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Abstract

The notion of a partition on a set is mathematically dual to the notion of a subset of a set,
so there is a logic of partitions dual to Boole’s logic of subsets (Boolean subset logic is usually
mis-specified as the special case of "propositional" logic). The notion of an element of a subset
has as its dual the notion of a distinction of a partition (a pair of elements in different blocks).
Boole developed finite logical probability as the normalized counting measure on elements of
subsets so there is a dual concept of logical entropy which is the normalized counting measure
on distinctions of partitions. Thus the logical notion of information is a measure of distinctions.
Classical logical entropy also extends naturally to the notion of quantum logical entropy which
provides a more natural and informative alternative to the usual von Neumann entropy in
quantum information theory. The quantum logical entropy of a post-measurement density matrix
has the simple interpretation as the probability that two independent measurements of the same
state using the same observable will have different results.

The main result of the paper is that this increase in quantum logical entropy due to a pro-
jective measurement of a pure state is the sum of the absolute squares of the off-diagonal entries
(‘coherences’) of the pure state density matrix that are zeroed (decohered) by the measurement,
i.e., the measure of the distinctions (‘decoherences’) created by the measurement. The von Neu-
mann entropy provides no such analysis of measurement. That result is also classically modelled
using ordinary partitions and density matrices for such partitions in the pedagogical model of
QM/Sets with point probabilities—which for a fixed basis is just sampling a real r.v. in classical
finite probability theory.
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1 Introduction and history

The formula for what is here called "classical logical entropy" is not new. Given a finite probability
distribution p = (p1, ..., pn), the formula h (p) = 1−

∑n
i=1 p

2
i was used by Gini in 1912 ([13] reprinted

in [14, p. 369]) as a measure of “mutability”or diversity. What is new is the derivation of the formula
from recent developments in mathematical logic.

Although usually named after the special case of "propositional" logic, the general case is Boole’s
logic of subsets of a universe U (the special case of U = 1 allows the propositional interpretation
since the only subsets are 1 and ∅ standing for truth and falsity). Category theory shows that
is a duality between sub-sets and quotient-sets (or partitions and equivalence relations), and that
allowed the recent development of the dual logic of partitions ([7], [10]). As indicated in the title of
his book, An Investigation of the Laws of Thought on which are founded the Mathematical Theories
of Logic and Probabilities [3], Boole also developed the normalized counting measure on subsets of
a finite universe U which was finite logical probability theory. When the same mathematical notion
of the normalized counting measure is applied to the partitions on a finite universe set U (when the
partition is represented as the complement of the corresponding equivalence relation on U ×U) then
the result is the formula for logical entropy.

The formula in the complementary form,
∑
i pi = 1− h (p), was used early in the 20th century

in cryptography. The American cryptologist, William F. Friedman, devoted a 1922 book ([12]) to
the "index of coincidence" (i.e.,

∑
p2i ). Solomon Kullback worked as an assistant to Friedman and

wrote a book on cryptology which used the index. [21] During World War II, Alan M. Turing worked
for a time in the Government Code and Cypher School at the Bletchley Park facility in England.
Probably unaware of the earlier work, Turing used ρ =

∑
p2i in his cryptoanalysis work and called it

the repeat rate since it is the probability of a repeat in a pair of independent draws from a population
with those probabilities.

After the war, Edward H. Simpson, a British statistician, proposed
∑
B∈π p

2
B as a measure of

species concentration (the opposite of diversity) where π = {B,B′, ...} is the partition of animals
or plants according to species and where each animal or plant is considered as equiprobable so
pB = |B|

|U | . And Simpson gave the interpretation of this homogeneity measure as "the probability that
two individuals chosen at random and independently from the population will be found to belong
to the same group."[30, p. 688] Hence 1 −

∑
B∈π p

2
B is the probability that a random ordered pair

will belong to different species, i.e., will be distinguished by the species partition. In the biodiversity
literature [28], the formula 1 −

∑
B∈π p

2
B is known as "Simpson’s index of diversity" or sometimes,

the Gini-Simpson index [27].
However, Simpson along with I. J. Good worked at Bletchley Park during WWII, and, according

to Good, "E. H. Simpson and I both obtained the notion [the repeat rate] from Turing." [15, p. 395]
When Simpson published the index in 1948, he (again, according to Good) did not acknowledge
Turing "fearing that to acknowledge him would be regarded as a breach of security." [16, p. 562] I.
J. Good pointed out a certain naturalness:

If p1, ..., pt are the probabilities of t mutually exclusive and exhaustive events, any sta-
tistician of this century who wanted a measure of homogeneity would have take about
two seconds to suggest

∑
p2i which I shall call ρ. [16, p. 561]

In view of the frequent and independent discovery and rediscovery of the formula ρ =
∑
p2i or its

complement h(p) = 1 −
∑
p2i by Gini, Friedman, Turing, and many others [e.g., the Hirschman-

Herfindahl index of industrial concentration in economics ([19], [18])], I. J. Good wisely advises that
"it is unjust to associate ρ with any one person." [16, p. 562]

2



2 Duality of subsets and partitions

Logical entropy is to the logic of partitions as logical probability is to the Boolean logic of subsets.
Hence we will start with a brief review of the relationship between these two dual forms of logic.

Modern category theory shows that the concept of a subset dualizes to the concept of a quotient
set, equivalence relation, or partition. F. William Lawvere called a subset or, in general, a subobject
a "part" and then noted: “The dual notion (obtained by reversing the arrows) of ‘part’is the notion
of partition.”[23, p. 85] That suggests that the Boolean logic of subsets should have a dual logic of
partitions ([7], [10]).

A partition π = {B1, ..., Bm} on U is a set of subsets or "blocks" Bi that are mutually disjoint
and jointly exhaustive (∪iBi = U). In the duality between subset logic and partition logic, the
dual to the notion of an "element" (an ‘it’) of a subset is the notion of a "distinction" (a ‘dit’) of
a partition, where (u, u′) ∈ U × U is a distinction or dit of π if the two elements are in different
blocks. Let dit (π) ⊆ U × U be the set of distinctions or ditset of π. Similarly an indistinction or
indit of π is a pair (u, u′) ∈ U × U in the same block of π. Let indit (π) ⊆ U × U be the set
of indistinctions or inditset of π. Then indit (π) is the equivalence relation associated with π and
dit (π) = U × U − indit (π) is the complementary binary relation that might be called a partition
relation or an apartness relation.

3 Classical subset logic and partition logic

The algebra associated with the subsets S ⊆ U is, of course, the Boolean algebra ℘ (U) of subsets
of U with the partial order as the inclusion of elements. The corresponding algebra of partitions π
on U is the partition algebra

∏
(U) defined as follows:

• the partial order σ � π of partitions σ = {C,C ′, ...} and π = {B,B′, ...} holds when π
refines σ in the sense that for every block B ∈ π there is a block C ∈ σ such that B ⊆ C,
or, equivalently, using the element-distinction (‘its’& ‘dits’) pairing, the partial order is the
inclusion of distinctions: σ � π if and only if (iff) dit (σ) ⊆ dit (π);

• the minimum or bottom partition is the indiscrete partition (or blob) 0 = {U} with one block
consisting of all of U ;

• the maximum or top partition is the discrete partition 1 = {{uj}}j=1,...,n consisting of singleton
blocks;

• the join π ∨ σ is the partition whose blocks are the non-empty intersections B ∩ C of blocks
of π and blocks of σ, or, equivalently, using the element-distinction pairing, dit (π ∨ σ) =
dit (π) ∪ dit (σ);

• the meet π ∧ σ is the partition whose blocks are the equivalence classes for the equivalence
relation generated by: uj ∼ uj′ if uj ∈ B ∈ π, uj′ ∈ C ∈ σ, and B ∩ C 6= ∅; and

• σ ⇒ π is the implication partition whose blocks are: (1) the singletons {uj} for uj ∈ B ∈ π if
there is a C ∈ σ such that B ⊆ C, or (2) just B ∈ π if there is no C ∈ σ with B ⊆ C, so that
trivially: σ ⇒ π = 1 iff σ � π.1

Since the same operations can be defined for subsets and partitions, one can interpret a formula
Φ (π, σ, ...) either way as a subset or a partition. Given either subsets on or partitions of U substituted
for the variables π, σ,..., one can apply, respectively, subset or partition operations to evaluate the

1There is a general method to define operations on partitions corresponding to operations on subsets ([7], [10])
but the lattice operations of join and meet, and the implication operation are suffi cient to define a partition algebra∏
(U) parallel to the familiar powerset Boolean algebra ℘ (U).
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whole formula. Since Φ (π, σ, ...) is either a subset or a partition, the corresponding proposition is
"u is an element of Φ (π, σ, ...)" or "(u, u′) is a distinction of Φ (π, σ, ...)". And then the definitions
of a valid formula are also parallel, namely, no matter what is substituted for the variables, the
whole formula evaluates to the top of the algebra. In that case, the subset Φ (π, σ, ...) contains all
elements of U , i.e., Φ (π, σ, ...) = U , or the partition Φ (π, σ, ...) distinguishes all pairs (u, u′) for
distinct elements of U , i.e., Φ (π, σ, ...) = 1. The parallelism between the dual logics is summarized
in the following table 1.

Table 1 Subset logic Partition logic

‘Elements’(its or dits) Elements u of S Distinctions (u, u′) of π
Inclusion of ‘elements’ Inclusion S ⊆ T Refinement: dit (σ) ⊆ dit (π)

Top of order = all ‘elements’ U all elements dit(1) = U2 −∆, all dits
Bottom of order = no ‘elements’ ∅ no elements dit(0) = ∅, no dits

Variables in formulas Subsets S of U Partitions π on U
Operations: ∨,∧,⇒, ... Subset ops. Partition ops.
Formula Φ(x, y, ...) holds u element of Φ(S, T, ...) (u, u′) dit of Φ(π, σ, ...)

Valid formula Φ(S, T, ...) = U , ∀S, T, ... Φ(π, σ, ...) = 1, ∀π, σ, ...
Table 1: Duality between subset logic and partition logic

4 Classical probability and classical logical entropy

George Boole [3] extended his logic of subsets to classical finite probability theory where, in the
equiprobable case, the probability of a subset S (event) of a finite universe set (outcome set or
sample space) U = {u1, ..., un} was the number of elements in S over the total number of elements:
Pr (S) = |S|

|U | =
∑
uj∈S

1
|U | . Laplace’s classical finite probability theory [22] also dealt with the

case where the outcomes were assigned real point probabilities p = {p1, ..., pn} (where pj ≥ 0
and

∑
j pj = 1) so rather than summing the equal probabilities 1

|U | , the point probabilities of
the elements were summed: Pr (S) =

∑
uj∈S pj = p (S)—where the equiprobable formula is for

pj = 1
|U | for j = 1, ..., n. The conditional probability of an event T ⊆ U given an event S is

Pr (T |S) = p(T∩S)
p(S) . Given a real-valued random variable f : U → R on the outcome set U , the

possible values of f are f (U) = {φ1, ..., φm} and the probability of getting a certain value given S
is: Pr (φi|S) =

p(f−1(φi)∩S)
p(S) .

Then we may mimic Boole’s move going from the logic of subsets to the finite logical probabilities
of subsets by starting with the logic of partitions and using the dual relation between elements and
distinctions. The dual notion to probability turns out to be "information content" or "entropy" so
we define the logical entropy of π, denoted h (π), as the size of the ditset dit (π) ⊆ U ×U normalized
by the size of U × U :

h (π) = |dit(π)|
|U×U | =

∑
(uj ,uk)∈dit(π)

1
|U |

1
|U |

Logical entropy of π (equiprobable case).

The inditset of π is indit (π) = ∪mi=1 (Bi ×Bi) so where p (Bi) = |Bi|
|U | in the equiprobable case, we

have:

h (π) = |dit(π)|
|U×U | =

|U×U |−
∑m

i=1|Bi×Bi|
|U×U | = 1−

∑m
i=1

(
|Bi|
|U |

)2
= 1−

∑m
i=1 p (Bi)

2.

This definition corresponds to Boole’s equiprobable case Pr (S) = |S|
|U | of the normalized number of

elements rather than normalized number of distinctions.
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The corresponding definition for the case of point probabilities p = {p1, ..., pn} is to just add
up the probabilities of getting a particular distinction, i.e., the count of the probability-weighted
distinctions of π:

hp (π) =
∑

(uj ,uk)∈dit(π) pjpk
Logical entropy of π with point probabilities p.

This suggests that in the case of point probabilities, we should take p (Bi) =
∑
uj∈Bi

pj and have

hp (π) = 1−
∑m
i=1 p (Bi)

2. This is confirmed with a little calculation using that definition of p (Bi):

1 = [p (B1) + ...+ p (Bm)] [p (B1) + ...+ p (Bm)] =
∑m
i=1 p (Bi)

2
+
∑
i 6=i′ p (Bi) p (Bi′)

so that:

1−
∑m
i=1 p (Bi)

2
=
∑
i6=i′ p (Bi) p (Bi′).2

Moreover, we have:∑m
i=1 p (Bi)

2
=
∑
i

(∑
uj∈Bi

pj

)2
=
∑
i

∑
(uj ,uk)∈Bi×Bi

pjpk =
∑

(uj ,uk)∈indit(π) pjpk

so that:

1−
∑m
i=1 p (Bi)

2
=
∑
i6=i′ p (Bi) p (Bi′) = 1−

∑
(uj ,uk)∈indit(π) pjpk =

∑
(uj ,uk)∈dit(π) pjpk

since:

1 = (p1 + ...+ pn) (p1 + ...+ pn) =
∑

(uj ,uk)∈U×U pjpk
=
∑

(uj ,uk)∈indit(π) pjpk +
∑

(uj ,uk)∈dit(π) pjpk.

Thus the logical entropy with point probabilities is (using the point probability definition of p (Bi)):

hp (π) =
∑

(uj ,uk)∈dit(π) pjpk =
∑
i 6=i′ p (Bi) p (Bi′) = 2

∑
i<i′ p (Bi) p (Bi′) = 1−

∑m
i=1 p (Bi)

2.

One other version of the classical logical entropy might be mentioned. Instead of being given
a partition π = {B1, ..., Bm} on U with point probabilities pj defining the finite probability dis-
tribution of block probabilities {p (Bi)}i, one might be given only a finite probability distribution
p = {p1, ..., pm}. The substituting pi for p (Bi) gives the:

h (p) = 1−
∑m
i=1 p

2
i

logical entropy of a finite probability distribution.

There are also parallel element ↔ distinction interpretations:

• Pr (S) = pS is the probability that a single draw, sample, or experiment with U gives a element
uj of S, and

• hp (π) =
∑

(uj ,uk)∈dit(π) pjpk =
∑
i6=i′ p (Bi) p (Bi′) is the probability that two independent

(with replacement) draws, samples, or experiments with U gives a distinction (uj , uk) of π, or
if we interpret the independent experiments as sampling from the set of blocks π = {Bi}, then
it is the probability of getting distinct blocks.

The parallelism or duality between logical probabilities and logical entropies is summarized in
the following table 2.

2A pair {i, i′} of distinct indices satisfies i 6= i′ both ways so
∑
i 6=i′ pBipBi′ = 2

∑
i<i′ pBipBi′ .
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Table 2 Logical Probability Theory Logical Information Theory

‘Outcomes’ Elements u ∈ U finite Dits (u, u′) ∈ U × U finite
‘Events’ Subsets S ⊆ U Ditsets dit (π) ⊆ U × U

Equiprobable points Pr (S) = |S|
|U | h (π) = |dit(π)|

|U×U |
Point probabilities Pr (S) =

∑
{pj : uj ∈ S} h (π) =

∑
{pjpk : (uj , uk) ∈ dit (π)}

Interpretation Pr(S) = 1-draw prob. of S-element h (π) = 2-draw prob. of π-distinction
Table 2: Classical logical probability theory and classical logical information theory

5 Classical logical entropy of a density matrix

Density matrices [25] are usually associated with quantum theory but they can also be used in
ordinary or ‘classical’ logical information theory. In the general case of a finite outcome set U =
{u1, ..., un} with point probabilities p = {p1, ..., pn}, then for any subset S with p (S) > 0 where
χS (ui) is the characteristic function for the subset S, we have a normalized column vector in Rn
(with [· · · ]t representing the transpose):

|S〉 = 1√
p(S)

[
χS (u1)

√
p1, ..., χS (un)

√
pn
]t
.

If we denote the corresponding row vector by 〈S|, then we may define the n× n density matrix
ρ (S) as:

ρ (S) = |S〉 〈S| =

1
p(S)


χS (u1)

2
p1 χS (u1)χS (u2)

√
p1p2 · · · χS (u1)χS (un)

√
p1pn

χS (u2)χS (u1)
√
p2p1 χS (u2)

2
p2 · · · χS (u2)χS (un)

√
p2pn

...
...

. . .
...

χS (un)χS (u1)
√
pnp1 χS (un)χS (u2)

√
pnp2 · · · χS (un)

2
pn


Density matrix for a subset S ⊆ U .

It is then easy to characterize each entry in the matrix:

(ρ (S))jk =

{ 1
p(S)

√
pjpk if uj , uk ∈ S
0 otherwise.

Then a little calculation shows that the density matrix for a subset S acts like a "pure state"
in QM in the sense that it is idempotent ρ (S)

2
= ρ (S) since:(

ρ (S)
2
)
jk

= 1
p(S)2

∑n
l=1 χS (uj)χS (ul)

√
pjplχS (ul)χS (uk)

√
plpk

= 1
p(S)2

χS (uj)χS (uk)
√
pjpk

∑n
l=1 χS (ul) pl = 1

p(S)2
χS (uj)χS (uk)

√
pjpkp (S) = (ρ (S))jk.

Then given a partition π = {B1, ..., Bm} on U , the density matrix for π, like a mixed-state density
matrix in QM, is the probability-weighted sum of the density matrices for the blocks:

ρ (π) =
∑m
i=1 p (Bi) ρ (Bi).

Density matrix for a partition π on U .

Since p (Bi)× 1
p(Bi)

√
pjpk =

√
pjpk for (uj , uk) ∈ indit (π), the entries in ρ (π) are easily character-

ized:

ρ (π)jk =

{ √
pjpk if (uj , uk) ∈ indit (π)

0 otherwise.
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In particular, it should be noted how the n × n pairs (uj , uk) of U × U , that are divided into
distinctions dit (π) and indistinctions indit (π) of a partition π on U in partition logic, are paired
with the n× n entries ρ (π)jk in the density matrix ρ (π). That is the simple mathematical basis for
using the notions of (classical or quantum) logical entropy to analyze (classical or quantum) density
matrices. The Shannon or von Neumann entropies have no such direct pair (uj , uk) to entry ρjk
connection with the entries ρjk in a density matrix ρ.

Then the classical logical entropy formula hp (π) = 1−
∑m
i=1 p (Bi)

2 easily generalizes to density
matrices by replacing the sum by the trace (sum of diagonal elements of a matrix) and the squared
probabilities by the square of the density matrix:

h (ρ (π)) = 1− tr
[
ρ (π)

2
]

Logical entropy of a classical density matrix.

Since ρ (S)
2

= ρ (S) and the trace of any density matrix is 1, we immediately have h (ρ (S)) = 0,
i.e., the logical entropy of a "pure state" subset S ⊆ U is 0.

We saw previously that hp (π) = 1−
∑m
i=1 p (Bi)

2 so we need to check that the density matrix
formulation gives the same result—which only requires a little calculation of the diagonal entries of
ρ (π)

2. If uj ∈ Bi, then (
ρ (π)

2
)
jj

=
∑n
k=1 ρ (π)jk ρ (π)kj

= pj
∑n
k=1,(uj ,uk)∈indit(π) pk = pjp (Bi)

so the sum of the diagonal entries for j where uj ∈ Bi is p (Bi)
2 and the sum of all the diagonal

entries is:

tr
[
ρ (π)

2
]

=
∑m
i=1 p (Bi)

2
=
∑

(uj ,uk)∈indit(π) pjpk.

Thus we have the density matrix treatment giving the same logical entropy hp (π):

hp (π) = 1−
∑m
i=1 p (Bi)

2
=
∑

(uj ,uk)∈dit(π) pjpk = 1− tr
[
ρ (π)

2
]

= h (ρ (π)).

6 Quantum logical entropy and measurement

Let V be an n-dimensional Hilbert space Cn. If |ψi〉 for i = 1, ...,m is a set of orthogonal normalized
vectors from V and p = {p1, ..., pm} is a probability distribution, then

ρ (ψ) =
∑m
i=1 pi |ψi〉 〈ψi|

is a density matrix, and any positive operator on V of trace 1 has such an orthogonal decomposition
[25, p. 101]. Then the quantum logical entropy h (ρ) ([9]; [?]) of a density matrix ρ is defined as above
for the classical logical entropy in terms of a classical density matrix:

h (ρ) = 1− tr
[
ρ2
]
.

The formula 1 − tr
[
ρ2
]
is not new in quantum information theory. Indeed, tr

[
ρ2
]
is usually called

the purity of the density matrix since a state ρ is pure if and only if tr
[
ρ2
]

= 1 so h (ρ) = 0, and
otherwise tr

[
ρ2
]
< 1 so h (ρ) > 0 and the state is said to be mixed. Hence the complement 1−tr

[
ρ2
]

has been called the "mixedness" [20, p. 5] or "impurity" of the state ρ.3 What is new is not the

3 It is also called by the misnomer "linear entropy" [4] even though it is obviously a quadratic formula—so we will
not continue that usage. The quantum logical entropy is also the quadratic special case of the Tsallis-Havrda-Charvat
entropy ([17], [33]).
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formula but the whole backstory of partition logic outlined above which gives the logical notion of
entropy arising out of partition logic as the normalized counting measure on ditsets—just as logical
probability arises out of Boolean subset logic as the normalized counting measure on subsets. The
basic idea of information is differences, distinguishability,4 and distinctions ([6], [8]), so the logical
notion of entropy is just the (normalized) counting measure of distinctions of a partition and its
various natural generalizations.

Quantum logical entropy h (ρ) is to be compared to the von Neumann entropy S (ρ) = − tr [ρ log ρ],
which is the quantum version of the well-known Shannon entropy H (p) = −

∑m
i=1 pi log (pi) ([25,

p.510]; [29]). Along with Boaz and Cohen ([?], [?]), I would argue that the quantum logical entropy is
a more natural and informative entropy concept for quantum mechanics than von Neumann entropy.

We find this framework of partitions and distinction most suitable (at least conceptually)
for describing the problems of quantum state discrimination, quantum cryptography and
in general, for discussing quantum channel capacity. In these problems, we are basically
interested in a distance measure between such sets of states, and this is exactly the kind
of knowledge provided by logical entropy ([6]). [?, p. 1]

Our approach here is to compare what each notion of entropy tells about quantum measurement
and our results seem to confirm their judgment.

Let F : V → V be a self-adjoint operator with the real eigenvalues φ1, ..., φm and let U =
{u1, ..., un} be an orthonormal basis of eigenvectors of F . Then there is a set partition π = {Bi}i=1,...,m
on U so that Bi is a basis for the eigenspace of the eigenvalue φi and |Bi| is the "multiplicity" (di-
mension of the eigenspace) of the eigenvalue φi for i = 1, ...,m. Note that the real-valued function
f : U → R that takes each eigenvector in uj ∈ Bi ⊆ U to its eigenvalue φi so that f−1 (φi) = Bi
contains all the information in the self-adjoint operator F : V → V since F can be reconstructed by
defining it on the basis U as Fuj = f (uj)uj .

In a measurement using a self-adjoint operator F , the operator does not provide the point proba-
bilities; they come from the pure (normalized) state ψ being measured. Let |ψ〉 =

∑n
j=1 〈uj |ψ〉 |uj〉 =∑n

j=1 αj |uj〉 be the resolution of |ψ〉 in terms of the orthonormal basis U = {u1, ..., un} of eigen-
vectors for F . Then pj = αjα

∗
j (α

∗
j is the complex conjugate of αj) for j = 1, ..., n are the point

probabilities on U and the pure state density matrix ρ (ψ) = |ψ〉 〈ψ| (expressed in the U -basis) has
the entries: ρ (ψ)jk = αjα

∗
k so the diagonal entries ρ (ψ)jj = αjα

∗
j = pj are the point probabilities.

Let S0 = {uj ∈ U : pj > 0} be the support consisting of the points of positive probability.
One of our themes is the extent to which quantum calculations can be reformulated or mirrored

using classical set-based notions. The classical density matrix ρ (S0) defined above (using point
probabilities) with ρ (S0)jk = 1

p(S0)

√
pjpk =

√
pjpk (since p (S0) =

∑
pj>0

pj = 1) only has real
entries while ρ (ψ) = αjα

∗
k has complex entries, but they both have the same logical entropy of 0:

h (ρ (S0)) = 1− tr
[
ρ (S0)

2
]

= 0 = 1− tr
[
ρ (ψ)

2
]

= h (ρ (ψ))

since in both cases the density matrices are idempotent ρ2 = ρ and tr [ρ] = 1.
Measurement turns pure states into mixed states. Let P̂i for i = 1, ...,m be the projection

operator to the eigenspace for φi so the n×n projection matrix in the basis U is the diagonal matrix
Pi where (Pi)jj = 1 if uj ∈ Bi and otherwise 0, i.e., (Pi)jj = χBi

(uj), and let ψi = P̂i (ψ). The
probability that a (projective) measurement will have the outcome φi and thus project ψ to ψi is:

p (Bi) =
∑
uj∈Bi

pj =
∑
uj∈Bj

αjα
∗
j = ‖ψi‖2 = tr [Piρ (ψ)].

4As Charles Bennett, one of the founders of quantum information theory, put it: "So information really is a very
useful abstraction. It is the notion of distinguishability abstracted away from what we are distinguishing, or from the
carrier of information." [2, p. 155]
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Normalizing |ψi〉 by its norm ‖ψi‖ =
√
p (Bi) allows us to construct its density matrix as (where

the conjugate transpose P †i = Pi):

ρ (ψi) = 1√
p(Bi)

|ψi〉 〈ψi| 1√
p(Bi)

= 1
p(Bi)

Pi |ψ〉 〈ψ|P †i = 1
p(Bi)

Piρ (ψ)Pi.

The density matrix for the mixed state resulting from the projective measurement [25, p. 515] is the
probability weighted sum of projected density matrices ρ (ψi):

ρ̂ (ψ) =
∑m
i=1 p (Bi) ρ (ψi) =

∑m
i=1 Piρ (ψ)Pi.

Since the logical entropy of the pure state ρ (ψ) was 0, the increase in logical entropy resulting from
the measurement is the logical entropy of ρ̂ (ψ):

h (ρ̂ (ψ)) = 1− tr
[
ρ̂ (ψ)

2
]
.

In terms of sets, we have the set partition π = {Bi}i=1,...,m on the set U with the point proba-

bilities p = {pj}j=1,...,n which has the classical logical entropy hp (π) = 1−
∑m
i=1 p (Bi)

2. As noted in
the previous section, this can also be obtained as the logical entropy of the classical density matrix
ρ (π) of that partition:

hp (π) = 1−
∑m
i=1 p (Bi)

2
= 1− tr

[
ρ (π)

2
]

= h (ρ (π)).

Our first result is that the quantum logical entropy h (ρ̂ (ψ)) resulting from the projective mea-
surement can be computed classically as hp (π) = h (ρ (π)).

Proposition 1 hp (π) = h (ρ̂ (ψ)).

Proof : Pre- and post-multiplying ρ (ψ) by the diagonal projection matrices Pi with (Pi)jj =
χBi (uj) gives:

(Piρ (ψ)Pi)jk =

{
αjα

∗
k if (uj , uk) ∈ Bi ×Bi

0 if not.

and since indit (π) = ∪mi=1Bi ×Bi,

(ρ̂ (ψ))jk = (
∑m
i=1 Piρ (ψ)Pi)jk =

{
αjα

∗
k if (uj , uk) ∈ indit (π)

0 if (uj , uk) ∈ dit (π)
.

Hence to compute the quantum logical entropy h (ρ̂ (ψ)):(
ρ̂ (ψ)

2
)
jj

=
∑
k ρ̂ (ψ)jk ρ̂ (ψ)kj =

∑
k,(uj ,uk)∈indit(π) ‖αj‖

2 ‖αk‖2

so the trace is:

tr
[
ρ̂ (ψ)

2
]

=
∑
j

(
ρ̂ (ψ)

2
)
jj

=
∑
j

∑
k,(uj ,uk)∈indit(π) ‖αj‖

2 ‖αk‖2

=
∑

(uj ,uk)∈indit(π) pjpk

and the quantum logical entropy is:

h (ρ̂ (ψ)) = 1− tr
[
ρ̂ (ψ)

2
]

= 1−
∑

(uj ,uk)∈indit(π) pjpk

=
∑

(uj ,uk)∈dit(π) pjpk = hp (π). �
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Corollary 1 The quantum logical entropy h (ρ̂ (ψ)) of the projective measurement result ρ̂ (ψ) is the
probability of getting different results (φi 6= φi′) in two independent measurements with the same
observable and the same pure state. �

The quantum logical entropy h (ρ (ψ)) and the von Neumann entropy S (ρ (ψ)) for both zero
for a pure state ρ (ψ)

2
= ρ (ψ), but the measurement entropies h (ρ̂ (ψ)) and S (ρ̂ (ψ)) are different

although both increase under projective measurement [?]. The question is:

Which entropy concept gives insight into what happens in a quantum measurement?

The last corollary shows firstly that the quantum logical entropy h (ρ̂ (ψ)) associated with the pro-
jective measurement has a very simple interpretation—whereas there seems to be no such simple
interpretation for S (ρ̂ (ψ)).

Our next and main result shows that the quantum logical entropy h (ρ̂ (ψ)) (which is also the
increase in quantum logical entropy due to the projective measurement since h (ρ (ψ)) = 0) is
precisely related to what happens to the off-diagonal entries in the change in the density matrices
ρ (ψ) → ρ̂ (ψ) due to the measurement—whereas no such specific result seems to hold for the von
Neumann entropy other than it also increases: S (ρ (ψ)) < S (ρ̂ (ψ)) [25, p. 515] [when ρ (ψ) 6= ρ̂ (ψ)].

Theorem 1 (Main) The quantum logical entropy h (ρ̂ (ψ)) is the sum of the absolute squares of the
nonzero off-diagonal entries in the pure state density matrix ρ (ψ) that are zeroed in the transition
ρ (ψ) −→ ρ̂ (ψ) due to a projective measurement.

Proof : On the support S0 = {uj ∈ U : pj > 0}, the nonzero elements of ρ (ψ) are (ρ (ψ))jk =
αjα

∗
k for (uj , uk) ∈ S0 × S0 with the absolute squares αjα∗kα∗jαk = pjpk. The post-measurement

density matrix has the nonzero entries (ρ̂ (ψ))jk = αjα
∗
k if (uj , uk) ∈ indit (π) ∩ S0 × S0 where

indit (π) = ∪mi=1Bi×Bi. Hence the nonzero entries of ρ (ψ) that got zeroed in ρ̂ (ψ) are precisely the
entries (ρ (ψ))jk = αjα

∗
k for (uj , uk) ∈ dit (π)∩S0×S0. Since the entries for (uj , uk) /∈ S0×S0 were

already zero, we have that the sum of the absolute squares of entries zeroed by the measurement is:∑
(uj ,uk)∈dit(π)∩S0×S0 pjpk =

∑
(uj ,uk)∈dit(π) pjpk = hp (π) = h (ρ̂ (ψ)). �

7 ‘Measurement’with classical density matrices

Now we can describe a similar process of ‘measurement’in the classical case using density matrices
for subset S ⊆ U and partitions π on U .5 In the classical version ρ (S) of ρ (ψ), the nonzero entries√
pjpk are the indistinction "amplitudes" whose square is the probability pjpk of drawing (uj , uk)

in two independent draws from S0 = {uj ∈ U : pj > 0}. In the equiprobable case of pj = 1
n , S0 = U

and the only partition with the classical logical entropy of zero is the indiscrete partition (or "blob")
0 = {U} which has no distinctions. But with point probabilities {pj}j and S0 6= U , the "outcomes"
in Sc0 = U − S0 have zero probability. The partition σ = {S0, Sc0} has a nonempty dit set dit (σ) =
(S0 × Sc0) ∪ (Sc0 × S0) but clearly:

h (σ) =
∑

(uj ,uk)∈dit(σ) pjpk = 0 = h (ρ (S0))

since σ has no distinctions with positive probability—so σ is effectively like the blob 0 as a classical
"pure state."

The classical version of the measurement can be stated in classical finite probability theory where
the outcome set or sample space U = {u1, ..., un} has point probabilities p′ =

{
p′j > 0

}
j=1,...,n

for the

5This can be seen as the measurement process in a pedagogical model of quantum mechanics over sets, QM/Sets,
but it would take us too far afield to go into that whole model here. Hence we will describe the ‘measurement’process
in just straight classical terms. For QM/Sets with equiprobable points, see [11].
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outcomes. A real random variable f : U → R has an image f (U) = {φ1, ..., φm} in the codomain R
and induces a partition π =

{
f−1 (φi) = Bi

}
i=1,...,m

on the domain U . Given any (nonempty) event

or ‘state’S ⊆ U , the point probabilities for uj ∈ S can be conditionalized to pj =
p′j∑

uk∈S
p′k

=
p′j
p′(S)

and set to 0 outside of S (so henceforth S = S0, the support for the pj)—which gives the initial
classical density matrix ρ (S). The experiment to ‘measure’f given the ‘state’S returns a value
φi with the probability Pr (φi|S) =

∑
uj∈S∩Bi

pj = p′(S∩Bi)
p′(S) and we could even have a "projection

postulate" that the state S is projected to the state S ∩Bi with that probability. The join π ∨ σ of
the ‘observable’partition π =

{
f−1 (φi) = Bi

}
i=1,...,m

with σ = {S, Sc} has as blocks the nonempty
intersections S ∩ Bi and Sc ∩ Bi. The post-measurement ‘mixed state’density matrix is ρ (π ∨ σ).
Since the Sc points have probability 0, we can focus on S. The join-measurement operation has
the effect of "chopping up" the mini-blob S into the partition

{
S ∩ f−1 (φi)

}
= {S ∩Bi}i=1,...,m of

S. The join operation creates distinctions since dit (π ∨ σ) = dit (π) ∪ dit (σ), but taking the point
probabilities pj into account, all of the distinctions in dit (σ) has probability 0 (since one of the
points in (uj , uk) ∈ dit (σ) has to be in Sc so pjpk = 0). Hence ρ (π ∨ σ) = ρ (π) and the only
distinctions of π ∨ σ with nonzero probabilities are in dit (π) ∩ S × S. The sum of those distinction
probabilities is the logical entropy:∑

(uj ,uk)∈dit(π)∩S×S pjpk =
∑

(uj ,uk)∈dit(π) pjpk = hp (π).

Corollary 2 The classical logical entropy hp (π) = h (ρ (π)) is the sum of the squares of the nonzero
off-diagonal entries in ρ (S) that are zeroed in the transition ρ (S)→ ρ (π).

Proof : The proof carries over substituting ρ (S) for ρ (ψ), ρ (π) for ρ̂ (ψ), and
√
pjpk for αjα∗k.

�
Note that by taking U as an orthonormal basis for the observable in the above quantum case

and the pj = α∗jαj as supplied by expressing ψ in that base, we have: h (ρ̂ (ψ)) = hp (π) = h (ρ (π)).
Thus we have a pedagogical classical model, using sets with point probabilities, for the projective
quantum measurement.

8 Conclusions

This main theorem about quantum logical entropy as well as the connection to classical logical
entropy, i.e., information as distinctions, together with the backstory of partition logic allows some
elucidation of a projective quantum measurement.

We now see how this quantum measurement transition from ρ (ψ) to ρ̂ (ψ) can be precisely
modelled or mirrored in completely classical terms as the transition from ρ (S) to ρ (π) = ρ (π ∨ σ).
The partition π =

{
f−1 (φi)

}
i=1,...,m

supplied by the real random variable f : U → R ‘chops up’
the given state S into the distinct blocks

{
f−1 (φi) ∩ S

}
for i = 1, ...,m. The previous indistinctions

of σ = {S, Sc} of the form (uj , uk) ∈ S × S that had distinct ‘eigenvalues’φi and φi′ were turned
into distinctions in the partition π ∨ σ, and they correspond precisely to the nonzero off-diagonal
entries in ρ (S) that got zeroed in the density matrix transition ρ (S) to ρ (π ∨ σ) = ρ (π). In terms
of logical entropy, the measurement took the logical entropy h (ρ(S)) = 0 of the pure state density
matrix ρ (S) to the sum of the squares of all those nonzero off-diagonal entries that got zeroed in the
transition which is the logical entropy hp (π) of the mixed state density matrix ρ (π ∨ σ) = ρ (π) .

In the quantum case, the nonzero off-diagonal entries αjα∗k in the pure state density matrix
ρ (ψ) are called quantum "coherences" ([5, p. 303], [1, p.177]) because they give the amplitude of
the eigenstates |uj〉 and |uk〉 "cohering" together in the coherent superposition state vector |ψ〉 =∑
j 〈uj |ψ〉 |uj〉 =

∑
j αj |uj〉. They are modelled by the nonzero off-diagonal entries

√
pjpk whose

squares are the two-draw probabilities for the indistinctions (uj , uk) ∈ S×S. Coherences are modelled
by indistinctions. The off-diagonal elements of ρ (ψ) that are zeroed by the measurement to yield ρ̂ (ψ)
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are the coherences (like quantum indistinctions) that are turned into ‘decoherences’(like quantum
distinctions). Thus the off-diagonal entries zeroed in the transition from the pure state ρ (ψ) to the
mixed state ρ̂ (ψ) density matrices are modelled by the disappearing off-diagonal entries in ρ (S)
corresponding to the distinctions created in the partitioning of S into

{
f−1 (φi) ∩ S

}
i=1,...,m

in
the classical model of measurement as the join π ∨ σ of σ with π. And the sum of the two-draw
probabilities of those new distinctions created in the measurement is, in each case, the logical entropy.

Table 3 Quantum proj. measurement Classical model

Basis U = {u1, ..., un} U = ON eigen-basis for F Set U = {u1, ..., un}
Observable Self-adjoint operator F Real r.v. f : U → R
Eigenvalues Eigenvalues of F : {φ1, ..., φm} f (U) = {φi}i=1,...,m
Partition Partition π of ON basis U by φi π =

{
f−1 (φi)

}
i

= {Bi}i
Given state to measure ψ S ⊆ U
Point probabilities pj = α∗jαj for αj = 〈uj |ψ〉 Same pj for uj ∈ U

Support S0 S0 = {uj : pj > 0} Set S = S0
Pure state density matrix ρ (ψ) ρ (S)
Positive prob. indistinction (uj , uk) ∈ S0 × S0 (uj , uk) ∈ S × S
Post-Meas. mixed state ρ̂ (ψ) ρ (π ∨ {S, Sc}) = ρ (π)
Sum sqs. off-diag. zeroed h (ρ̂ (ψ)) hp (π) = h (ρ (π))

Table 3: Summary of classical modelling of projective quantum measurement.

The positive probability classical or quantum indistinctions that got turned into distinctions by the
measurement correspond to those nonzero off-diagonal entries in the pre-measurement pure state
density matrices that got zeroed in the post-measurement mixed state density matrices.

What was here called the "classical model" of the projective measurement is that type of mea-
surement in the pedagogical model QM/Sets with point probabilities—where the model QM/Sets for
equiprobable points is developed in [11]. That "classical measurement" is just the usual classical
finite probability sampling of a real r.v. f : U → R given an event S ⊆ U which returns the value
φi with the probability Pr (φi|S) = p

(
f−1 (φi) ∩ S

)
/p (S) which for the choices of U, f, S, and p is

the same as the quantum probability Pr (φi|ψ) =
∑
{pj : φi eigenvalue of uj}. And then we even

get the same logical entropies: hp (π) = h (ρ (π)) = h (ρ̂ (ψ)).
Needless to say, the von Neumann entropy gives no such simple, detailed, and precise description

of what happens in the quantum projective measurement that turns a pure state density matrix ρ (ψ)
to the mixed state density matrix ρ̂ (ψ).

Measurement creates distinctions, i.e., turns indistinctions (or coherences) into distinctions (or
decoherences), to make an indefinite state (superposition of definite eigenstates) more definite in the
measured observable. The off-diagonal coherences in ρ (ψ) are essentially the amplitudes for quantum
indistinctions so the ones that are zeroed are turned into distinctions (i.e., ‘decoherences’) and the
sum of squared amplitudes, i.e., the distinction probabilities, is the post-measurement classical and
quantum logical entropy.
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