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Heteromorphisms: I

• In mathematical practice, a heteromorphism or het is an
object-to-object morphism between objects in different
categories, e.g., a set-to-group map.

• The composition of homomorphisms (homs) is
mathematically described by a hom-bifunctor
HomX : Xop ×X→ Set.

• The composition of heteromorphisms is mathematically
described by a het-bifunctor HetX→A : Xop ×A→ Set.
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Heteromorphisms: II
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Heteromorphisms: III

• In the textbook definitions of category theory (CT),
heteromorphisms are not officially recognized; the only
object-to-object morphisms are the homo-morphisms
between objects of the same category.

• Het-bifunctors = Set-valued profunctors (e.g., the Australian
School) = distributors (e.g., Bénabou) = Lawvere’s bimodules.

• Homs are part of math practice, not just elements of
HomX(x, x′).

• Hets are also part of math practice, but homs-only CT sees
them only as elements of some profunctor W (x, a).

David Ellerman (UCal-Riverside) The Joy of Hets: January 2016 4 / 41



Heteromorphisms: IV

• By the Yoneda-Grothendieck Lemma, any value of a
(contravariant) functor to Set like Het(−, a) : Xop → Set is
isomorphic to the set of natural transformations
n.t. {HomX (−, x) , Het (−, a)} but no one thinks that, say, a
set-to-group het x→ a "is" a natural transformation
HomX (−, x)→ Het (−, a).
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Hets give natural treatment of adjoints: I

• Given a bifunctor Het : Xop ×A→ Set, it is left representable
if for each x ∈ X, Het (x, _) : A→ Set is representable, i.e.,
∃F(x) ∈ A with a natural isomorphism:

HomA(F (x) , _) ∼= Het (x, _).

• Universal mapping problem formulation of
left-representation: for each x ∈ X, there exists an object
F (x) ∈ A and a canonical het ηx : x→ F (x) such that given
any het ϕ : x→ a (to any a ∈ A), there exists a unique hom
f : F (x) =⇒ a such that the following diagram commutes
(single arrows→ and Greek letters for hets; thick arrows⇒
and Latinic letters for homs):
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Hets give natural treatment of adjoints: II

x
ηx ↓

ϕ

↘
F (x) =⇒

∃!f
a

Left-representation as solution to UMP.

• Given a bifunctor Het : Xop ×A→ Set, it is right
representable if for each a ∈ A, Het (_, a) : Xop → Set is
representable, i.e., ∃G(a) ∈ X with a natural isomorphism:

Het (_, a) ∼= HomX(_, G(a)).
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Hets give natural treatment of adjoints: III
• UMP form of right-representation: for each a ∈ A, there

exists an object G(a) ∈ X and a canonical het εa : G (a)→ a
such that for any het ϕ : x→ a (from any x ∈ X), there
exists a unique hom f̄ : x =⇒ G (a) such that the following
diagram commutes:

x
∃!f̄
=⇒ G (a)
↘
ϕ

↓εa

a
Right representation as solution to Co-UMP.

• If a bifunctor Het : Xop ×A→ Set is both left and right
representable, then the two functors F : X→ A and
G : A→ X giving the representing objects are adjoints.
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Hets give natural treatment of adjoints: IV

HomA(F (x) , a) ∼= Het (x, a) ∼= HomX(x, G(a)).

• This het characterization of adjoints was first given by Bodo
Pareigis in his 1970 text, Categories and Functors where hets
are just called "morphisms" (rediscovered and developed
in: Ellerman, David. 2006. “A Theory of Adjoint Functors”
In What Is Category Theory?, G. Sica ed., 127–83. Milan:
Polimetrica). I am unaware of any other text giving this
characterization (since it requires explicit recognition of
"morphisms" x→ a).

• Splicing the two representation diagrams together at the
common diagonal gives the simplest diagram for an
adjunction:
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Hets give natural treatment of adjoints: V

x
∃! f̄
=⇒ G (a)

ηx ↓ ↘ϕ ↓εa

F (x) =⇒
∃! f

a

Adjunctive square diagram.
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Aspects of het treatment of adjoints: I

• Separating "wheat from chaff":

• Using hets, an adjunction can be factored into two
"semi-adjunctions" giving the UMPs for each functor:

HomA(F (x) , a) ∼= Het (x, a) and Het (x, a) ∼= HomX(x, G(a)).

x x
∃!f̄
=⇒ G (a)

ηx ↓
ϕ

↘ ↘
ϕ

↓εa

F (x) =⇒
∃!f

a a
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Aspects of het treatment of adjoints: II

• • Often only one adjoint gives the real "meat" (or "wheat") of
the adjunction, while the other functor is more like a trivial
auxiliary device ("chaff"), e.g., forgetful or diagonal functor,
to fill out the adjunction.

• Ordinary homs-only CT cannot even formulate the
important part of the adjunction by itself.

• Since the het treatment consists of two independently-stated
representations, it can state the important part by itself as a
left or right representation.

• Experiment: try to find an ordinary algebra text (not
specifically on CT) that states the UMP for the free group by
using the underlying-set functor.
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Aspects of het treatment of adjoints: III

• They all (?) state the left representation property: given a set
x, there is a group F(x) and a canonical mapping x→ F (x)
such that for any other mapping x→ g from x to any group
g, there is a unique group homomorphism F (x)⇒ g such
that the following triangle commutes.

x
↓ ↘

F (x) =⇒
∃!

g

• • That is the way the "working mathematician" states the
free-group UMP and that is the left representation using
hets.
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Aspects of het treatment of adjoints: IV
• Comparison of diagrams: Although we may be accustomed

to it, the usual adjunction diagram for, say, the UMP of the
free-group functor is the rather complicated over-and-back
diagram–in contrast to the left-rep diagram:

x
ηx
=⇒ G (F (x)) F (x) x

q G(f) ⇓ ∃!f ⇓ ηx ↓
ϕ

↘
x

f
=⇒ G (a) a F (x) =⇒

∃!f
a

UMP of left adjoint: Over-and-back diagram vs.
left-representation diagram.

• Directionality of an adjunction
HomA(F (x) , a) ∼= HomX(x, G(a)):
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Aspects of het treatment of adjoints: V

• Experiment: Ask your students or colleagues without a
black-belt in CT: Is an adjunction a symmetrical situation
between the categories or is that a directionality from one
category to the other?

• Answer: Look at the adjunctive square diagram; all three
hets go from X to A.

x
∃! f̄
=⇒ G (a)

ηx ↓ ↘ϕ ↓εa

F (x) =⇒
∃! f

a

Adjunctive square diagram.
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Het-avoidance devices: Forgetful functors: I

• One common type of UMP is a left representation of hets
like "injection of generators" (going from a category of
less-structured objects to a category of more-structured
objects).

David Ellerman (UCal-Riverside) The Joy of Hets: January 2016 16 / 41



Het-avoidance devices: Forgetful functors: II

• The hets can be avoided using a forgetful functors with
trivial right representations to form a homs-only
adjunction.

• Experiment: try to find an ordinary algebra text giving the
UMP of canonically going from the less- to the
more-structured object that uses the forgetful functor.
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Het-avoidance devices: Diagonal functors: I

• Another common form of hets are cones and cocones used
in the right or left representations giving the UMPs for
limits and colimits (respectively).

• The hets can be avoided using diagonal functors with trivial
left or right representations to form homs-only adjunctions.
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Het-avoidance devices: Diagonal functors: II

• Experiment: try to find an ordinary algebra text giving the
UMP of say products or coproducts that uses the diagonal
functor.

• Example: In Mac Lane’s 1948 paper Groups, Categories, and
Duality giving the UMP for products (a decade before Kan’s
1958 paper on adjoint functors), Mac Lane uses cones as
hets which he called "systems" of maps and gives the UMP
sans diagonal functors.
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Hets as "homs" in a collage category

• Pareigis and many later category theorists have pointed out
that hets Het : Xop ×A→ Set could always be presented as
homs in a larger cograph or collage category XFHetA
whose objects are the disjoint union X

⊎
A and whose homs

come in three different types:
• for x, x′ ∈ X, HomXFHetA(x, x′) = HomX(x, x′);
• for x ∈ X and a ∈ A, HomXFHetA(x, a) = Het(x, a); and
• for a, a′ ∈ A, HomXFHetA(a, a′) = HomA(a, a′).

• This device completely violates spirit of one motivation for
CT, the Erlangen Program.

• None of the UMPs using hets can be reformulated using
"homs" in general from XFHetA without stating which of
the three types of homs are used so it is largely a verbal
circumlocution.
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Tensor products–where het-avoidance
doesn’t work: I

• Tensor product = most important example of a UMP not
part of an adjunction–so hets are unavoidable.

• Hets = bilinear maps ϕ : 〈A, B〉 → C for R-modules A, B, C.
• The tensor product functor ⊗ : ModR ×ModR → ModR

given by 〈A, B〉 7−→ A⊗ B gives a left representation:

HomModR (A⊗ B, C) ∼= Het (〈A, B〉 , C).

〈A, B〉 {∗}
pη〈A,B〉q
=⇒ Het (〈A, B〉 , A⊗ B) A⊗ B

η〈A,B〉 ↓ ↘ϕ q Het(〈A,B〉, f ) ⇓ ∃!f ⇓
A⊗ B =⇒

∃!f
C {∗} pϕq

=⇒ Het (〈A, B〉 , C) C

Left rep-diagram and Mac Lane’s homs-only version.

David Ellerman (UCal-Riverside) The Joy of Hets: January 2016 21 / 41



Tensor products–where het-avoidance
doesn’t work: II

• Mac Lane and Birkhoff’s Algebra textbook uses hets starting
with the case of a K-module A (K a comm. ring) where
A⊗ K ∼= A: for any K-module C, "the arbitrary bilinear
function h is expressed as a composite h = t ◦ h0 with the
fixed bilinear function h0, as in the commutative diagram"

A× K
h0 ↓ ↘h

A⊗ K ⇒
∃!t

C
.
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Pointed sets as right-rep for partial functions:
I

• Let Het : Setop × Set→ Set be defined by: Het (x, y) = partial
functions x→ y.

• Let (∗) : Set→ Set be the pointing functor that adds a
"garbage point" to a set so y∗ = y

⊎ {∗y
}

.

Het (x, y) ∼= HomSet (x, y∗)

x
∃!f
=⇒ y∗

↘
ϕ

↓εy

y
Pointing functor gives right rep for partial functions as hets.
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Pointed sets as right-rep for partial functions:
II

• Special case: 1∗ ∼= 2 where Het (x, 1) ∼= ℘ (x) (contravariant
power set functor) so right rep associates characteristic
functions with subsets.

x
∃!f
=⇒ 1∗ = 2
↘
ϕ

↓εy

1
℘ (x) ∼= Het (x, 1) ∼= HomSet (x, 1∗) ∼= HomSet (x, 2).

• This shows that Lawvere’s subset classifier isn’t the only
way to show that the powerset functor is representable.
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Anglo-American versus French CT: I

• Aside from being co-founder of category theory, Mac Lane
has set the standard in Anglo-American CT as the
homs-only CT.

• The homs-only notion of adjoints is seen as the most
fundamental contribution of CT:
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Anglo-American versus French CT: II

Indeed, I will make the admittedly provocative claim that
adjointness is a concept of fundamental logical and
mathematical importance that is not captured elsewhere in
mathematics. [Steve Awodey (Mac Lane’s last student)]

To some, including this writer, adjunction is the most
important concept in category theory. [Richard J. Wood]

The isolation and explication of the notion of adjointness
is perhaps the most profound contribution that category
theory has made to the history of general mathematical ideas.
[Robert Goldblatt]

Nowadays, every user of category theory agrees that
[adjunction] is the concept which justifies the fundamental
position of the subject in mathematics. [Paul Taylor]
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Anglo-American versus French CT: III

• There is an old controversy, largely personalized as between
Mac Lane and Bourbaki, as to why Bourbaki didn’t use CT.

• That is not the controversy discussed here.
• There is a more subtle controversy within category theory

where the person on the other side is Grothendieck.
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Anglo-American versus French CT: IV

As we can see by looking at his [Grothendieck’s] lectures in
the Séminaire Bourbaki from 1957 until 1962, the notion of
representable functors became one of the main tools he
used.... It is far from clear why Grothendieck decided to use
this notion instead of, say, adjoint functors,.... It is also clear
from the various seminars that Grothendieck thought in
terms of universal “problems”, that is he tried to formulate
the problems he was working on in terms of a universal
morphism: finding a solution to the given problem amounted
to finding a universal morphism in the situation.
Grothendieck saw that the latter notion was subsumed under
the notion of representable functor. [Jean-Pierre Marquis]
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Anglo-American versus French CT: V
• Grothendieck did not take adjoints as the fundamental

concept; instead it was the first concept treated in EGA.

• Grothendieck (as the representative of the French school of
CT) took representable functors (and universal mapping
problems) as the fundamental contribution of CT with
adjoints appearing as the special case of a particularly nice
bi-representation.
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Anglo-American versus French CT: VI

• The French treatment of UMPs, starting with Pierre
Samuel’s 1948 paper "On Universal Mappings and Free
Topological Groups," routinely used hets and distinguished
them from homs by using Greek and Latinic letters
respectively.

• Hence our heterodox journey reveals a difference between:

• The Anglo-American "Orthodox" school represented by Mac
Lane which emphasizes adjoints and eschews hets;

• The French school represented by Grothendieck which
emphasizes representable functors and universal mapping
problems, and which routinely uses hets.
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Anglo-American versus French CT: VII

• Moreover, in the "foundational debates" between category
theory and set theory, it was always emphasized that CT,
unlike set theory, reflects the mathematical practice of the
"working mathematician."

• As we have noted, the working mathematician routinely
uses hets.
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Appendix: Perception as a left representation

• One application is hets-treatment of adjoints. Second
application is cognate notion of a brain functor.

• Using a left representation to model the intentionality of
perception (seeing is "seeing-as").

• Het x→ a represents uninterpreted sensory input;
factorization through B (x)⇒ a represents the recognition,
understanding, or interpretation of the sensory input.
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Action as right representation

• Dually, a right representation models the intentionality of
action.

• The het a→ x represents the motor behavior; factorization
through a⇒ B (x) represents the intentionality of action (as
opposed, say, to some reflex behavior).
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Brain functor: I

• Adjunction = two functors representing one-way hets.
• Brain functor = one functor representing both-way hets.
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Brain functor: II

• Adjunction diagram = adjunctive square (gluing together at
common het x→ a).

• Brain functor diagram = butterfly diagram (gluing together
at common representing object B (x)).
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Brain functor: III

Butterfly diagram illustrating brain as language faculty
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Brain functor: IV
• Wilhelm von Humboldt recognized the symmetry between

the speaker and listener, which in the same person is
abstractly represented as the dual functions of the "selfsame
power" of the language faculty in the above butterfly
diagram.

Nothing can be present in the mind (Seele) that has not
originated from one’s own activity. Moreover understanding
and speaking are but different effects of the selfsame power of
speech. Speaking is never comparable to the transmission of
mere matter (Stoff). In the person comprehending as well as
in the speaker, the subject matter must be developed by the
individual’s own innate power. What the listener receives is
merely the harmonious vocal stimulus. [The Nature and
Conformation of Language, 1836]
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Brain functor: V

• Brain functor models difference between mere sensory
stimulus and intentionality of understanding.

• Brain functor models difference between mere behavior
and intentionality of action.

• Brain functors uses CT duality to model the old "duality"
between afferent/sensory systems and efferent/motor
systems.
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Mathematical example of brain functor: I

• Any functor with both a left and right adjoint is a brain
functor, but many are trivial examples, e.g., diagonal
functors.

• Best non-trivial example seems to be the biproduct
V1 ⊕ . . .⊕Vn ∼= ∏iVi

∼= ∑i Vi of a finite set {Vi} of vector
spaces.
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Mathematical example of brain functor: II

David Ellerman (UCal-Riverside) The Joy of Hets: January 2016 40 / 41



Mathematical example of brain functor: III

• The afferent function has to integrate many sensory inputs
into a "perception."

• The efferent function has to coordinate many motor outputs
into an "action."

• These integrative and coordinative functions are exactly
represented by cocones and cones.

David Ellerman (UCal-Riverside) The Joy of Hets: January 2016 41 / 41


