ® p (o) is the density matrix for 7 X o
defined on X x Y, and:

h(wxa)zl—tr[p(wx0)2].

The marginal distributions: px (z) = >_, p(z,y) and py (y) = >_, p (2, y). Since 7 is a partition
on X, there is also the usual logical entropy h (1) = px X px (dit (7)) =1 —tr {p (77)2] = h(m x Oy)
where dit (7) € X x X and similarly for py.

Since the context should be clear, we may henceforth adopt the old notation from the case
where m and o were partitions on the same set U, i.e., h(n) = h(n xO0y), h(c) = h(0x X ),
h(w,0) = h(m x o), ete.

Since the logical entropies are the values of a probability measure, all the usual identities hold
where the underlying set is now (X x Y)? instead of U2.
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h(r) h(m,0) h(c)

R

(XxY)2

Figure 4: Venn diagram for logical entropies on (X X Y)2.

The previous treatment of h(X), h(Y), h(X,Y), h(X|Y), h(Y]X), and m (X,Y) in [11] was
just the special cases where 7 = 1x and ¢ = 1y.

9.2 Quantum logical entropies with non-commuting observables

As before in the case of commuting observables, the quantum case can be developed in close analogy
with the previous classical case. Given a finite-dimensional Hilbert space V and not necessarily
commuting observable F, G : V — V', let X be an orthonormal basis of V' of F-eigenvectors and let
Y be an orthonormal basis for V' of G-eigenvectors (so | X| = |Y]).

Let f: X — R be the eigenvalue function for F' with values {(bi}f:l, and let g : Y — R be the
eigenvalue function for G with values {v; };]:1.

Each eigenvalue function induces a partition on its domain:

T={f"(¢i)} ={B1,...,Bi}on X,and 0 = {g' (7;)} ={C1,....,Cs} on Y.

We associated with ordered pair (z,y), the basis element z @ y in the basis {z ® y}, .y ey for
V' ®V. Then each pair of pairs ((z,y), (2',y)) is associated with the basis element (z ® y)® (2’ ® y')
n(VeV)o(VeV)=VeV).

Instead of ditsets or information sets, we now have dit subspaces or information subspaces. For
S C (V®V)? let [S] be the subspace generated by S. We simplify notation of dit (x x 0y) =
dit () ={(z ®y) ® (2’ @y') : f (x) # [ (2")}, ete.

o [dit(m)] =[{zey) @@ @y): f(x)#f (@)}
o [dit(o)] =[{(zey) @@ ®@y):9)#9)}];
e [dit (7, 0)] = [dit (7) U dit ()], and so forth.®

A normalized state |¢) on V ® V defines a pure state density matrix p(¢0) = |¢) (¢|. Let
azy = (@ yl) so if P,gy is the projection to the subspace (ray) generated by z ® y in V @ V,
then a probability distribution on X x Y is defined by:

p (5'37 y) = O‘m,ya;y =tr [P[x®y]p (7/})]7

or more generally, for a subspace T'C V ® V', a probability distribution is defined on the subspaces
by:

6Tt is again an easy implication of the aforementioned Common Dits Theorem that any two nonzero information
spaces [dit (7)] and [dit (0)] have a nonzero intersection so the mutual information space [dit (7) N dit (o)] is not the
Zero space.
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p(T) = tr [Prp (¥)].

Then the product probability distribution pxp on the subspaces of (V ® V)2 defines the quantum
logical entropies when applied to the information subspaces:

o 1(F :4p) =pxp([dit(m)]) = tr [Py (0 (¥) @ p (¥))]:
o 1(G ) =pxp([dit(0)]) = tr [Pais(oy (0 (¥) @ p (¥))]:
o 1(F,G ) =pxp(ldit(r) Udit (0)]) = tr [Paic(myuaic(o) (0 () @ p (¥))];
o 1 (F|G:¢) =pxp([dit (m) — dit (0)]) = tr [Plaie(m)-ais(o)) (0 () @ p (¥))]5
o h(G|F :9) =p xp([dit (o) — dit ()]) = tr [Pie(o)-air(m) (p () @ p (¥))]5

o m (F,G : 1) = pxp([dit (7) Ndit (0)]) = tr [Pais(m)naiso) (0 () @ p ()]

The observable F': V. — V defines an observable F® I : V@V — V ® V with the eigenvectors
x ® v for any nonzero v € V and with the same eigenvalues ¢, ..., ¢;.” Then in two independent
measurements of ¢ by the observable F' ® I, we have:

h (F : 1)) = probability of getting distinct eigenvalues ¢; and ¢;.

In a similar manner, G : V — V defines the observable I @ G : V®V — V ® V with the
eigenvectors v ® y and with the same eigenvalues 71, ...,v;. Then in two independent measurements
of ¢ by the observable I ® GG, we have:

h (G : ¢) = probability of getting distinct eigenvalues ~; and ;.

The two observables F,G : V — V define an observable F @ G : V®V — V ® V with the
eigenvectors x ® y for (z,y) € X x Y and eigenvalues f (z)g(y) = ¢iy;. To cleanly interpret the
compound logical entropies, we assume there is no accidental degeneracy so there are no ¢;y; = ¢y
fori # i and j # j'. Then for two independent measurements of ¥ by F®G, the compound quantum
logical entropies can be interpreted as the following “two-measurement” probabilities:

e h(F,G : 1) = probability of getting distinct eigenvalues ¢;y; # ¢i7y;» where i # 4 or j # j';
e h(F|G : 1) = probability of getting distinct eigenvalues ¢;7y; # ¢;y; where i # ¢';

e h(G|F : 1) = probability of getting distinct eigenvalues ¢;7y; # ¢;7v;» where j # j';

e m (F,G : 1) = probability of getting distinct eigenvalues ¢;7y; # ¢y where ¢ # 4’ and j # j'.

All the quantum logical entropies have been defined by the general method using the information
subspaces, but in the first three cases h (F' : ¢), h (G : ¢), and h (F, G : 1), the density matrix method
of defining logical entropies could also be used. Then the fundamental theorem could be applied
relating the quantum logical entropies to the zeroed entities in the density matrices indicating the
eigenstates distinguished by the measurements.

The previous set identities for disjoint unions now become subspace identities for direct sums
such as:

[dit (7) U dit ()] = [dit (7) — dit (o)] @ [dit (7) N dit (o)] @ [dit (o) — dit (7)].

Hence the probabilities are additive on those subspaces:

"The context should suffice to distinguish the identity operator I : V — V from the index set I for the F-eigenvalues.
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h(F,G:v) =h(F|G:¢)+m(F,G: )+ h(G|F : ).

h(F:y) h(F.G:y) h(G:y)

,

(VRV)2

Figure 5: Venn diagram for quantum logical entropies.

10 Concluding Remarks

Logical information theory arises as the quantitative version of the logic of partitions just as logical
probability theory arises as the quantitative version of the dual Boolean logic of subsets. Philosophi-
cally, logical information is based on the idea of information as distinctions. The Shannon definitions
of entropy arise naturally out of the logical definitions by replacing the counting of distinctions by the
counting of the minimum number of binary partitions (bits) that are required, on average, to make
all the same distinctions, i.e., to uniquely encode the distinguished elements—and is thus well-adapted
for the theory of coding and communication.

This ‘classical’ logical information theory generalizes naturally to the quantum case where the
distinguishing of points by partitions on an underlying set is replaced by the distinguishing of
eigenstates by observables on the ambient Hilbert space. Both the classical and quantum versions of
logical entropy have simple interpretations as “two-draw” probabilities. The fundamental theorem for
quantum logical entropy and measurement established a direct quantitative connection between the
increase in quantum logical entropy due to a projective measurement and the eigenstates (cohered
together in the pure superposition state being measured) that are distinguished by the measurement
(decohered in the post-measurement mixed state). The conclusion is that quantum logical entropy
is the simple and natural notion of information for a quantum information theory focusing on the
distinguishing of quantum states.
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