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Charles Bennett on Nature of Information
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John Wilkins, 1641. Mercury: The Secret and
Swift Messenger.

• "For in the general we
must note, That
whatever is capable of
a competent
Difference,
perceptible to any
Sense, may be a
sufficient Means
whereby to express
the Cogitations."
[John Wilkins 1641
quoted in: Gleick
2011, p. 161]
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James Gleick on John Wilkins

• Gleick, James 2011. The Information: A History, A Theory, A
Flood. New York: Pantheon, discovered this stunning
3-century anticipation of idea that information = differences
in 1641 (Newton born in 1642).

• "Any difference meant a binary choice. Any binary choice
began the expressing of cogitations. Here, in this arcane
and anonymous treatise of 1641, the essential idea of
information theory poked to the surface of human thought,
saw its shadow, and disappeared again for four hundred
years." [Gleick 2011, p. 161] (actually 300 years)
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Overview of Basic Theme: Information =
Distinctions

• Two related notions of "information content" or "entropy" of
a probability distribution p = (p1, ..., pn):
• Shannon entropy in base 2:

H (p) = H2 (p) = ∑i pi log2 (1/pi), or Shannon entropy that

is base-free: Hm (p) = ∏i

(
1
pi

)pi
= 2H2(p);

• Logical entropy: h (p) = ∑i pi (1− pi) = 1−∑i p2
i .

• Logical entropy arises out of partition logic–just as finite
probability theory arises out of ordinary subset logic;

• Logical entropy and Shannon entropy (in the
base-dependent or base-free versions) are all just different
ways to measure the amount of distinctions.
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Interpretation of Shannon entropy

• H (p) = ∑i pi log2

(
1
pi

)
is usually interpreted as the average

minimum number of yes-or-no questions needed to
distinguish or single-out a chosen element from among n
with the probabilities p = (p1, ..., pn).

• Example: Game of 20 questions with 2n equipossible
choices. Code 2n elements with n binary digits. Ask n
binary questions: "Is ith digit a 1?" for i = 1, ..., n.

Shannon entropy of
p =

{1
8 , ..., 1

8

}
is H (p) =

∑8
i=1

1
8 log2

(
1

1/8

)
=

8× 1
8 × 3 = 3.

1

0

111

010
001

100
011

101

000

110

23 = 8
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Shannon entropy with unequal probs: I

• Now suppose the choices or messages are not equiprobable
but that probabilties are still powers of 1/2. With an
alphabet of a, b, c, let pa =

1
2 and pb =

1
4 = pc.

• 1 character messages: efficient minimum number of
questions (on average) are:

• "Is the message "a"? If
"yes" then finished,
and if not, then:

• "Is the message "b"?
Either way, message is
determined.

a

b or c
b

c
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Shannon entropy with unequal probs: II

• The efficient binary code for these messages is just a
description of the questions:

a = 1; b = 01; c = 00.

• Average # questions:

1
2# (1) + 1

4# (01) + 1
4# (00) =

(1
2 × 1

)
+
(1

4 × 2
)
+
(1

4 × 2
)

= 3
2 = ∑ pi log2

(
1
pi

)
= H (p).
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Unequal probabilities: 2 character messages

• 2 character messages:
• ∑ pi#(q′s) =

2
4 +

3
8 +

3
8 +

3
8 +

4
16 +

4
16 +

3
8 +

4
16 +

4
16 =

48
16 = 3 = 2H (p).

• Average #questions
per character =
2H (p) /2 = H (p).

• In general, H(p)
interpreted as average
#questions per
character.

a

b or c

b

ca

b or c
b

c
a
b

a

b or c
b

c

c

b or c

aa = 11    #(11)/22

ab = 101  #(101)/23

ac = 100   #(100)/23

ba = 011   #(011)/23

bb = 0101 #(0101)/24

bc = 0100 #(0100)/24

ca = 001   #(001)/23

cb = 0001 #(0001)/24

cc = 0000 #(0000)/24
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Shannon entropy with a different base: I

• Given 3n identical looking coins, one counterfeit (lighter
than others) and a balance scale.

• Find counterfeit coin with n ternary questions:

• Code the coins in ternary arithmetic so each coin has n
ternary digits ("trits").

• ith question = "What is ith ternary digit of counterfeit coin?"
• H3 (p) = ∑3n

i=1
1
3n log3

(
1

1/3n

)
= 3n × 1

3n × n = n questions.
• Asking questions by weighing:

• Group coins in three piles according to ith ternary digit.
• Put two piles on balance scale. If one side light, coin is in the

group; otherwise in third pile.
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Shannon entropy with a different base: II

22
00

10
20

01
11

21
02

12

00 10 20 01 11 21 02 12 22

20 21 22

10 11 12

00 01 02

1st digit 0 1st digit 1 1st digit 2

2nd digit 2

2nd digit 1

2nd digit 0

00 01 02 10 11 12 20 21 22

• 2 weighings = 2 questions = H3 (p) where p =
(1

9 , ..., 1
9

)
.
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Web example with base 5: I

• Go to this web example of 52:
http://www.quizyourprofile.com/guessyournumber.swf
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Web example with base 5: II
• Choosing color is equivalent to choosing one base-5 digit in

a two digit number.
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Web example with base 5: III
• Choosing house is equivalent to choosing another base-5

digit so number is determined.
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Partitions dual to Subsets: I

• Ordinary "propositional" logic is viewed as subset
logic–where all operations are viewed as subset operations
on subsets of universe U ("propositional" special case where
U is one element set 1 with subsets 1 and 0);

• Category-theoretic duality between monomorphisms and
epimorphisms:

• For Sets, it is the duality of subsets of a set and partitions on
a set;

• Duality throughout algebra between subobjects and
quotient objects.

• Lattice of subsets ℘ (U) (power-set) of U with inclusion
order, join = union, meet = intersection, top = U, and
bottom = ∅;
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Partitions dual to Subsets: II
• Lattice of partitions ∏ (U) on U where for partitions

π = {B} and σ = {C}:
• refinement ordering: σ � π if ∀B ∈ π, ∃C ∈ σ with B ⊆ C (π

refines σ);
• join of partitions π ∨ σ: blocks are non-empty intersections

B∩ C, and
• meet of partitions π ∧ σ: define undirected graph on U with

link between u and u′ if they are in same block of π or σ.
Then connected components of graph are blocks of meet.

• Top = discrete partition of singleton blocks:
1 = {{u} : u ∈ U}, and bottom = indiscrete partition with
one block: 0 = {U}.

• NB: in combinatorial theory literature, ∏ (U) is usually
written upside-down with "unrefinement" ordering that
reverses join and meet, and top and bottom.
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Representing lattice of partitions in UxU: I

• An equivalence relation on U is a reflexive, symmetric, and
transitively closed subset E ⊆ U×U.

• Given a partition π = {B, B′, ...}, it is the set of equivalence
classes of an equivalence relation
indit (π) = {(u, u′) : ∃B ∈ π, u, u′ ∈ B}, the indistinctions of
π.

• Upside-down lattice ∏ (U)op is lattice of equivalence
relations on U.

• Complement Ec = (U×U)− E of an equivalence relation is
a partition relation, i.e., an anti-reflexive, symmetric, and
anti-transitive subset.
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Representing lattice of partitions in UxU: II
• Given a partition π, the partition relation is:

dit (π) = {(u, u′) : ∃B, B′ ∈ π, B 6= B′, u ∈ B, u′ ∈ B′}, the
distinctions of π where dit (π) = indit (π)c.

• Equivalence relations are closed subsets of U×U with closure
S as the refl.-symm.-trans. closure. Then partition relations
are open subsets and interior operation is int (S) = (Sc)

c
.

Closure op is not topological since S∪ T is not nec. closed.
• Lattice of partition relations O (U) on U×U is isomorphic

to ∏ (U), so the partition relations give a representation of
∏ (U) with the isomorphism: π ←→ dit (π):
• σ � π iff dit (σ) ⊆ dit (π);
• dit (π ∨ σ) = dit (π) ∪ dit (σ);
• dit (π ∧ σ) = int (dit (π) ∩ dit (σ));
• Top = U×U− ∆ and bottom = ∅.
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First table of analogies between subset and
partition logic

Partition π on USubset S ⊆ UVariables in formulas

A dit (u,u') is distinguished by
Φ(π,σ,… ) as a partition.

Element u is in
Φ(π,σ,… ) as a subset.

Formula Φ(π, σ,… )
holds of an element

Partition ops ≅ Interior of subset
ops applied to ditsets.

Subset ops ∪, ∩, ⇒,…Logical operations

Φ(π,σ,… ) = 1 (top = discrete
partition) for any partitions π,σ,…
on any U (2 ≤ |U|).

Φ(π,σ,… ) = U (top) for
any subsets π,σ,… of
any U (1 ≤ |U|).

Valid formula
Φ(π,σ,… )

f:U→R so f1(R) = π defines R
valued attribute on U.

f:S'→U so Im(S') = S
defines property on U.

Interpretation

Indiscrete partition 0 (no dits)Empty set ∅No elements

Discrete partition 1 (all dits)Universe set UAll elements

Distinctions (u,u') ∈ (U×U)  ∆UElements u ∈ U‘Elements’

Partition LogicSubset Logic

Partition π on USubset S ⊆ UVariables in formulas

A dit (u,u') is distinguished by
Φ(π,σ,… ) as a partition.

Element u is in
Φ(π,σ,… ) as a subset.

Formula Φ(π, σ,… )
holds of an element

Partition ops ≅ Interior of subset
ops applied to ditsets.

Subset ops ∪, ∩, ⇒,…Logical operations

Φ(π,σ,… ) = 1 (top = discrete
partition) for any partitions π,σ,…
on any U (2 ≤ |U|).

Φ(π,σ,… ) = U (top) for
any subsets π,σ,… of
any U (1 ≤ |U|).

Valid formula
Φ(π,σ,… )

f:U→R so f1(R) = π defines R
valued attribute on U.

f:S'→U so Im(S') = S
defines property on U.

Interpretation

Indiscrete partition 0 (no dits)Empty set ∅No elements

Discrete partition 1 (all dits)Universe set UAll elements

Distinctions (u,u') ∈ (U×U)  ∆UElements u ∈ U‘Elements’

Partition LogicSubset Logic
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Second table of analogies

h(π) = |dit(π)|/|U2| =
∑i≠j|Si||Sj|/|U2| = ∑i≠jpipj =
1∑pi

2 = h(p).

Partition π = {Si} with
Pr(Si) = pi gives p =
{p1,… ,pn}

Generalize to
finite prob.
distribution

h(π) = probability randomly
drawn pair (w/replacement) is
distinguished by partition π

Pr(S) = probability
randomly drawn element
is in subset S

Equiprobable
outcomes

h(π) = |dit(π)|/|U×U| = Logical
Entropy of partition π = no. of
distinctions (normalized).

Probability Pr(S) = |S|/|U|
= number of elements
(normalized).

Normalized
size

Partitions π, i.e., dit(π) ⊆ U×USubsets S ⊆ U‘Events’

Pairs (u,u') ∈ U×U finiteElements u ∈ U finite‘Outcomes’

Logical Information TheoryFinite Prob. Theory

h(π) = |dit(π)|/|U2| =
∑i≠j|Si||Sj|/|U2| = ∑i≠jpipj =
1∑pi

2 = h(p).

Partition π = {Si} with
Pr(Si) = pi gives p =
{p1,… ,pn}

Generalize to
finite prob.
distribution

h(π) = probability randomly
drawn pair (w/replacement) is
distinguished by partition π

Pr(S) = probability
randomly drawn element
is in subset S

Equiprobable
outcomes

h(π) = |dit(π)|/|U×U| = Logical
Entropy of partition π = no. of
distinctions (normalized).

Probability Pr(S) = |S|/|U|
= number of elements
(normalized).

Normalized
size

Partitions π, i.e., dit(π) ⊆ U×USubsets S ⊆ U‘Events’

Pairs (u,u') ∈ U×U finiteElements u ∈ U finite‘Outcomes’

Logical Information TheoryFinite Prob. Theory
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Shannon entropy (base 2 and base-free) and
logical entropy

For a partition π = {B} on a finite universe set U with
probability pB =

|B|
|U| of a random drawing giving an element of

the block B:

• Shannon entropy (base 2):
H (π) = H2 (π) = ∑B∈π pB log2

(
1

pB

)
;

• Shannon entropy (base-free):

Hm (π) = ∏B∈π

(
1

PB

)pB
= 2H2(π) = 3H3(π) = eHe(π) = ...;

• Logical entropy: h (π) = ∑B∈π pB (1− pB) = 1−∑B∈π p2
B.
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Block entropies

Each entropy is an average (arithmetical or geometric) of block
entropies:

• Shannon base 2 block entropy: H2 (B) = log2

(
1

pB

)
so

average is: H2 (π) = ∑B pBH2(B);
• Shannon base-free block entropy: Hm (B) = 1

pB
so

geometrical average is: Hm (π) = ∏B Hm (B)
pB ;

• Logical block entropy: h (B) = 1− pB so average is:
h (π) = ∑B pBh (B).

Mathematical relationship between block entropies:

h (B) = 1− 1
Hm(B)

= 1− 1
2H(B) .
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Mutual information: I

Given two partitions π = {B} and σ = {C}:

• Think of block entropies H (B) = log
(

1
pB

)
(all logs base 2

unless otherwise specified) like a subset in a heuristic "Venn
diagram" and same for H (C) = log

(
1

pC

)
. Block entropies

for join π ∨ σ are H (B∩ C) = log
(

1
pB∩C

)
are like the unions

of the "subsets" in the "Venn diagram." By this heuristics,
the block entropies for the mutual information I (B; C) are the
overlaps in the "Venn diagram" which can be computed as
the sum minus the union:

H (B) +H (C)−H (B∩ C) =
log

(
1

pB

)
+ log

(
1

pC

)
− log

(
1

pB∩C

)
= log

(
pB∩C
pBpC

)
.
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Mutual information: II
Then the average mutual information is:

Shannon mutual information: I (π; σ) = ∑B∈π,C∈σ pB∩CI (B; C).

• If information = distinctions, then mutual information =
mutual distinctions. Thus for logical entropy, the mutual
information m (π; σ) is obtained by the actual Venn
diagram in the closure space U×U:

Logical mutual information: m(π; σ) = |dit(π)∩dit(σ)|
|U×U| .

• Inclusion-exclusion principle follows from heuristic or
actual Venn diagram:
• I (π; σ) = H (π) +H (σ)−H (π ∨ σ) for Shannon entropy.
• m (π; σ) = h (π) + h (σ)− h (π ∨ σ) for logical entropy.
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Stochastically independent partitions: I

• Partitions π and σ are (stochastically) independent if
∀B ∈ π, C ∈ σ:

pB∩C = pBpC.

• For Shannon, one of the main motivations for using the
log-version rather than the base-free notion was:

If π and σ are independent: H (π ∨ σ) = H (π) +H (σ)
so that: I (π; σ) = 0.

• For Shannon base-free entropy: π, σ independent implies
Hm (π ∨ σ) = Hm (π)Hm (σ).

David Ellerman (UCR) Elementary Information Theory January 2012 6 / 14



Stochastically independent partitions: II

• Since logical entropy has a direct probabilistic
interpretation [h (π) = prob. randomly drawing a pair
distinguished by π], we have:

1− h (π ∨ σ) = prob. drawing a pair not-distinguished by π ∨ σ
= prob. pair not-distinguished by π and not-distinguished by σ
= (using independence) prob. pair not-distinguished by π times
prob. pair not-distinguished by σ
= [1− h (π)] [1− h (σ)] so:

If π and σ are independent:
1− h (π ∨ σ) = [1− h (π)] [1− h (σ)]

so that: m (π; σ) = h (π) h (σ).
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Conditional entropy: I

• Given a block C ∈ σ, π = {B} induces a partition {B∩ C}
on C with the prob. distribution pB|C =

pB∩C
pC

so we have the

Shannon entropy: H (π|C) = ∑B∈π pB|C log
(

1
pB|C

)
. Then the

Shannon conditional entropy is defined as the average of these
entropies:

H (π|σ) = ∑C∈σ pCH (π|C)
= H (π ∨ σ)−H (σ) = H (π)− I (π; σ).

• This is interpreted as the information in π given σ is the
information in both minus the information in σ, which also
is the information in π minus the mutual information.

• Under independence: H (π|σ) = H (π).
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Conditional entropy: II

• Since information = distinctions, the logical conditional
entropy is just the (normalized) distinctions of π that were
not distinctions of σ:

h (π|σ) = |dit(π)−dit(σ)|
|U×U|

= h (π ∨ σ)− h (σ) = h (π)−m (π; σ).

• The interpretation is the probability that a randomly drawn
pair is distinguished by π but not by σ.

• Under independence: h (π|σ) = h (π) [1− h (σ)] = prob.
random pair is distinguished by π times the prob. random
pair is not distinguished by σ.
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Cross-entropy and divergence: I

Given pdf’s p = (p1, ..., pn) and q = (q1, ..., qn) (instead of two
partitions):

• Shannon cross-entropy is defined as: H (p‖q) = ∑i pi log
(

1
qi

)
(which is non-symmetric) where if p = q, then
H (p‖q) = H (p).

• Kullback-Leibler divergence is defined as:

D (p‖q) = ∑i pi log
(

pi
qi

)
= H (p‖q)−H (p).

Basic information inequality: D (p‖q) ≥ 0
with equality iff ∀i, pi = qi.
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Cross-entropy and divergence: II

• Logical cross-entropy has simple motivation: in drawing the
pair, draw once according to p and once according to q so
that: h (p‖q) = ∑i pi (1− qi) = 1−∑i piqi = prob. drawing a
distinction [where, obviously, h (p‖q) = h (q‖p) and if p = q,
then h (p‖q) = h (p)].

• Obvious notion of distance or divergence between two
probability distributions is the Euclidean distance (squared)
so the logical divergence is:

d (p‖q) = ∑i (pi − qi)
2 = 2h (p‖q)− h (p)− h (q).

Basic information inequality: d (p‖q) ≥ 0
with equality iff ∀i, pi = qi.
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Table of analogous formulas

h(π|σ) = h(π∨σ)−h(σ)
= h(π)−m(π;σ)

H(π|σ) = H(π∨σ)−H(σ) =
H(π)−I(π;σ)

Conditional
entropy

d(p||q) ≥ 0 with =
iff pi = qi for all i.

D(p||q) ≥ 0 with = iff
pi = qi for all i.

Information
Inequality

d(p||q) = 2h(p||q) −
h(p) − h(q)

D(p||q) =
H(p||q)−H(p)

Divergence
h(p||q) = Σpi(1−qi)H(p||q) = Σpilog(1/qi)Cross entropy

m(π;σ) = h(π)h(σ)I(π;σ) = 0Independence

m(π;σ) =
h(π)+h(σ)−h(π∨σ)

I(π;σ) =
H(π)+H(σ)−H(π∨σ)

Mutual
Information

h(π) =ΣBpBh(B)H(π) =ΣBpBH(B)Entropy
h(B) = 1−pBH(B) = log(1/pB)Block entropy
Logical EntropyShannon Entropy

h(π|σ) = h(π∨σ)−h(σ)
= h(π)−m(π;σ)

H(π|σ) = H(π∨σ)−H(σ) =
H(π)−I(π;σ)

Conditional
entropy

d(p||q) ≥ 0 with =
iff pi = qi for all i.

D(p||q) ≥ 0 with = iff
pi = qi for all i.

Information
Inequality

d(p||q) = 2h(p||q) −
h(p) − h(q)

D(p||q) =
H(p||q)−H(p)

Divergence
h(p||q) = Σpi(1−qi)H(p||q) = Σpilog(1/qi)Cross entropy

m(π;σ) = h(π)h(σ)I(π;σ) = 0Independence

m(π;σ) =
h(π)+h(σ)−h(π∨σ)

I(π;σ) =
H(π)+H(σ)−H(π∨σ)

Mutual
Information

h(π) =ΣBpBh(B)H(π) =ΣBpBH(B)Entropy
h(B) = 1−pBH(B) = log(1/pB)Block entropy
Logical EntropyShannon Entropy
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Special cases of interest: I

• For the indiscrete partition 0 = {U}, H (0) = h (0) = 0.
• For the discrete partition 1 = {{u}}u∈U where |U| = n or

equivalently, for p = (p1, ..., pn) with pi =
1
n :

H (1) = H
(

1
n

, ...,
1
n

)
= log n

Hm (1) = n

h (1) = h
(

1
n

, ...,
1
n

)
= 1− 1

n

• Note that: h (1) = 1− 1
n = probability of not drawing the

same element twice.
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Special cases of interest: II

H(p) and h(p)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.25 0.5 0.75 1

p

H(p)
h(p)

For two element distributions (p, 1− p).
Note: h (p, 1− p) = 2p (1− p) = variance of binomial dist. for

sampled pairs = prob. not sampling same outcome twice.
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Density operators
H = n-dimensional Hilbert space:
• Given m (not nec. orthog.) state vectors |ψ1〉 , ..., |ψm〉 (m not

related to dimension n) and a finite probability distribution
p = (p1, ..., pm), this defines the density operator:

ρ = ∑m
i=1 pi |ψi〉 〈ψi|.

• The density operator ρ is said to represent a pure state if
ρ2 = ρ, i.e., m = 1 so ρ = |ψ〉 〈ψ| for some state vector |ψ〉.
Otherwise, ρ is said to represent a mixed state.

• Motivation: think of a quantum ensemble where proportion
pi of the ensemble is in state |ψi〉. Then the density operator
represents all the probabilistic information in the ensemble.

• Nota bene: a pure state is any state which may be a
superposition of eigenstates of an observable (don’t confuse
"mixed" and "superposition").
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Density matrices and traces
• Density operators are Hermitian, ρ = ρ†, and positive

semidefinite, 〈ψ|ρ|ψ〉 ≥ 0 for any |ϕ〉.
• Given any orthonormal basis

{∣∣∣ϕj

〉}
, a density operator

can be represented as an n× n density matrix using that
basis with the i, j-entry: ρij =

〈
ϕi |ρ| ϕj

〉
.

• The trace of a matrix is the sum of its diagonal elements. For
any density matrix:

tr (ρ) = ∑n
j=1 ρjj = 1.

• Recall that the trace of a matrix is invariant under similarity
transformations. In particular, if ρ was diagonalized by S to
give the diagonal matrix of ρ’s eigenvalues, then the
eigenvalues are non-negative (positive-definiteness) and
their sum is tr

(
SρS−1) = tr (ρ) = 1 and thus form a

probability distribution.



Density matrix for a pure state: I

• Let ρ = |ψ〉 〈ψ| where |ψ〉 = ∑n
j=1 cj

∣∣∣ϕj

〉
for an orthonormal

basis
{∣∣∣ϕj

〉}
.

ρ = |ψ〉 〈ψ| =

c1
...

cn

 [c∗1 · · · c∗n
]
=

c1c∗1 · · · c1c∗n
... . . . ...

cnc∗1 · · · cnc∗n

 so

ρij = cic∗j .

• Diagonal entries are cic∗i = |ci|2 = probabilities of getting ith

outcome when measuring |ψ〉 using observable with
eigenvectors

{∣∣∣ϕj

〉}
.
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Density matrix for a pure state: II
• Off-diagonal entries cic∗j (i 6= j) are interpreted recalling that

complex number ci can be represented in polar form as

ci = |ci| e−iφi so off-diagonal entry is: cic∗j = |ci|
∣∣cj
∣∣ e−i

(
φi−φj

)
which represents the degree of coherence in the
superposition state.

• With each pure state ρ = |ψ〉 〈ψ|, we may associate a mixed
state ρ̂ that samples with the same probabilities for the basis
states

∣∣∣ϕj

〉
as ρ measures: ρ̂ = ∑n

j=1 cjc∗j
∣∣∣ϕj

〉 〈
ϕj

∣∣∣ = diagonal

matrix with diagonal entries cjc∗j =
∣∣cj
∣∣2 probabilities.

• ρ̂ is the decohered ρ that represents the change due to a
measurement of |ψ〉 with an observable with the eigenstates{∣∣∣ϕj

〉}
.
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Other properties of density matrices
• tr

(
ρ2) ≤ 1 with equality iff ρ2 = ρ, i.e., ρ is a pure state.

• If ρ = ∑m
i=1 pi |ψi〉 〈ψi| and A is a Hermitian operator, then

the ρ ensemble average of A is:

[A]ρ =
m

∑
i=1

pi 〈ψi |A|ψi〉

= ∑
i

pi

n

∑
k=1

n

∑
j=1

〈
ψi |ϕk〉 〈ϕk|A

∣∣∣ϕj

〉 〈
ϕj

∣∣∣ψi

〉
=

n

∑
k=1

n

∑
j=1

[
∑

i
pi

〈
ϕj|ψi

〉
〈ψi|ϕk〉

] 〈
ϕk|A|ϕj

〉
= ∑

j,k

〈
ϕj|ρ|ϕk

〉 〈
ϕk|A|ϕj

〉
= ∑

j

〈
ϕj|ρA|ϕj

〉
= tr (ρA) .

• [A]ρ = tr (ρA) is a strong result with many applications.
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Example 1: I

Let {|1〉 , |2〉 , |3〉} be an orthonormal basis in three-dimensional
Hilbert space.

• Let |A〉 = 1
2

(
|1〉+

√
2 |2〉+ |3〉

)
be a superposition state, so

its pure state density matrix is:

ρ = |A〉 〈A| =

 1
2
1√
2

1
2

 [1
2

1√
2

1
2

]
=

 1
4

1
4

√
2 1

4
1
4

√
2 1

2
1
4

√
2

1
4

1
4

√
2 1

4

.

• As a pure state density matrix, ρ2 = ρ.
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Example 1: II

• If measured by an operator with the eigenstates
{|1〉 , |2〉 , |3〉} then the diagonal entries of ρ expressed in
that basis are the probabilities p (i) of those eigenstates:
1
4 , 1

2 , 1
4 respectively.

• The measurement makes the transition from the pure to the
mixed state: ρ→ ρ̂ = "decohered ρ".

ρ̂ =

1
4 0 0
0 1

2 0
0 0 1

4

.

• Then tr
(
ρ̂2) = ∑3

i=1 p (i)2 = 1
16 +

1
4 +

1
16 =

3
8 instead of

tr
(
ρ2) = 1 for the pure state ρ.
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Example 2: From pure to completely mixed
states: I

• Consider the equal-amplitude pure state:

|ψ〉 = 1√
3
|1〉+ 1√

3
|2〉+ 1√

3
|3〉.

ρ = |ψ〉 〈ψ| =


1√
3

1√
3

1√
3

 [ 1√
3

1√
3

1√
3

]
=

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

.

• If measured by an operator with the eigenstates
{|1〉 , |2〉 , |3〉} then the diagonal entries of ρ are the equal
probabilities 1

3 of getting one of the eigenstates.
• The decohered version is:
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Example 2: From pure to completely mixed
states: II

ρ̂ = 1
3 I = 1

3 (|1〉 〈1|+ |2〉 〈2|+ |3〉 〈3|) =

1
3 0 0
0 1

3 0
0 0 1

3

.

• Such an equiprobable mixed state is called a completely
mixed state.

• In n-dim. Hilbert space, a completely mixed state ρ̂ has
tr
(
ρ̂2) = 1

n where in this case: tr
(
ρ̂2) = 3× 1

9 =
1
3 . For

n = 2, unpolarized light is a completely mixed state.
• In general: 1

n ≤ tr
(
ρ2) ≤ 1 (n-dim. space) with the two

extremes being completely mixed states and pure states.
• Note similarity: tr

(
ρ2) ≈ ∑i p2

i for probability distributions
with the two extremes being

( 1
n , ..., 1

n
)

and (0, ..., 0, 1, 0, ..., 0).
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Unitary evolution of density matrices: I

• Time evolution of state can be given by unitary operator
U (t, t0) so that:

|ψ (t)〉 = U (t, t0) |ψ (t0)〉.

• A density matrix ρ is used to represent a pure or mixed
state but it is an operator ρ : H→ H on the Hilbert space so
the time evolution of the operator ρ (t) is obtained by the
operator that:

1 uses U(t, t0)
−1 = U (t, t0)

† to translate state back to time t0,
2 apply the operator ρ (t0), and
3 use U (t, t0) to translate the result back to time t:

ρ (t) = U (t, t0) ρ (t0)U (t, t0)
−1 : H→ H.
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Unitary evolution of density matrices: II

• Then we have: ρ (t)2 = U (t, t0) ρ (t0)
2 U (t, t0)

−1 so if
ρ (t0)

2 = ρ (t0), then ρ (t)2 = ρ (t), i.e.,

unitary evolution always takes pure states to pure states.

• The simple idea of a (projective) measurement is when a
pure ρ = |ψ〉 〈ψ| is expressed in terms of the orthonormal
basis of eigenvectors {ϕi} for an operator A, then the effect
of the measurement is ρ→ ρ̂, to go from a pure state to the
decohered mixed state of the probability-weighted
eigenstates.

• This cannot be a unitary evolution since unitary evolutions
can only take pure states→ pure states.
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Decomposition of density op. not unique: I

Consider the three Pauli spin matrices:

σx =

[
0 1
1 0

]
; σy =

[
0 −i
i 0

]
; σz =

[
1 0
0 −1

]
.

The eigenvectors for each operator are:

x+ =
[

1/
√

2
1/
√

2

]
; x− =

[
1/
√

2
−1/
√

2

]
; y+ =

[ −i√
2

1√
2

]
; y− =

[ i√
2

1√
2

]
;

z+ =
[

1
0

]
and z− =

[
0
1

]
.

The projection operators to the one-dimensional subspaces
spanned by these eigenvectors are:

Px+ = |x+〉 〈x+| =
[

1/
√

2
1/
√

2

] [
1/
√

2 1/
√

2
]
=

[
1/2 1/2
1/2 1/2

]
David Ellerman (UCR) Introduction to density matrices and all that January 2012 13 / 15



Decomposition of density op. not unique: II

Px− = |x−〉 〈x−| =
[

1/
√

2
−1/
√

2

] [
1/
√

2 −1/
√

2
]
=[

1/2 −1/2
−1/2 1/2

]
Py+ = |y+〉 〈y+| =

[ −i√
2

1√
2

] [
i√
2

1√
2

]
=

[ 1
2 −1

2 i
1
2 i 1

2

]
Py− = |y−〉 〈y−| =

[ i√
2

1√
2

] [
−1

2 i
√

2 1
2

√
2
]
=

[ 1
2

1
2 i

−1
2 i 1

2

]
Pz+ = |z+〉 〈z+| =

[
1
0

] [
1 0

]
=

[
1 0
0 0

]
Pz− = |z−〉 〈z−| =

[
0
1

] [
0 1

]
=

[
0 0
0 1

]
Then we have:
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Decomposition of density op. not unique: III

ρunpolarized =
1
2Px+ +

1
2Px− = 1

2Py+ +
1
2Py− = 1

2Pz+ +
1
2Pz− =[1

2 0
0 1

2

]
.

• For |x±〉 = 1√
2
|x+〉+ 1√

2
|x−〉, ρx± = |x±〉 〈x±| =

[
1 0
0 0

]
.

• For |y±〉 = 1√
2
|y+〉+ 1√

2
|y−〉 , ρy± = |y±〉 〈y±| =

[
0 0
0 1

]
.

• For |z±〉 = 1√
2
|z+〉+ 1√

2
|z−〉, ρz± = |z±〉 〈z±| =

[1
2

1
2

1
2

1
2

]
.
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Tensor products: I

• If a quantum system A is modeled in the Hilbert space HA

and similarly for a system B and the Hilbert space HB, then
the composite system AB is modeled in the tensor product
HA ⊗HB.

• In general a concept for sets "lifts" to the appropriate vector
space concept for quantum mechanics by applying the set
concept to a basis set of a vector space, and then generate
the corresponding vector space concept.

• Thus the appropriate v.s. concept of "product" of two
spaces V, V′ for QM is to apply the set concept of product
(i.e., the Cartesian product) to two bases for V and V′, and
then those ordered pairs of basis elements form a basis for a
vector space called the tensor product V⊗V′.
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Tensor products: II

• Given a basis {|ui〉} for V and a basis
{∣∣∣u′j〉} for V′, the set

of all ordered pairs |ui〉 ⊗
∣∣∣u′j〉 (often denoted as |ui〉

∣∣∣u′j〉 or∣∣∣ui, u′j
〉

) form a basis for V⊗V′.

• Tensor products are bilinear and distributive in the sense that
for any |v〉 ∈ V and |v′〉 ∈ V′:

1 for any scalar α, α (|v〉 ⊗ |v′〉) = (α |v〉)⊗ |v′〉 = |v〉 ⊗ (α |v′〉);
2 for any |v〉 ∈ V and |v′1〉 , |v′2〉 ∈ V′,
|v〉 ⊗ (|v′1〉+ |v′2〉) = (|v〉 ⊗ |v′1〉) + (|v〉 ⊗ |v′2〉);

3 for any |v1〉 , |v2〉 ∈ V and |v′〉 ∈ V′,
(|v1〉+ |v2〉)⊗ |v′〉 = (|v1〉 ⊗ |v′〉) + (|v2〉 ⊗ |v′〉).

• The tensor product of operators on the component spaces is
obtained by applying the operators component-wise, i.e.,
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Tensor products: III

for T : V → V and T′ : V′ → V′,
(T⊗ T′) (|v〉 ⊗ |v′〉) = T (|v〉)⊗ T′ (|v′〉).

• The inner product on the tensor product is defined
component-wise on basis elements and extended
(bi)linearly to the whole space:〈

ui, u′j|uk, u′l
〉
= 〈ui|uk〉

〈
u′j|u′l

〉
.

• The tensor (or Kronecker) product of an m× n matrix A and a
p× q matrix B is the nq×mp matrix A⊗ B obtained by
inserting B after each entry aij of A, e.g.,
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Tensor products: IV

if X =
[

0 1
1 0

]
H = 1√

2

[
1 1
1 −1

]
, then

X⊗H =

[
0H 1H
1H 0H

]
= 1√

2


0 0 1 1
0 0 1 −1
1 1 0 0
1 −1 0 0

.

• States of the form |v〉 ⊗ |v′〉 ∈ V⊗V′ are called separated;
other states in the tensor product are entangled.
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The measurement problem: I

• A measurement of a quantum system Q, represented in HQ,
by a measurement apparatus M, represented in HM, is
modeled by the tensor product HQ ⊗HM.

• If the Hermitian operator A : HQ → HQ, which represents
the observable being measured, has the orthonormal
eigenstates |u1〉 , ..., |un〉 ∈ HQ, then the idea is to pair or
correlate these eigenstates with n orthonormal indicator
states |v1〉 , ..., |vn〉 ∈ HM in the tensor product.

• The state |ψ〉 = ∑i αi |ui〉 ∈ HQ is the initial state and there is
another initial indicator state |v0〉 ∈ HM.

• Thus the composite system starts off in the state: |ψ〉 ⊗ |v0〉.
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The measurement problem: II

• Taking the quantum system and the measurement
apparatus as together being an isolated quantum system,
the initial state unitarily evolve according to QM to the
entangled state: ∑i |ui〉 ⊗ |vi〉 (ignoring normalization).

• But that is another superposition state, like the original
|ψ〉 = ∑i αi |ui〉, whereas the usual notion of a
"measurement" is that that system ends up in a specific
|ui〉 ⊗ |vi〉 state of the composite system and thus in the
eigenstate |ui〉 of the system Q having the corresponding
eigenvalue λi as the measured value.

• What causes the "collapse of the wave-packet" or the state
reduction to that eigenstate?
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The measurement problem: III

• We considered the system QM represented in HQ ⊗HM as
being isolated so that it evolved according to the
Schrodinger equation, i.e., by a unitary transformation of
state.

• If we say the superposition ∑i |ui〉 ⊗ |vi〉 was collapsed by
the intervention of another system M′, then assuming the
universality of the laws of quantum mechanics, we can
consider the isolated composite system HQ ⊗HM ⊗HM′

and then by the same argument will end up by a unitary
transformation in another uncollapsed superposition state:
∑i |ui〉 ⊗ |vi〉 ⊗

∣∣v′i〉.
• And so forth in what is called von Neumann’s chain.
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The measurement problem: IV

• Since the laws of QM only lead to this chain of ever larger
superpositions, Schrodinger tried to show the
implausibility of the chain with his famous Schrodinger’s
cat example.

• Others like Wigner suggested that perhaps it is human
consciousness ("reading the dial") that terminates von
Neumann’s chain, and that led to countless books fully of
fuzzy thinking about QM and consciousness. Woo-woo.

• Others like Everett have avoided the whole problem of the
collapse of the superposition by assuming that the whole
universe splits so that each eigenstate is continued in one of
the possibilities. Thus there is splitting of worlds rather
than reduction to an eigenstate in the one and only world.
The utter silliness of this option (which has its followers)
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The measurement problem: V

shows the extremes to which otherwise-sane physicists are
driven by "the measurement problem."

• The standard Copenhagen interpretation tries to simply
eschew such questions, but that amounts to postulating a
state-reducing property called "macroscopic." At some
point along von Neumann’s chain (e.g., at the first step), the
measurement apparatus is assumed to have the property of
being "macroscopic" which means that its indicator states
|vi〉 cannot be in superposition, and hence the measurement
apparatus is in one of the indicator states.

• You ask, "What happened to the laws of QM in the
interaction with this ’macroscopic’ apparatus? When does
the miracle occur?"
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The measurement problem: VI

• The Copenhagen answer is: "Don’t ask."
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Reduced density operators: I

• The mystery deepens when we analyze the measurement
problem using density operators.

• We start with the state |ψ〉 ⊗ |v0〉 ∈ HQ ⊗HM represented
by the pure state density operator ρ0 which unitarily
evolves to the state ∑i |ui〉 ⊗ |vi〉 represented by pure state
density operator ρ = (∑i |ui〉 ⊗ |vi〉) (∑i 〈ui| ⊗ 〈vi|).

• But what is happening in the component system HQ?
• In general, given a (pure or mixed) state ρ on a tensor

product V⊗V′, there is a reduced density operator
ρV : V → V such that for any observable operator
T : V → V,

tr(ρVT) = trV′ (ρ (T⊗ I))
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Reduced density operators: II

where trV′ () is the partial trace defined by:

trV′ (|v1〉 〈v2| ⊗ |v′1〉 〈v′2|) = |v1〉 〈v2| tr (|v′1〉 〈v′2|) =
|v1〉 〈v2| 〈v′2|v′1〉

"Taking the partial trace over V′".

• The principal fact is that if the pure state on the tensor
product is a perfectly correlated "measurement state"
∑i αi |ui〉 ⊗ |vi〉 (orthogonal states from both components),
then the state represented by the reduced density operator
ρV is the mixed state:

ρV = ∑i αiα
∗
i |ui〉 〈ui|.
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Reduced density operators: III

• This is exactly the mixture of probabilistic outcomes one
would expect from a measurement on the initial state:
|ψ〉 = ∑i αi |ui〉.

• Here is where the usual "ignorance interpretation" of mixed
states breaks down. Under that interpretation ρV, the first
component system is actually in some state |ui〉 with
probability αiα

∗
i , which due to the entanglement forces the

other component into the state |vi〉. But then the composite
system is in the state |ui〉 ⊗ |vi〉 with probability αiα

∗
i which

is a mixed state in contrast to the pure superposition state
∑i αi |ui〉 ⊗ |vi〉.
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Reduced density operators: IV
• One reaction in the literature is to simply consider two

different types of mixed states. For instance, Bernard
D’Espagnat has "proper mixtures" (the usual sort) and
"improper mixtures" (reductions of entangled pure state on
tensor products), while others call them mixed states of the
"first kind" and "second kind." See following Charles
Bennett slide.
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A Bell state as a perfectly correlated
measurement state: I

• Consider the Bell basis vector:
|Φ+〉 = 1√

2
[|0A〉 ⊗ |0B〉+ |1A〉 ⊗ |1B〉] ∈ C2 ⊗C2.

• The corresponding pure state density operator is:

ρ = |Φ+〉 〈Φ+|
= 1

2 [|0A〉 ⊗ |0B〉+ |1A〉 ⊗ |1B〉] [〈0A| ⊗ 〈0B|+ 〈1A| ⊗ 〈1B|]
=
1
2

[
(|0A〉 ⊗ |0B〉) (〈0A| ⊗ 〈0B|) + (|0A〉 ⊗ |0B〉) (〈1A| ⊗ 〈1B|)
+ (|1A〉 ⊗ |1B〉) (〈0A| ⊗ 〈0B|) + (|1A〉 ⊗ |1B〉) (〈1A| ⊗ 〈1B|)

]
= 1

2

[
|0A〉 〈0A| ⊗ |0B〉 〈0B|+ |0A〉 〈1A| ⊗ |0B〉 〈1B|
+ |1A〉 〈0A| ⊗ |1B〉 〈0B|+ |1A〉 〈1A| ⊗ |1B〉 〈1B|

]
.

• Then the reduced density operator for the first system is:
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A Bell state as a perfectly correlated
measurement state: II

ρA = 1
2

[
|0A〉 〈0A| tr (|0B〉 〈0B|) + |0A〉 〈1A| tr (|0B〉 〈1B|)
+ |1A〉 〈0A| tr (|1B〉 〈0B|) + |1A〉 〈1A| tr (|1B〉 〈1B|)

]
= 1

2

[
|0A〉 〈0A| 〈0B|0B〉+ |0A〉 〈1A| 〈1B|0B〉
+ |1A〉 〈0A| 〈0B|1B〉+ |1A〉 〈1A| 〈1B|1B〉

]
= 1

2 [|0A〉 〈0A|+ |1A〉 〈1A|] = 1
2 IA.

• The key step is: 〈1B|0B〉 = 0 = 〈0B|1B〉 which decoheres the
state.

• The reduced density operator is a decohered mixed state,
indeed, it is a completely mixed state (like unpolarized
light).
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A Bell state as a perfectly correlated
measurement state: III

• This mixed state describes the mixed state one would
expect from a "wave-packet-collapsing" measurement (with
the eigenstates |0A〉 and |1A〉) on the initial state:
|ψ〉 = 1√

2
[|0A〉+ |1A〉]. That pure state density matrix is:

ρ1 = |ψ〉 〈ψ| = 1√
2
[|0A〉+ |1A〉] 1√

2
[〈0A|+ 〈1A|]

= 1
2 [|0A〉 〈0A|+ |0A〉 〈1A|+ |1A〉 〈0A|+ |1A〉 〈1A|]

= 1
2

[[
1 0
0 0

]
+

[
0 1
0 0

]
+

[
0 0
1 0

]
+

[
0 0
0 1

]]
=

[1
2

1
2

1
2

1
2

]
.

David Ellerman (UCR) Tensor products, reduced density matrices, and the measurement problemJanuary 2012 18 / 41



A Bell state as a perfectly correlated
measurement state: IV

• Thus the corresponding "decohered state" ρ̂1 is obtained by
setting all the non-diagonal elements of ρ1 to 0 and the
result is the reduced density matrix: ρ̂1 =

1
2 I = ρA.

• Nielsen-Chuang’s mention of the decohered version of a
density operator ρ is given by the formulas 2.150-2.152 on
p. 101 but there is a nasty typo in that they have the same
symbol ρ for the decohered version, rather than something
like ρ̂. Hence they have "incoherent" formulas 2.151-2 with
same symbol for different ρ’s on the LHS and RHS.

• What happened since we need not depart from unitary
evolution to get from some initial state |ψ〉 ⊗ |v0〉 to the
pure Bell state |Φ+〉 = 1√

2
[|0A〉 ⊗ |0B〉+ |1A〉 ⊗ |1B〉]?
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A Bell state as a perfectly correlated
measurement state: V

1 The superposed eigenstates of |ψ〉 = 1√
2
[|0A〉+ |1A〉],

represented by the density operator ρ1, were "marked with
which-way information" in the composite state
|Φ+〉 = 1√

2
[|0A〉 ⊗ |0B〉+ |1A〉 ⊗ |1B〉] represented by ρ.

2 That is sufficient to have the reduced state to be the
incoherent completely mixed state ρA.

3 Thus instead of non-unitary jump ρ1 → ρ̂1 from a pure state
to a mixed state, we have the expansion of the |ψ〉 to form
the pure composite state |ψ〉 ⊗ |v0〉 which unitarily evolves
to the pure "measurement state"
|Φ+〉 = 1√

2
[|0A〉 ⊗ |0B〉+ |1A〉 ⊗ |1B〉] which, in terms of

density operators, has the reduced state ρA = ρ̂1.
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Any change in quantum state by embedding
in larger Hilbert space and reducing

• This is Bennett and Smolin’s play on the Mormon Church
which is officially "Church of the Latter Day Saints" or
CLDS.
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A Quantum Eraser example of which-way
marking: I

• Consider the setup of the two-slit experiment where the
superposition state, |Slit1〉+ |Slit2〉, evolves to show
interference on the wall.

S1

S2

+45o

Figure 1: Interference pattern from two-slits
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A Quantum Eraser example of which-way
marking: II

• Then horizontal and vertical are inserted in front of the slits
which marks slit-eigenstates with which-way polarization
information so the perfectly correlated "measurement state"
might be represented schematically as:
|Slit1〉 ⊗ |Horiz〉+ |Slit2〉 ⊗ |Vert〉. This marking suffices to
eliminate the interference pattern but it is not a
"packet-collapsing" quantum jump since the state is still a
pure superposition state.
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A Quantum Eraser example of which-way
marking: III

h

v

+45o

Figure 2: Mush pattern with interference eliminated by
which-way markings
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A Quantum Eraser example of which-way
marking: IV

• If P∆y is the projection operator representing finding a
particle in the region ∆y along the wall, then that
probability is:〈

S1⊗H+ S2⊗V|P∆y ⊗ I|S1⊗H+ S2⊗V
〉

=
〈
S1⊗H+ S2⊗V|P∆yS1⊗H+ P∆yS2⊗V

〉
=
〈
S1⊗H|P∆yS1⊗H

〉
+
〈
S1⊗H|P∆yS2⊗V

〉
+
〈
S2⊗V|P∆yS1⊗H

〉
+
〈
S2⊗V|P∆yS2⊗V

〉
=
〈
S1|P∆yS1

〉
〈H|H〉+

〈
S1|P∆yS2

〉
〈H|V〉

+
〈
S2|P∆yS1

〉
〈V|H〉+

〈
S2|P∆yS2

〉
〈V|V〉

=
〈
S1|P∆yS1

〉
+
〈
S2|P∆yS2

〉
= sum of separate slot probabilities.
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A Quantum Eraser example of which-way
marking: V

• The key step is how the orthogonal polarization markings
decohered the state since 〈H|V〉 = 0 = 〈V|H〉 and thus
eliminated the interference between the Slot1 and Slot2
terms.

• The state-reduction occurs only when the evolved
superposition state hits the far wall which measures the
positional component (i.e., P∆y) of the composite state and
shows decohered non-interference pattern.
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A Quantum Eraser example of which-way
marking: VI

• The key point is that in spite of the bad terminology of
"which-way" or "which-slit" information, the polarization
markings do NOT create a half-half mixture of horizontally
polarized photons going through slit 1 and vertically
polarized photons going through slit 2. It creates the
superposition state |S1〉 ⊗ |H〉+ |S2〉 ⊗ |V〉.

• This can be verified by inserting a +45◦ polarizer between
the two-slit screen and the far wall.
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A Quantum Eraser example of which-way
marking: VII

45o+45o

Figure 3: Fringe interference pattern produced by +45◦

polarizer
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A Quantum Eraser example of which-way
marking: VIII

• Each of the horizontal and vertical polarization states can
be represented as a superposition of +45◦ and −45◦

polarization states. Just as the horizontal polarizer in front
of slit 1 threw out the vertical component so we have no
|S1〉 ⊗ |V〉 term in the superposition, so now the +45◦

polarizer throws out the −45◦ component of each of the |H〉
and |V〉 terms so the state transformation is:

|S1〉 ⊗ |H〉+ |S2〉 ⊗ |V〉
→ |S1〉 ⊗ |+45◦〉+ |S2〉 ⊗ |+45◦〉 = (|S1〉+ |S2〉)⊗ |+45◦〉.
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A Quantum Eraser example of which-way
marking: IX

• Then at the wall, the positional measurement of the first
component is the evolved superposition |S1〉+ |S2〉 which
again shows an interference pattern. But it is NOT the
original interference pattern before any polarizers were
inserted since only half the photons (statistically speaking)
got through the +45◦ polarizer. This "shifted" interference
pattern is called the fringe pattern.

• Alternatively we could insert a −45◦ polarizer which
would transform the state |S1〉 ⊗ |H〉+ |S2〉 ⊗ |V〉 into
(|S1〉+ |S2〉)⊗ |−45◦〉 which produces the interference
pattern from the "other half" of the photons and which is
called the anti-fringe pattern.
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A Quantum Eraser example of which-way
marking: X

• The all-the-photons sum of the fringe and anti-fringe
patterns reproduces the "mush" non-interference pattern of
Figure 2.

• This is one of the simplest examples of a quantum eraser
experiment.

1 The insertion of the horizontal and vertical polarizers marks
the photons with "which-slot" information that eliminates
the interference pattern.

2 The insertion of the, say, +45◦ polarizer "erases" the
which-slot information so an interference pattern reappears.
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A Quantum Eraser example of which-way
marking: XI

• But there is a mistaken interpretation of the quantum
eraser experiment that leads one to infer that there is
retrocausality. Woo-woo. The incorrect reasoning is as
follows:

1 The insertion of the horizontal and vertical polarizers causes
each photon to be reduced to either a horizontally polarized
photon going through slit 1 or a vertically polarized photon
going through slit 2.

2 The insertion of the +45◦ polarizer erases that which-slot
information so interference reappears which means that the
photon had to "go through both slits."
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A Quantum Eraser example of which-way
marking: XII

3 Hence the delayed choice to insert or not insert the +45◦

polarizer–after the photons have traversed the
screen–retrocauses the photons to either go through both
slits or to only go through one slit or the other.

• Hence we see the importance of realizing that prior to
inserting the +45◦ polarizer, the photons were in the
superposition state |S1〉 ⊗ |H〉+ |S2〉 ⊗ |V〉, not a half-half
mixture of the reduced states |S1〉 ⊗ |H〉 or |S2〉 ⊗ |V〉.
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A Quantum Eraser example of which-way
marking: XIII

• The proof that the system was not in that mixture is
obtained by inserting the +45◦ polarizer which yields the
(fringe) interference pattern. If a photon had been, say, in
the state |S1〉 ⊗ |H〉 then, with 50% probability, the photon
would have passed through the filter in the state
|S1〉 ⊗ |+45◦〉, but that would not yield any interference
pattern at the wall since their was no contribution from slit
2. And similarly if a photon in the state |S2〉 ⊗ |V〉 hits the
+45◦ polarizer.
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A Quantum Eraser example of which-way
marking: XIV

• The fact that the insertion of the +45◦ polarizer yielded
interference proved that the incident photons were in a
superposition state |S1〉 ⊗ |H〉+ |S2〉 ⊗ |V〉 which, in turn,
means there was no "going through one slit or the other" in
case the +45◦ polarizer had not been inserted.

• Thus a correct interpretation of the quantum eraser
experiment removes any inference of retrocausality and
fully accounts for the experimentally verified facts given in
the figures. See the full treatment on my website:

http://www.ellerman.org/a-common-fallacy/.
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Set version of reduced state description: I

• One way to better understand part of QM math using
vector spaces is to see the set-analogue just using sets–prior
to "lifting" it to vector spaces. The bridge from sets to vector
spaces is the vector spaces over 2, Zn

2 .
• Without here giving the whole "sets-to-vector-spaces"

lifting program, we will just give enough to get a better
understanding of the reduced mixtures.

• The set-analogue of a vector or pure state in a vector space is
a subset of a set U (see the Zn

2 bridge where a vector "is" just
a subset). If the vector space is a Hilbert space, then the
set-analogue U has a probability distribution
{Pr (u) : u ∈ U} over its elements.



Set version of reduced state description: II

• The set-analogue of a mixed-state is just a set of subsets with
probabilities assigned to them like S1, ..., Sn ⊆ U with
corresponding probability distribution {Pr (Si)}.

• The set-analogue of the tensor product of two vector spaces
is the direct product UA ×UB of two sets (always finite
dimension spaces and finite sets). If the vector spaces are
Hilbert spaces, then we may assume a joint probability
distribution on the product {Pr (a, b) : a ∈ UA, b ∈ UB}.

• The set-analogue of a separated state in a tensor product is a
product subset SA× SB ⊆ UA×UB for some subsets SA ⊆ UA
and SB ⊆ UB. If a subset of order pairs from UA ×UB
cannot be expressed in this way, then it is "entangled."



Set version of reduced state description: III

• Given a pure state ρ on HA ⊗HB, there is the reduced
mixture ρA on HA. For the set-analogue, given a "pure"
subset S ⊆ UA ×UB (which is a "trivial mixture with just
one subset with probability 1"), then for any element b ∈ HB
that appears in the ordered pair (a, b) ∈ S,

• Define the subset S(b)A = {a ∈ UA : (a, b) ∈ S} and
• Assign it the marginal probability of b (suitably normalized),

i.e., the probability
Pr
(

S(b)A

)
= ∑

{
Pr (a, b) : a ∈ S(b)A

}
/ ∑(a,b)∈S Pr (a, b).

• If the same subset of UA appears multiple times, they can be
formally added by just adding the probabilties assigned to
that subset so it only appears once. If S(b)A = S(b

′)
A , then

Pr
(

S(b,b′)
A

)
= Pr

(
S(b)A

)
+ Pr

(
S(b

′)
A

)
is assigned to that subset

denoted S(b,b′)
A .



Set version of reduced state description: IV

• This defines reduced mixture SA on UA which consists of the
subsets S(b,...,b′)

A with the probabilities Pr
(

S(b,...,b′)
A

)
.

• Example 1: if S = SA × SB is a separated subset, then the
reduced mixture on UA is in fact the subset SA considered
as a trivial mixture with probability 1 assigned to it.

• Example 2: Nondegenerate measurement states

• In the Hilbert space case, if ρ comes from a perfectly
correlated state |ψ〉 = ∑ αi |ai〉 ⊗ |bi〉 (where {|ai〉} and

{∣∣bj
〉}

are orthonormal bases of HA and HB), then ρA is the reduced
mixture of the states |ai〉 with the probabilities αiα

∗
i = Pr (ai).



Set version of reduced state description: V

• In the set case, if S is the graph of an injective function
f : UA → UB given by ai 7−→ bi with the
already-conditionalized probabilities Pr (ai, bi) assigned to
the pairs in the graph, then the reduced mixture on UA is
just the discrete partition f−1 = {{ai}}ai∈UA

with the
probabilities Pr (ai, bi) assigned to the singleton subsets {ai}.

• Example 3: In the general case of degenerate
measurements, take S as the graph of any function
f : UA → UB and the reduced mixture is the partition f−1 on
UA with the probabilities assigned to the blocks:

Pr
(
f−1 (b)

)
= ∑f (a)=b Pr (a, b) / ∑(a,b)∈graph(f ) Pr (a, b).



Taking mystery out of CLHS Eucharist

• Making distinctions and defining partitions. One way of
making distinctions is joining a partition onto the given
distinctions, like getting a binary question answered.
Another way is mapping elements to other elements
already distinct so those mapped to distinct elements are
distinguished; those mapped to same element are in same
block of inverse-image partition. Thus a given partition (in
the codomain) induces a partition on the domain by the
inverse-image operation.

• Measurement (degenerate or nondegenerate) is one
example where mapping given by ordered pairs [basis
elements a⊗ b in the tensor product] and the
already-distinguished states in the codomain are the
indicator states of the measurement apparatus.
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Schmidt decomposition

• We have seen the special properties of the perfectly
correlated marked superpositions |Ψ〉 = ∑n

i=1 αi |ϕi〉 ⊗ |ψi〉
in a tensor product HA ⊗HB. The Schmidt decomposition
shows that any pure state in HA ⊗HB can be put into this
form as:

|Ψ〉 = ∑i λi |ϕi〉 ⊗ |ψi〉.

• The Schmidt coefficients λi are non-negative reals with
∑i λ2

i = 1 and the states {|ϕi〉} and {|ψi〉} are orthonormal
in their respective spaces.

• Then |Ψ〉 is a separated state iff only one Schmidt
coefficient λi = 1 and the rest are 0; otherwise the state is
entangled. The state is said to be maximally entangled if all
the Schmidt coefficients are equal.
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Proof using singular value decomposition: I

• From linear algebra, we have that for any complex matrix
a =

[
ajk
]
, there are unitary matrices u, v and a diagonal

matrix d of non-negative reals such that a = udv.
• Assuming HA and HB are of dimension n, a general pure

state of HA⊗HB has the form |Ψ〉 = ∑jk ajk |j〉 ⊗ |k〉 for some
orthonormal bases {|j〉} and {|k〉} respectively.

• Then we can use the singular value decomposition of the [a]
where all the matrices are n× n:

|Ψ〉 = ∑ijk ujidiivik |j〉 ⊗ |k〉.

• Then we can define: |iA〉 = ∑j uji |j〉 and |iB〉 = ∑k vik |k〉 and
λi = dii and then we have:
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Proof using singular value decomposition: II

|Ψ〉 = ∑i λi |iA〉 ⊗ |iB〉.
Schmidt decomposition

• Since the |iA〉 result from a unitary transformation of the
orthonormal basis {|j〉} and the |iB〉 similarly result from a
unitary transformation of {|k〉}, they are also orthonormal
bases.
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Alternative proof without assuming SVD: I

• We again start with a pure state |Ψ〉 in HA ⊗HB and then
we take the reduced density operator ρA = trB (|Ψ〉 〈Ψ|).

• As a positive semidefinite operator on HA, we can express it
in terms of its eigenvector projections with non-negative
real coefficients: ρA = ∑n

i=1 λ2
i |ϕi〉 〈ϕi| so {|ϕi〉} is an

orthonormal basis for HA.

• Take any orthonormal basis
{∣∣∣ψ′j〉}m

j=1
for HB and then

expand the original state |Ψ〉 in terms of the basis ϕi ⊗ ψ′j:

|Ψ〉 = ∑i,j

〈
Ψ|ϕi ⊗ ψ′j

〉 ∣∣∣ϕi ⊗ ψ′j

〉
.
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Alternative proof without assuming SVD: II

• Taking the summation over the
∣∣∣ψ′j〉 with the

〈
Ψ|ϕi ⊗ ψ′j

〉
coefficients, we have the vectors in HB,∣∣ψ′′i 〉 = ∑j

〈
Ψ|ϕi ⊗ ψ′j

〉 ∣∣∣ψ′j〉 with the property that:

|Ψ〉 = ∑n
i=1 |ϕi〉 ⊗

∣∣ψ′′i 〉.
• But the

∣∣ψ′′i 〉 may not be normalized, so using the defining
characteristic of the reduced density operator ρA: for any
operator T on HA,

∑i λ2
i 〈ϕi|Tϕi〉 = 〈T〉 = tr

(
ρAT

)
= 〈Ψ| (T⊗ IB)Ψ〉 =

∑i,k 〈ϕi|Tϕk〉
〈
ψ′′i |ψ′′k

〉
.
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Alternative proof without assuming SVD: III

• But since this holds for any operator T, the equation must
hold term by term so that:〈

ψ′′i |ψ′′k
〉
= λ2

i δik.

• Thus for λi > 0, define |ψi〉 = 1
λi

∣∣ψ′′i 〉 so the {|ψi〉} are both
normalized and orthogonal. Then we have:

|Ψ〉 = ∑i λi |ϕi〉 ⊗ |ψi〉
Schmidt decomposition.
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Purifications

• We have seen the progression: ρ
CLHS−→ $

red.−→ $1 starting with
a pure ρ. The Schmidt decomposition allows us to start
with any mixed state ρA on HA and then to define a pure
state $ on HA ⊗HA so that the reduced density matrix on
the first component is $1 = ρA.

• Given any mixed state ρA on HA, we, as above, can express
it as: ρA = ∑i λ2

i |ϕi〉 〈ϕi| for non-negative reals λi with
∑i λ2

i = 1 and orthonormal {|ϕi〉}.
• Then |Ψ〉 = ∑i λi |ϕi〉 ⊗ |ϕi〉 is a pure state on HA ⊗HA

called its purification so that for $ = |Ψ〉 〈Ψ|, $1 = ρA.
• Thus we always have:

ρA CLHS−→ $
red.−→ $1 = ρA.
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Example of Schmidt decomposition: I

• Consider the example on C2 ⊗C2:

|Ψ〉 = 1√
3
[|0A〉 ⊗ |0B〉+ |0A〉 ⊗ |1B〉+ |1A〉 ⊗ |0B〉].

• Thus the 2× 2 matrix is: a =

[ 1√
3

1√
3

1√
3

0

]
.

• Using a computational program, the SVD is: a = udv =√ 2
5−
√

5
−
√

2
5+
√

5√
2

5+
√

5

√
2

5−
√

5

√ 1
6

√
5+ 1

2 0

0
√

1
2 −

1
6

√
5


√ 2

5−
√

5

√
2

5+
√

5√
2

5+
√

5
−
√

2
5−
√

5

.
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Example of Schmidt decomposition: II

• In the |0A〉,|1A〉, the two Schmidt basis vectors for the first
component C2 are the two columns of u.

• In the |0B〉 , |1B〉 basis, the two Schmidt basis vectors for the
second component C2 are two rows of v transposed as
columns.

• Hence the Schmidt decomposition is:

|Ψ〉 =
√

1
6

√
5+ 1

2

√ 2
5−
√

5√
2

5+
√

5

⊗
√ 2

5−
√

5√
2

5+
√

5


+
√

1
2 −

1
6

√
5

−√ 2
5+
√

5√
2

5−
√

5

⊗
 √ 2

5+
√

5

−
√

2
5−
√

5

.
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Example of Schmidt decomposition: III

• To check it, let’s compute the coefficient of |0A〉 ⊗ |0B〉:√
1
6

√
5+ 1

2

(
2

5−
√

5

)
−
√

1
2 −

1
6

√
5
(

2
5+
√

5

)
= 1√

3
.X

• Coefficient of |0A〉 ⊗ |1B〉:√
1
6

√
5+ 1

2

(√
2

5−
√

5

) (√
2

5+
√

5

)
+√

1
2 −

1
6

√
5
(
−
√

2
5+
√

5

) (
−
√

2
5−
√

5

)
= 1√

3
.X

• Coefficient of |1A〉 ⊗ |0B〉:
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Example of Schmidt decomposition: IV

√
1
6

√
5+ 1

2

(√
2

5+
√

5

) (√
2

5−
√

5

)
+√

1
2 −

1
6

√
5
(√

2
5−
√

5

) (√
2

5+
√

5

)
= 1√

3
.X

• Coefficient of |1A〉 ⊗ |1B〉:√
1
6

√
5+ 1

2

(
2

5+
√

5

)
−
√

1
2 −

1
6

√
5
(

2
5−
√

5

)
= 0.X
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Purification example: I

• We start with a mixed state of C2 which is:

1
3 of |ψ1〉 = 1√

2
(|0A〉+ |1A〉) and 2

3 of |ψ2〉 = |0A〉.

• Hence its density matrix in the usual coordinates is:

ρA = 1
3 |ψ1〉 〈ψ1|+ 2

3 |ψ2〉 〈ψ2|

= 1
3

[ 1√
2

1√
2

] [
1√
2

1√
2

]
+ 2

3

[
1
0

] [
1 0

]
= 1

3

[1
2

1
2

1
2

1
2

]
+ 2

3

[
1 0
0 0

]
=

[5
6

1
6

1
6

1
6

]
.

• The orthonormal eigenvectors and their eigenvalues are:
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Purification example: II

|ϕ1〉 = 1√
10−4

√
5

[
2−
√

5
1

]
with λ1 =

3−
√

5
6

|ϕ2〉 = 1√
10+4

√
5

[
2+
√

5
1

]
with λ2 =

3+
√

5
6 .

• These give the orthonormal decomposition of the density
matrix since:

λ1 |ϕ1〉 〈ϕ1|+ λ2 |ϕ2〉 〈ϕ2|

= 3−
√

5
6

1
10−4

√
5

[
2−
√

5
1

] [
2−
√

5 1
]

+3+
√

5
6

1
10+4

√
5

[
2+
√

5
1

] [
2+
√

5 1
]

=

[5
6

1
6

1
6

1
6

]
= ρA.X
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Purification example: III

• The purification is then the pure state of C2 ⊗C2:

|Ψ〉 =
√

λ1 |ϕ1〉 ⊗ |ϕ1〉+
√

λ2 |ϕ2〉 ⊗ |ϕ2〉.

• The density matrix is $ = |Ψ〉 〈Ψ| and the reduced density
matrix over the first component is:

$1 = λ1 |ϕ1〉 〈ϕ1|+ λ2 |ϕ2〉 〈ϕ2| = ρA.X
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Quantum eraser example before markings: I

• Consider the setup of the two-slit experiment where the
superposition state, 1√

2
(|S1〉+ |S2〉), evolves to show

interference on the wall.
• If we put a +45◦ polarizer in front of the slits to control the

incoming polarization, then we can represent the system
after the polarizer as a tensor product with the second
component giving the polarization state. The evolving state
after the two slits is the superposition:

1√
2
(|S1〉 ⊗ |45◦〉+ |S2〉 ⊗ |45◦〉).
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Quantum eraser example before markings: II

S1

S2

+45o

Figure 1: Interference pattern from two-slits
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Simultaneous insertion of H,V polarizers: I

• Then horizontal and vertical polarizers are simultaneous
inserted behind the S1 and S2 slits respectively.

• This will change the evolving state to:
1√
2
(|S1〉 ⊗ |H〉+ |S2〉 ⊗ |V〉) but since these new polarizers

involve some measurements, not just unitary evolution, it
may be helpful to go through the calculation in some detail.

• The state that "hits" the H, V polarizers is:

1√
2
(|S1〉 ⊗ |45◦〉+ |S2〉 ⊗ |45◦〉).

• The 45◦ polarization state can be resolved by inserting the
identity operator I = |H〉 〈H|+ |V〉 〈V| to get:
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Simultaneous insertion of H,V polarizers: II
|45◦〉 = [|H〉 〈H|+ |V〉 〈V|] |45◦〉 = 〈H|45◦〉 |H〉+ 〈V|45◦〉 |V〉 =

1√
2
[|H〉+ |V〉].

• Substituting this for |45◦〉, we have the state that hits the
H, V polarizers as:

1√
2
(|S1〉 ⊗ |45◦〉+ |S2〉 ⊗ |45◦〉)

= 1√
2

(
|S1〉 ⊗ 1√

2
[|H〉+ |V〉] + |S2〉 ⊗ 1√

2
[|H〉+ |V〉]

)
= 1

2 [|S1〉 ⊗ |H〉+ |S1〉 ⊗ |V〉+ |S2〉 ⊗ |H〉+ |S2〉 ⊗ |V〉]

which can be regrouped in two parts as:

= 1
2 [|S1〉 ⊗ |H〉+ |S2〉 ⊗ |V〉] + 1

2 [|S1〉 ⊗ |V〉+ |S2〉 ⊗ |H〉].
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Simultaneous insertion of H,V polarizers: III

• Then the H, V polarizers are making a degenerate
measurement that give the first state
|S1〉 ⊗ |H〉+ |S2〉 ⊗ |V〉 with probability

(1
2

)2
+
(1

2

)2
= 1

2 .
• The other state |S1〉 ⊗ |V〉+ |S2〉 ⊗ |H〉 is obtained with the

same probability, and it is blocked by the polarizers.
• Thus with probability 1

2 , the state that evolves is the state
(after being normalized):

1√
2
[|S1〉 ⊗ |H〉+ |S2〉 ⊗ |V〉].

• Logically, we should get the same result if we insert the H
and V polarizers sequentially.
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Sequential insertion of H,V polarizers: I

• Suppose that we imposed the H and V polarizers one at a
time in a sequence. We start by just putting the H polarizers
after slit 1. We have the same state evolving after the two
slits but a different grouping for the degenerate
measurement.

1
2 [|S1〉 ⊗ |H〉+ |S2〉 ⊗ |H〉+ |S2〉 ⊗ |V〉] + 1

2 [|S1〉 ⊗ |V〉].

• Then with probability
(1

2

)2
+
(1

2

)2
+
(1

2

)2
= 3

4 the
measurement yields the result
|S1〉 ⊗ |H〉+ |S2〉 ⊗ |H〉+ |S2〉 ⊗ |V〉 and with probability 1

4
we get |S1〉 ⊗ |V〉. Since the latter state is blocked by the H
filter at S1, the normalized state that continues is:
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Sequential insertion of H,V polarizers: II
1√
3
[|S1〉 ⊗ |H〉+ |S2〉 ⊗ |H〉+ |S2〉 ⊗ |V〉].

• Then we insert the V polarizer so that it only effects the S2
portion and do another degenerate measurement with the
grouping:

1√
3
[|S1〉 ⊗ |H〉+ |S2〉 ⊗ |V〉] + 1√

3
[|S2〉 ⊗ |H〉].

• With probability
(

1√
3

)2
+
(

1√
3

)2
= 2

3 we get

|S1〉 ⊗ |H〉+ |S2〉 ⊗ |V〉 and with probability
(

1√
3

)2
= 1

3 we
get |S2〉 ⊗ |H〉 which is the blocked state.

• Hence with probability 2
3 we get, after the second polarizer,

the previous normalized state:
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Sequential insertion of H,V polarizers: III

1√
2
[|S1〉 ⊗ |H〉+ |S2〉 ⊗ |V〉].

• Combining the probabilities from the sequential H and V
polarizers, we get the above state with the probability:
3
4 ×

2
3 =

1
2 exactly as when the H, V polarizers are inserted

simultaneously rather than sequentially.
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Interference removed by H,V polarizer
markings: I

• If P∆y is the projection operator representing finding a
particle in the region ∆y along the wall, then that
probability in the state 1√

2
[|S1〉 ⊗ |H〉+ |S2〉 ⊗ |V〉] is:

1
2

〈
S1⊗H+ S2⊗V|P∆y ⊗ I|S1⊗H+ S2⊗V

〉
= 1

2

〈
S1⊗H+ S2⊗V|P∆yS1⊗H+ P∆yS2⊗V

〉
= 1

2 [
〈
S1⊗H|P∆yS1⊗H

〉
+
〈
S1⊗H|P∆yS2⊗V

〉
+
〈
S2⊗V|P∆yS1⊗H

〉
+
〈
S2⊗V|P∆yS2⊗V

〉
]

= 1
2 [
〈
S1|P∆yS1

〉
〈H|H〉+

〈
S1|P∆yS2

〉
〈H|V〉

+
〈
S2|P∆yS1

〉
〈V|H〉+

〈
S2|P∆yS2

〉
〈V|V〉]

= 1
2

[〈
S1|P∆yS1

〉
+
〈
S2|P∆yS2

〉]
= average of separate slot probabilities.
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Interference removed by H,V polarizer
markings: II

h

v

+45o

Figure 2: Mush pattern with interference eliminated by
which-way markings
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Interference removed by H,V polarizer
markings: III

• The key step is how the orthogonal polarization markings
decohered the state since 〈H|V〉 = 0 = 〈V|H〉 and thus
eliminated the interference between the S1 and S2 terms.

• The state-reduction occurs only when the evolved
superposition state hits the far wall which measures the
positional component (i.e., P∆y) of the composite state and
shows the non-interference pattern.
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"Erasing" the markings: I

• The key point is that in spite of the bad terminology of
"which-way" or "which-slit" information, the polarization
markings do NOT create a half-half mixture of horizontally
polarized photons going through slit 1 and vertically
polarized photons going through slit 2. It creates the
(incoherent) superposition state 1√

2
[|S1〉 ⊗ |H〉+ |S2〉 ⊗ |V〉].

• This can be verified by inserting a +45◦ polarizer between
the two-slit screen and the far wall.
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"Erasing" the markings: II

+45o+45o

Figure 3: Fringe interference pattern produced by +45◦

polarizer

David Ellerman (UCR) Two-Slit Quantum Eraser Example January 2012 14 / 23



"Erasing" the markings: III
• Each of the horizontal and vertical polarization states can

be represented as a superposition of +45◦ and −45◦

polarization states. Just as the horizontal polarizer in front
of slit 1 threw out the vertical component so we have no
|S1〉 ⊗ |V〉 term in the superposition, so now the +45◦

polarizer throws out the −45◦ component of each of the |H〉
and |V〉 terms so the state transformation is:

1√
2
[|S1〉 ⊗ |H〉+ |S2〉 ⊗ |V〉]

→ 1√
2
[|S1〉 ⊗ |+45◦〉+ |S2〉 ⊗ |+45◦〉] =

1√
2
(|S1〉+ |S2〉)⊗ |+45◦〉.

• It might be useful to again go through the calculation in
some detail.
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"Erasing" the markings: IV
1 |H〉 = (|+45◦〉 〈+45◦|+ |−45◦〉 〈−45◦|) |H〉 =
〈+45◦|H〉 |+45◦〉+ 〈−45◦|H〉 |−45◦〉 and since a horizontal
vector at 0◦ is the sum of the +45◦ vector and the −45◦

vector, 〈+45◦|H〉 = 〈−45◦|H〉 = 1√
2

so that:

|H〉 = 1√
2
[|+45◦〉+ |−45◦〉].

2 |V〉 = (|+45◦〉 〈+45◦|+ |−45◦〉 〈−45◦|) |V〉 =
〈+45◦|V〉 |+45◦〉+ 〈−45◦|V〉 |−45◦〉 and since a vertical
vector at 90◦ is the sum of the +45◦ vector and the negative
of the −45◦ vector, 〈+45◦|V〉 = 1√

2
and 〈−45◦|V〉 = − 1√

2
so

that: |V〉 = 1√
2
[|+45◦〉 − |−45◦〉].

• Hence making the substitutions gives:
1√
2
[|S1〉 ⊗ |H〉+ |S2〉 ⊗ |V〉]

= 1√
2

[
|S1〉 ⊗ 1√

2
[|+45◦〉+ |−45◦〉]

+ |S2〉 ⊗ 1√
2
[|+45◦〉 − |−45◦〉]

]
.
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"Erasing" the markings: V

• We then regroup the terms according to the measurement
being made by the 45◦ polarizer:

= 1√
2

[ 1√
2
[|S1〉 ⊗ |+45◦〉+ |S2〉 ⊗ |+45◦〉]

+ 1√
2
[|S1〉 ⊗ |+45◦〉 − |S2〉 ⊗ |−45◦〉]

]
= 1

2 (|S1〉+ |S2〉)⊗ |+45◦〉+ 1
2 (|S1〉 − |S2〉)⊗ |−45◦〉.

• Then with probability
(1

2

)2
+
(1

2

)2
= 1

2 , the +45◦

polarization measure passes the state
(|S1〉+ |S2〉)⊗ |+45◦〉 and blocks the state
(|S1〉 − |S2〉)⊗ |−45◦〉. Hence the normalized state that
evolves is: 1√

2
(|S1〉+ |S2〉)⊗ |+45◦〉, as indicated above.
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"Erasing" the markings: VI
• Then at the wall, the positional measurement P∆y of the first

component is the evolved superposition |S1〉+ |S2〉 which
again shows an interference pattern. But it is not the same
as the original interference pattern before H, V or +45◦

polarizers were inserted. This "shifted" interference pattern
is called the fringe pattern of figure 3.

• Alternatively we could insert a −45◦ polarizer which
would transform the state 1√

2
[|S1〉 ⊗ |H〉+ |S2〉 ⊗ |V〉] into

1√
2
(|S1〉+ |S2〉)⊗ |−45◦〉 which produces the interference

pattern from the "other half" of the photons and which is
called the anti-fringe pattern.

• The all-the-photons sum of the fringe and anti-fringe
patterns reproduces the "mush" non-interference pattern of
Figure 2.
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"Erasing" the markings: VII

45o+45o

Figure 4: Anti-fringe interference pattern produced by −45◦

polarizer
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Interpreting the Quantum Eraser: I

• This is one of the simplest examples of a quantum eraser
experiment.

1 The insertion of the horizontal and vertical polarizers marks
the photons with "which-slot" information that eliminates
the interference pattern.

2 The insertion of a +45◦ or −45◦ polarizer "erases" the
which-slot information so an interference pattern reappears.

• But there is a mistaken interpretation of the quantum
eraser experiment that leads one to infer that there is
retrocausality. Woo-woo. The incorrect reasoning is as
follows:
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Interpreting the Quantum Eraser: II

1 The markings by insertion of the horizontal and vertical
polarizers creates the half-half mixture where each photon is
reduced to either a horizontally polarized photon going
through slit 1 or a vertically polarized photon going through
slit 2. Hence the photon "goes through one slit or the other."
[Fail!]

2 The insertion of the +45◦ polarizer erases that which-slot
information so interference reappears which means that the
photon had to "go through both slits."

3 Hence the delayed choice to insert or not insert the +45◦

polarizer–after the photons have traversed the screen and
H, V polarizers–retrocauses the photons to either:

• go through both slits, or
• to only go through one slit or the other.
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Interpreting the Quantum Eraser: III

• Now we can see the importance of realizing that prior to
inserting the +45◦ polarizer, the photons were in the
superposition state 1√

2
[|S1〉 ⊗ |H〉+ |S2〉 ⊗ |V〉], not a

half-half mixture of the reduced states |S1〉 ⊗ |H〉 or
|S2〉 ⊗ |V〉.

• The proof that the system was not in that mixture is
obtained by inserting the +45◦ polarizer which yields the
(fringe) interference pattern.

1 If a photon had been, say, in the state |S1〉 ⊗ |H〉 then, with
50% probability, the photon would have passed through the
filter in the state |S1〉 ⊗ |+45◦〉, but that would not yield any
interference pattern at the wall since their was no
contribution from slit 2.
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Interpreting the Quantum Eraser: IV
2 And similarly if a photon in the state |S2〉 ⊗ |V〉 hits the
+45◦ polarizer.

• The fact that the insertion of the +45◦ polarizer yielded
interference proved that the incident photons were in a
superposition state 1√

2
[|S1〉 ⊗ |H〉+ |S2〉 ⊗ |V〉] which, in

turn, means there was no "going through one slit or the
other" in case the +45◦ polarizer had not been inserted.

• Thus a correct interpretation of the quantum eraser
experiment removes any inference of retrocausality and fully
accounts for the experimentally verified facts given in the
figures. See the treatment on my mathblog:

http://www.mathblog.ellerman.org/2011/11/a-common-qm-
fallacy/.
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Scully’s Maser Quantum Eraser: I

• The Scully maser eraser [Scully et al. 1991. Quantum
optical tests of complementarity. Nature. 351 (May 9, 1991)]
follows the same logic as the simpler eraser based on
polarizers except that it allows the eraser to be applied after
the hit at the wall–which appears to make a stronger case for
retrocausality. The Walborn et al. quantum eraser model is,
as they explicitly state, an optical realization of Scully’s
suggested model using masers (Walborn et al. 2002.
Double-slit quantum eraser. Physical Review A. 65 (3)).

• We will present the formulas for maser case parallel to the
previous formulas for the simple polarizer model, while
allowing for the retro-application of the eraser.
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Scully’s Maser Quantum Eraser: II

Scully Figure 3
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Scully’s Maser Quantum Eraser: III
• Start with Figure 3 but first suppose the laser and maser are

not there so we only have a two-slit superposition state
Ψ (r) = 1√

2
[ψ1 (r) + ψ2 (r)], Scully’s formula (2) which is

like the formula 1√
2
[|S1〉+ |S2〉].

• The probability of a particle falling at R is given by Scully’s
formula (3):

P (R) =
1
2

[
|ψ1 (R)|

2 + |ψ2 (R)|
2 + ψ1 (R)

∗ ψ2 (R) + ψ2 (R)
∗ ψ1 (R)

]
which is his version of the polarizer-model formula:

1
2 [
〈
S1|P∆yS1

〉
+
〈
S2|P∆yS2

〉
+
〈
S1|P∆yS2

〉
+
〈
S2|P∆yS1

〉
].
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Scully’s Maser Quantum Eraser: IV

• Then in Figure 3, Scully introduces the laser (but not the
maser cavities) which excites the incoming atoms so he
moves up to the tensor product of positional space
("centre-of-mass coordinates") and the internal state of the
atom. Then his formula (4) is (where I have taken the
freedom to always insert the tensor product symbol ⊗):

Ψ (r) = 1√
2
[ψ1 (r) + ψ2 (r)]⊗ |i〉

which is analogous to the polarizer-model formula after
introducing the first 45◦ polarizer:

1√
2
[|S1〉+ |S2〉]⊗ |45◦〉.
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Scully’s Maser Quantum Eraser: V

• This again yields an interference pattern as indicated by
Scully’s formula (5):

P (R) = 1
2

[
|ψ1|

2 + |ψ2|
2 + ψ1

∗ψ2 + ψ2
∗ψ1

]
〈i|i〉

where the analogous formula would be:

1
2 [
〈
S1|P∆yS1

〉
+
〈
S2|P∆yS2

〉
+
〈
S1|P∆yS2

〉
+〈

S2|P∆yS1
〉
] 〈45◦|45◦〉.
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Adding the which-way markers: I

• Scully then puts in two maser cavities in front of the two
slits as in his Figure 3 analogous to putting the H, V
polarizers just after the slits (they could have been in front).
The top cavity is 1 and the bottom cavity is 2. The idea is
that as an atom passes through a cavity it may emit a
photon so |1102〉 represents the state of 1 photon in cavity 1
and 0 photons in cavity 2, and similarly for |0112〉
representing a photon in the second cavity. This again
expands the Hilbert space with the two photon-in-cavity
states which serve as the which-way markings. The atom’s
state is excited to |b〉. Hence after a particle passes through
the masers and slits, its superposition state is Scully’s
formula (6):
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Adding the which-way markers: II
Ψ (r) = 1√

2
[ψ1(r)⊗ |1102〉+ ψ2 (r)⊗ |0112〉]⊗ |b〉

which, aside from the extra |b〉 state, is Scully’s version of
polarization-model’s post-markings formula:

1√
2
(|S1〉 ⊗ |H〉+ |S2〉 ⊗ |V〉).

• That markings-step was key in both arguments and it is the
source of some confusion that later leads to inferences of
retrocausality.

• The common-sense assumption is that the atom has to go
through one maser chamber or the other so there is a
tell-tale photon in one or the other and we just don’t know
which. This mental imagery of the tell-tale photon being,
premeasurement, in one cavity or the other is wrong.
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Adding the which-way markers: III
• Similarly it might be thought that marking the slits with the

different polarizers caused each photon to be either
horizontally polarized or vertically polarized.

• I n either case, the system would then be in a 50, 50 mixture.
• But it is NOT a mixture. In both cases, the system is in a

superposition state, e.g., Scully’s formula (6).
• In Scully’s case, there is an entangled state where "slit 1 &

photon in cavity 1" is superposed with "slit 2 & photon in
cavity 2".

• In the polarization model, there is the entangled state
where "slit 1 & H" is superposed with "slit 2 & V".

• Then in either case, we redo the probability calculations
and we find in both cases that the which-way markings
suffice to eliminate the cross-terms and the interference.
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Adding the which-way markers: IV
• In Scully’s model, the probability formula (7) is:

P (R) =
1
2

[
|ψ1|

2 + |ψ2|
2 + ψ∗1ψ2 〈1102|0112〉+ ψ∗2ψ1 〈0112|1102〉

]
〈b|b〉

where since 〈1102|0112〉 = 0 = 〈0112|1102〉, the interference
terms drop out so we get the no-fringes formula (8):

P (R) = 1
2

[
|ψ1|

2 + |ψ2|
2
]
.

• In the polarization model, the probability formula is:

1
2 [
〈
S1|P∆yS1

〉
〈H|H〉+

〈
S2|P∆yS2

〉
〈V|V〉+

〈
S1|P∆yS2

〉
〈H|V〉+〈

S2|P∆yS1
〉
〈V|H〉]
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Adding the which-way markers: V

where since 〈H|V〉 = 0 = 〈V|H〉, the interference terms drop out
so we get the no-fringes formula:

1
2

[〈
S1|P∆yS1

〉
+
〈
S2|P∆yS2

〉]
.
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Introducing the quantum eraser: I

• Scully then introduces the "eraser" element that is
analogous to introducing either a +45◦ or −45◦ polarizer
before the wall. But the details are quite different.

• In the positional coordinates, Scully introduces a change of
basis to:
• Symmetric state: ψ+ (r) =

1√
2
[ψ1 (r) + ψ2 (r)] which is

analogous to 1√
2
[|S1〉+ |S2〉] in the polarization model, and

• Antisymmetric state: ψ− (r) =
1√
2
[ψ1 (r)− ψ2 (r)] which is

analogous to 1√
2
[|S1〉 − |S2〉].

• Scully also introduces a change of basis for the maser states:
• |+〉 = 1√

2
[|1102〉+ |0112〉] which is analogous to

|+45◦〉 = 1√
2
[|H〉+ |V〉] and
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Introducing the quantum eraser: II

• |−〉 = 1√
2
[|1102〉 − |0112〉] which is analogous to

|−45◦〉 = 1√
2
[|H〉 − |V〉].

• Then shutters and a detector are placed between the
chambers as in Figure 5. When the shutters are closed, there
is no "erasure" as when no final +45◦ or −45◦ polarizers are
inserted in the polarization model and the mush pattern is
observed.

David Ellerman (UCR) The Scully Maser Eraser February 2012 13 / 34



Introducing the quantum eraser: III
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Introducing the quantum eraser: IV
• When the shutters are open, then the detector is a

measurement of the |+〉 or |−〉 states.
• The detector state |e〉 is the excited state that registers |+〉;
• The detector state |d〉 is the de-excited state registering |−〉.

• Prior to opening the shutters, the detector is in the neutral
state which is also |d〉. Then adding another component to
the composite system to represent the detector, the formula
(6)

Ψ (r) = 1√
2
[ψ1(r)⊗ |1102〉+ ψ2 (r)⊗ |0112〉]⊗ |b〉

is transformed in the new bases and with the new component
into Scully’s formula (12):

Ψ (r) = 1√
2

[
ψ+(r)⊗ |+〉+ ψ− (r)⊗ |−〉

]
⊗ |b〉 ⊗ |d〉.
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Introducing the quantum eraser: V
• When the shutters are open, so the maser chambers interact

with the detector, then the new state is given by Scully’s
formula (13):

Ψ (r) = 1√
2

[
ψ+(r)⊗ |0102〉 ⊗ |e〉+ ψ− (r)⊗ |−〉 ⊗ |d〉

]
⊗ |b〉.

• If there is no measurement to collapse to the |e〉 portion or
the |d〉 portion of the entangled state (i.e., shutters closed),
then the probability distribution at the wall is the usual
mush pattern with no interference.

• On an atom-by-atom basis, we can first make a positional
measurement by observing a hit at the wall and then make
another measurement by opening the shutters and
observing the detector:
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Introducing the quantum eraser: VI
• If the detector state is |e〉, the hit on the wall is labeled

"yes-atom."
• If the detector state is |d〉, the hit on the wall is labeled

"no-atom."

• After recording much data, the yes-atoms will show the
fringe interference pattern of formula (15):

Pe (R) = 1
2

[
|ψ1 (R)|

2 + |ψ2 (R)|
2
]
+ Re(ψ1

∗ (R)ψ2 (R)).

In the polarizer model, inserting the +45◦polarizer gives the
state 1√

2
[|S1〉+ |S2〉]⊗ |+45◦〉 so the corresponding probability

formula is: (using 〈45◦|45◦〉 = 1)

1
2 [
〈
S1|P∆yS1

〉
+
〈
S2|P∆yS2

〉
] + Re

(〈
S1|P∆yS2

〉)
.
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Introducing the quantum eraser: VII

• In both cases, the fringe is like the original interference
pattern.

• After recording much data, the no-atoms will show the
antifringe interference pattern of formula (16):

Pd (R) = 1
2

[
|ψ1 (R)|

2 + |ψ2 (R)|
2
]
− Re(ψ1

∗ (R)ψ2 (R)).

In the polarizer model, inserting the −45◦ gives the state
1√
2
(|S1〉 − |S2〉)⊗ |−45◦〉 so the probability calculation for the

anti-fringe pattern is:
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Introducing the quantum eraser: VIII

1
2

〈
(S1− S2)⊗−45◦|P∆y ⊗ I| (S1− S2)⊗−45◦

〉
= 1

2

〈
(S1− S2)⊗−45◦|

(
P∆yS1− P∆yS2

)
⊗−45◦

〉
= 1

2 [
〈
S1|P∆yS1

〉
−
〈
S1|P∆yS2

〉
−
〈
S2|P∆yS1

〉
+〈

S2|P∆yS2
〉
] 〈−45◦| − 45◦〉

= 1
2 [
〈
S1|P∆yS1

〉
+
〈
S2|P∆yS2

〉
]− Re

(〈
S2|P∆yS1

〉)
.

[analogue of (16) above]

• The sum of the fringe and antifringe patterns gives the
original mush pattern in both models.
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The extra Scully-Walborn mystery
• In the polarizer model, the hit at the wall was after either a
±45◦ polarizer inserted so we can easily visualize each filter
picking out one pattern or the other out of the mush.

• But in the maser model, the analogue to putting in a ±45◦

filter is the measurement of the detector which can happen
AFTER the hit at the wall. Isn’t that retrocausality?

• How does an atom know where to land if only the future
event of the detector registering a "yes" or "no" determines
if it is in the fringe or antifringe pattern? Thus the detector
event seems to retrocause the atom to be in one pattern or
the other.

• Doesn’t this show that the Scully maser model (and the
isomorphic Walborn model) exhibit genuine retrocausality,
unlike the simpler polarizer model (where the ±45◦

polarizer does the fringe-antifringe filtering before the hit at
the wall)?



Order of measuring two components does
not matter: I

• The answer to this additional puzzle in the Scully and
Walborn models lies in seeing that the time-ordering of the
measurements does not alter the final probability
distribution–as was pointed out by Bram Gaasbeek in a
recent 2010 paper: Demystifying the Delayed Choice
Experiments. [quant-ph] arXiv:1007.3977v1.

• The irrelevance of time-order of these measurements is the
QM version of the probability theory result that given a
joint distribution Pr (X, Y) over random variables X, Y, one
can arrive at the same probability Pr (X = x0, Y = y0) by
first sampling Y to get y0 with probability
Pr (Y = y0) = ∑x Pr (X = x, Y = y0), and taking the
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Order of measuring two components does
not matter: II

probability of getting X = x0 conditional on Y = y0:
Pr (X = x0|Y = y0) = Pr (X = x0, Y = y0) / Pr (Y = y0) or
the reverse sequence. Either way, the result is the same:

Pr (X = x0, Y = y0) = Pr (X = x0|Y = y0)Pr (Y = y0)

= Pr(Y = y0|X = x0)Pr (X = x0) .
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Order of measuring two components does
not matter: III

• Gaasbeek gives the quantum version: given a state
|ψ〉 = ∑ij αij |i〉 ⊗ |j〉 in a two-component system, the
probability that a measurement on the first component
yields |i0〉 is Pr (i = i0) = ∑j |αi0j|2 and similarly
Pr (j = j0) = ∑i |αij0 |2 for a measurement on the second
component.

• If we first measure the second component and get |j0〉, then
the state collapses as:

|ψ〉 → |ψ′〉 = ∑i αij0 |i〉 ⊗ |j0〉 / ∑i |αij0 |2.

Then starting in the state |ψ′〉, the probability of a first
component measurement giving |i0〉 is:
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Order of measuring two components does
not matter: IV

Pr (i = i0|j = j0) = |αi0j0 |2/ ∑i |αij0 |2.

• If we perform the measurements in the opposite order, then
we find;

Pr (j = j0|i = i0) = |αi0j0 |2/ ∑j |αi0j|2

so that:

Pr (i = i0, j = j0) = Pr (i = i0|j = j0)Pr (j = j0)
= Pr (j = j0|i = i0)Pr (i = i0) .
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Order of measuring two components does
not matter: V

• While this result is simple and well-known, Gaasbeek’s
contribution is to use it to eliminate the last bit of
retrocausal mystery out of the Scully maser or Walborn
optical models. Applying this result to the Scully model, it
means that the probability of the joint event of hitting the
wall in region r and getting an excited reading |e〉 is the
same regardless of the order in which we took the
measurements. Thus instead of reading the detector after
the atom hit the wall at some r, we could have read the
detector while the atom was in flight before it hit the wall
without changing the statistical correlations.
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Explaining the mystery: I

• With either order of doing the measurements, what counts
are the correlations:

|e〉 ←→"yes" hit at wall = fringe, and
|d〉 ←→"no" hit at wall = antifringe.

• The key formula is Scully’s formula (13):

Ψ (r) = 1√
2

[
ψ+(r)⊗ |0102〉 ⊗ |e〉+ ψ− (r)⊗ |−〉 ⊗ |d〉

]
⊗ |b〉.
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Explaining the mystery: II

The two either-order events are |e〉 , |d〉measurements and
hit-the-wall at r (for different r’s) measurements. The detector
states are not entangled with specific positions r (so the atom
does not jump from a hit in the fringe pattern to an antifringe hit
or vice-versa). It is entangled with the symmetric ψ+(r) or
antisymmetric ψ− (r) states–which give the fringe and
antifringe distributions respectively.

• Correlating the |e〉 readings, atom by atom, with the hits,
i.e., the yes-atoms, will single out hits following the ψ+ (r)
state’s fringe-distribution, which is analogous to
"correlating" the photons that went through the +45◦ filter
with the evolved 1√

2
[|S1〉+ |S2〉] distribution.
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Explaining the mystery: III
• Correlating the |d〉 readings with the no-atoms hits singles

out the hits following the ψ− (r) state’s
antifringe-distribution, which is analogous to "correlating"
the photons that went through the −45◦ filter with the
evolved 1√

2
[|S1〉 − |S2〉] distribution.

• Thus one should exorcise any mental imagery of a detector
reading retrocausing the wall hit to be in the appropriate
pattern. What counts to build up the interference patterns is
the joint probabilities:

Pr[detector = e, hit = r according to ψ+ (r)], and
Pr[detector = d, hit = r according to ψ− (r)]

and those probabilities are the same regardless of the order of
measurement.
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Explaining the mystery: IV

• Neither Scully nor Walborn developed the formula that
would show the entanglement between the direct position
measurement of r and the detector states |e〉 and |d〉–only
the formula (13) entanglement between the detector states
and the distributions given by ψ+ (r) and ψ− (r).

• But formula (13) can be used to tell the corrections between
r and detector states.

• If we first take the detector measurement while the atom
was in flight, then, say, a |d〉 reading would, via the
entanglement, cause the later hit-probabilities to be
according to ψ− (r), and that would accordingly increase
the probability of getting a peak-r in the ψ− (r) anti-fringe
pattern and decrease the probability of a valley-r in the
ψ+ (r) fringe pattern.
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Explaining the mystery: V

• By the result that the order of measurement does not
matter, if the atom first hits at a position r that is in a valley
of the fringe distribution and at a peak of the anti-fringe
distribution, then, via the entanglement, that will
accordingly change the probabilities of the later detector
measurement giving |e〉 (less probability) or |d〉 (more
probability).

• Thus Scully’s procedure of marking the hits "yes" or "no"
according to the detector readings |e〉 or |d〉 will tend to
respectively pick out two statistical patterns of the fringe
and antifringe.
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Explaining the mystery: VI
• There is another way to make the point clear. Instead of the

statistical patterns, fringe and antifringe, suppose we
simplify to a rigid separation of probability slices so that the
sum of the + slices gives the probability of the ψ+ state and
the sum of the − slices gives the probability of the ψ− state.

+ + + ++++ − − − − −−−− ++
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Explaining the mystery: VII
• The r-dependence is transformed into a two-way possibility

of getting ψ+ or ψ− so Scully’s formula (13) becomes:
Ψ = 1√

2

[
ψ+ ⊗ |0102〉 ⊗ |e〉+ ψ− ⊗ |−〉 ⊗ |d〉

]
⊗ |b〉.

• Then we have a rigid entanglement ψ+ ⊗ |e〉+ ψ− ⊗ |d〉
and the order of measuring the detector state |e〉 , |d〉 or the
ψ± state does not matter.

• If a ψ+ was first recorded, then the entanglement would not
only change the probability but would ensure the later
detector reading of |e〉, and vice-versa.

• If a ψ− was first recorded, then the entanglement would
ensure the later detector reading of |d〉, and vice-versa.

• In the actual model, these rigid connections are replaced by
the probability distributions ψ+ (r) and ψ− (r).
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Scully resolution of the "Jaynes Paradox": I

• It is important to note that Scully et al. point out that their
proposed quantum eraser does not involve the
retrocausality that occasioned the remarkable rant by
Jaynes:

"By applying or not applying the eraser mechanism before measuring the
state of the microwave cavities we can, at will, force the atomic beam into
either: (1) a state with a known path, and no possibility of interference effects
in any subsequent measurement; (2) a state with both ψ1 and ψ2 present
with a known relative phase. Interference effects are then not only
observable, but predictable. And we can decide which to do after the
interaction is over and the atom is far from the cavities, so there can be no
thought of any physical influence on the atom’s centre-of-mass
wavefunction!"

David Ellerman (UCR) The Scully Maser Eraser February 2012 33 / 34



Scully resolution of the "Jaynes Paradox": II

"...I say that [present quantum theory] constitutes a violent irrationality, that
somewhere in this theory the distinction between reality and our knowledge
of reality has become lost, and the result has more the character of medieval
necromancy than of science." [Edwin Jaynes, quoted in Scully et al. 1991, p.
114] ["necromancy" = "a method of divination through invocation of the
dead" (Webster)]

• But Scully et al. point out that their model does NOT
involve any such retrocausality (not to mention,
necromancy) since by correlating the "yes"-atoms with the
|e〉 readings and the "no"-atoms with the |d〉 readings, they
can statistically bring out the fringe or antifringe patterns.

• "In this way, we have resolved the ’Jaynes Paradox.’"
[Scully et al. 1991, p. 115]
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Review of Shannon and Logical Entropies:

• Assume distributions {px} and {qx} are over same indices.
When given joint distribution Pr (X = x, Y = y) = pxy, then
px = ∑y pxy and py = ∑x pxy are the marginals.

h(X,Y) = Σxypxy(1−pxy)H(X,Y) = Σxypxylog(1/pxy)Joint entropy
m(X,Y) = h(X)+h(Y)−h(X,Y)H(X:Y) = H(X)+H(Y)−H(X,Y)Mutual info.
m(X,Y) = h(X)h(Y)H(X,Y) = H(X) + H(Y)Independence

d(p||q) ≥ 0 with = iff pi = qi all i.D(p||q) ≥ 0 with = iff pi = qi all i.Information Ineq.
d(px||qx) = Σx(px− qx)2D(px||qx) = Σxpxlog(px/qx)Divergence
h(px||qx) = Σpx(1− qx)H(px||qx) = Σpxlog(1/qx)Cross entropy
11/nlog(n)Uniform 1/n
h(px) =Σxpx(1−px)H(px) =Σxpxlog(1/px)Entropy
Logical EntropyShannon Entropy

h(X,Y) = Σxypxy(1−pxy)H(X,Y) = Σxypxylog(1/pxy)Joint entropy
m(X,Y) = h(X)+h(Y)−h(X,Y)H(X:Y) = H(X)+H(Y)−H(X,Y)Mutual info.
m(X,Y) = h(X)h(Y)H(X,Y) = H(X) + H(Y)Independence

d(p||q) ≥ 0 with = iff pi = qi all i.D(p||q) ≥ 0 with = iff pi = qi all i.Information Ineq.
d(px||qx) = Σx(px− qx)2D(px||qx) = Σxpxlog(px/qx)Divergence
h(px||qx) = Σpx(1− qx)H(px||qx) = Σpxlog(1/qx)Cross entropy
11/nlog(n)Uniform 1/n
h(px) =Σxpx(1−px)H(px) =Σxpxlog(1/px)Entropy
Logical EntropyShannon Entropy
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von Neumann and Logical Entropies:

• Let ρ and σ be mixed states.

d(ρ||σ) ≥ 0S(ρ||σ) ≥ 0Information Ineq.
h(ρ⊗σ) = h(ρ)[1−h(σ)]+h(σ)S(ρ⊗σ) = S(ρ) +  S(σ)Tensor product

h(ρ) = 1−Σri
2S(ρ) = Σrilog(1/ri)ρ = Σri|i〉〈i|

h(σ) = 1−Σsj
2S(σ) = Σsjlog(1/sj)σ = Σsj|j〉〈j|

h(ρ) = 0S(ρ) = 0Pure ρ = |ψ〉〈ψ|

d(ρ||σ) = tr[(ρ − σ)2]S(ρ||σ) = tr[ρlog(ρ)−ρlog(σ)]Divergence
1−1/nlog(n)Compl. mixed I/n

h(ρ) = tr(ρ(1−ρ)) = 1−tr(ρ2)S(ρ) = −tr(ρlog(ρ))Entropy
Logical Entropyvon Neumann Entropy

d(ρ||σ) ≥ 0S(ρ||σ) ≥ 0Information Ineq.
h(ρ⊗σ) = h(ρ)[1−h(σ)]+h(σ)S(ρ⊗σ) = S(ρ) +  S(σ)Tensor product

h(ρ) = 1−Σri
2S(ρ) = Σrilog(1/ri)ρ = Σri|i〉〈i|

h(σ) = 1−Σsj
2S(σ) = Σsjlog(1/sj)σ = Σsj|j〉〈j|

h(ρ) = 0S(ρ) = 0Pure ρ = |ψ〉〈ψ|

d(ρ||σ) = tr[(ρ − σ)2]S(ρ||σ) = tr[ρlog(ρ)−ρlog(σ)]Divergence
1−1/nlog(n)Compl. mixed I/n

h(ρ) = tr(ρ(1−ρ)) = 1−tr(ρ2)S(ρ) = −tr(ρlog(ρ))Entropy
Logical Entropyvon Neumann Entropy
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Interpretation of logical entropy: I

• The interpretation of the classical logical entropy
h(p) = 1−∑i p2

i of a probability distribution p = {pi} is the
probability of drawing a distinction i 6= i′ in two
independent samplings of the distribution.

• The interpretation of the quantum logical entropy
h (ρ) = 1− tr

(
ρ2) of a mixed state ρ = ∑i ri |i〉 〈i|

(orthogonal decomposition) is the probability of getting
distinct eigenstates |i〉 6= |i′〉 in two independent
measurements of ρ (using the {|i〉}measurement basis), i.e.,
the total distinction probability.

David Ellerman (UCR) Quantum entropies February 2012 4 / 24



Interpretation of logical entropy: II

• The interpretation can be expressed without using the
orthogonal decomposition so we start with
ρ = ∑i pi |ψi〉 〈ψi|. Then ρ represented in any basis {|m〉}
has the entries: ρmm′ = ∑i pi 〈m|ψi〉 〈ψi|m′〉 which can be
interpreted as the amplitude for m to be indistinct from m′,
the m, m′ indistinction amplitude. Then the mth diagonal
element of ρ2 is:(

ρ2)
mm = ∑d

m′=1 ρmm′ρm′m = (ρmm)
2 +∑m′ 6=m |ρmm′ |

2.

• Note that every |ρmm′ |
2 for ρmm′ an entry in ρ is included

just once in:
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Interpretation of logical entropy: III

tr
(
ρ2) = ∑m

(
ρ2)

mm = ∑m ρ2
mm +∑m ∑m′ 6=m |ρmm′ |

2

tr
(
ρ2) = ∑m,m′ |ρmm′ |

2

sum of indistinction probabilities.

• Thus the quantum logical entropy is again:

h (ρ) = 1− tr
(
ρ2)

sum of distinction probabilities.
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Interpreting coherence terms as indistinction
amplitudes: I

• Consider any pure state ρ = |ψ〉 〈ψ|. The general
three-dimensional case is illustrative:

|ψ〉 = α1 |1〉+ α2 |2〉+ α3 |3〉 so: ρ =

α1α∗1 α1α∗2 α1α∗3
α2α∗1 α2α∗2 α2α∗3
α3α∗1 α3α∗2 α3α∗3

.

• The diagonal term ρm = αmα∗m is the probability that a
{|m〉}-basis measurement of the state |ψ〉 will result in the
eigenstate |m〉.

• The probability ρmρm′ = αmα∗mαm′α
∗
m′ is the probability that

two independent measurements would result in the pair of
eigenstates (|m〉 , |m′〉).
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Interpreting coherence terms as indistinction
amplitudes: II

• The off-diagonal coherence term ρmm′ of ρ is the amplitude
αmα∗m′ = 〈m|ψ〉 〈ψ|m′〉 for ψ to superpose or be indistinct
between m and m′, whose corresponding probability

|ρmm′ |
2 = ρmm′ρm′m = αmα∗m′αm′α

∗
m = αmα∗mαm′α

∗
m′ = ρmρm′

probability of two measurements giving pair (|m〉 , |m′〉).

• Now in the pure state ρ = |ψ〉 〈ψ|, no distinctions or
measurements have been made yet, so all the amplitudes
giving pair-probabilities are interpreted as indistinction
amplitudes.

• In a pure state, since there are no distinctions, all the
indistinction probabilities sum to 1 so:
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Interpreting coherence terms as indistinction
amplitudes: III

• tr
(
ρ2) = ∑m,m′ |ρmm′ |

2 = 1, and
• h (ρ) = 1− tr

(
ρ2) = 0 for any pure state ρ.

• Thus the coherence terms ρmm′ in any pure density matrix
ρ = |ψ〉 〈ψ| can be interpreted as the amplitudes for the
indistinction probabilities ρmρm′ (the ρm = ρmm being the
diagonal entries).

• In a general mixed state density matrix ρ = ∑i pi |ψi〉 〈ψi|,
that interpretation in each pure state |ψi〉 〈ψi| is weighted
by a probability pi. The general entries ρmm′ are thus
weighted-amplitudes and the corresponding indistinction
probabilities give:
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Interpreting coherence terms as indistinction
amplitudes: IV

tr
(
ρ2) = ∑m,m′ |ρmm′ |

2

Sum of indistinction probabilities.

• But distinctions have to be made for a pure state to give a
mixed state so the sum of the indistinction probabilities will
not in general be one, and the complementary sum of
distinction probabilities is the logical entropy:

h (ρ) = 1− tr
(
ρ2)

Total of distinction probabilities.
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Classical to quantum logical entropy: I

• Given an index set U = {1, 2, 3} with the probabilities
p = {p1, p2, p3}, the probability of drawing the ordered pair
(i, j) in a pair of independent draws is pipj.

• Given a partition π on U, the logical entropy h (π) of the
partition is probability of drawing a distinction, which is
1− probability of drawing an indistinction.

1 If π = {U} = 0, the indiscrete or blob partition, then any
drawn pair is an indistinction so the total indistinction
probability is 1, and the logical entropy is h (0) = 0.

2 If π = {{1} , {2} , {3}} = 1, the discrete partition, then only
the diagonal pairs (i, i) are indistinctions to the total
indistinction probability is p2

1 + p2
2 + p2

3 and the logical
entropy is h (1) = 1−∑i p2

i . In the equiprobable case,
h (1) = 1−

( 1
9 +

1
9 +

1
9

)
= 1− 1

3 =
2
3 .
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Classical to quantum logical entropy: II

To make the QM connection clearest, we construct the
corresponding quantum example:

• Instead of the set U = {1, 2, 3}, we start with an
orthonormal basis set {|1〉 , |2〉 , |3〉} where each basis
element |i〉 has an associated amplitude

√
pi.

1. In the state |ψ〉 where each basis vector is superposed with
its amplitude |ψ〉 = √p1 |1〉+

√
p2 |2〉+

√
p3 |3〉, the pure

state density matrix is:

ρ = |ψ〉 〈ψ| =

 p1
√

p1
√

p2
√

p1
√

p3√
p2
√

p1 p2
√

p2
√

p3√
p3
√

p1
√

p3
√

p2 p3

.
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Classical to quantum logical entropy: III

The sum of the indistinction probabilities corresponding to the
indistinction amplitudes is:

tr
(
ρ2) = ∑i,j

∣∣∣ρij

∣∣∣2 = ∑i,j

(√pipj
√pjpi

)
= ∑i,j pipj = 1 so

h (ρ) = 1− tr (ρ2) = 0.

2. In a nondegenerate measurement of ρ, we get the eigenstate
|i〉 with probability

(√
pi
)2
= pi, so the measurement results

can be described as the mixed state
p1 |1〉 〈1|+ p2 |2〉 〈2|+ p3 |3〉 〈3| with the density matrix:

ρ′ =

p1 0 0
0 p2 0
0 0 p3

. Since the measurement was

nondegenerate ("discrete"), the only indistinction
probabilities are the diagonal terms p2

1 + p2
2 + p2

3 so the
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Classical to quantum logical entropy: IV
logical entropy is: h (ρ′) = 1−

(
p2

1 + p2
2 + p2

3
)
, which in the

equi-amplitude completely mixed case is:
h (ρ′) = 1− 1

3 =
2
3 .

• A nondegenerate measurement distinguishes between the
eigenstates |i〉 so it converts all the off-diagonal coherence
terms, which represented indistinction probabilities in the
pure state, into distinction probabilities in the mixed state
giving the measurement results. All those off-diagonal
coherence terms in the pure state ρ became 0 due to the
decohering measurement in ρ′:

ρ =

 p1
√

p1p2
√

p1p3√
p2p1 p2

√
p2p3√

p3p1
√

p3p2 p3

 meas.−→ ρ′ =

p1 0 0
0 p2 0
0 0 p3

.
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Classical to quantum logical entropy: V

• The logical entropy h (ρ′) of the measured state is precisely
the sum of the distinction probabilities resulting from those
"disappeared" or "zeroed" off-diagonal coherence terms:

h (ρ′) = ∑i 6=j

(√pipj

)2
= 1−∑i p2

i = 1− tr (ρ′).
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Example of degenerate measurement: I

• Let’s return to the same set example p = {p1, p2, p3} as the
probabilities for U = {1, 2, 3}.

• Instead of seeing a measurement going from the
undifferentiated blob {1, 2, 3} to the discrete partition
{{1} , {2} , {3}}, let’s consider a "degenerate measurement"
that goes from the blob only to the non-discrete partition
π′ = {{1} , {2, 3}}. This partition has four distinctions
(1, 2) , (1, 3) , (2, 1) , and (3, 1) with the total probability:

h (π′) = 2p1p2 + 2p1p3

which could also be seen as 1− sum of probs for the five
remaining indistinctions (1, 1) , (2, 2) , (2, 3) , (3, 2) ,and (3, 3).
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Example of degenerate measurement: II

• In the quantum version, the measurement only yields the
mixture of |1〉 with probability p1 and 1√

2
(|2〉+ |3〉) with

probability p2 + p3. This gives the mixed state density
matrix:

ρ′′ = p1

1 0 0
0 0 0
0 0 0

+ (p2 + p3)

0 0 0
0 1

2
1
2

0 1
2

1
2


=

p1 0 0
0 p2+p3

2
p2+p3

2
0 p2+p3

2
p2+p3

2

.
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Example of degenerate measurement: III

Note the two non-zero off-diagonal coherence terms
representing the indistinction amplitude of superposing |2〉 and
|3〉. Note also the four zero off-diagonal terms representing the
fact that |1〉 was distinguished from |2〉 and |3〉, which
corresponds to the four pairs (1, 2) , (1, 3) , (2, 1) , and (3, 1) that
went from being indistinctions to distinctions in the set case.

• Thus the degenerate measurement has the effect:

ρ =

 p1
√

p1p2
√

p1p3√
p2p1 p2

√
p2p3√

p3p1
√

p3p2 p3

 meas.−→ ρ′′ =

p1 0 0
0 p2+p3

2
p2+p3

2
0 p2+p3

2
p2+p3

2

.
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Example of degenerate measurement: IV
• The sum of the indistinction probabilities is

p2
1 + 4×

(
p2+p3

2

)2
= p2

1 + (p2 + p3)
2 so the distinction

probabilities are:

h (ρ′′) = 1−
[
p2

1 + (p2 + p3)
2
]

= 1− p2
1 −

(
p2

2 + 2p2p3 + p2
3
)
= 2p1p2 + 2p1p3.

• The four new distinctions in the set case are here
represented by the four disappeared or zeroed coherence
terms which give the total new distinction probabilities of:(√

p1p2
)2
+
(√

p1p3
)2
+
(√

p2p1
)2
+
(√

p3p1
)2

= 2p1p2 + 2p1p3 = h (ρ′′).X
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Modeling measurement in general: I

• Measurement (projective) makes distinctions and thus
increases information so it should increase the entropies.

• How does a (projective) measurement change a mixed state
ρ = ∑i pi |ψi〉 〈ψi|. Let {|m〉} be the orthonormal
measurement basis with the projection matrices
Pm = |m〉 〈m| where ∑m Pm = I.

• Then a measurement will, with probability pi, start with a
state |ψi〉 and will result in the state |m〉 with probability
|〈m|ψi〉|

2 so the total probability of getting the state |m〉 is
∑i pi |〈m|ψi〉|

2.
• Hence the mixed state ρ′ giving the measurement outcomes

weighed by their probabilities is:
ρ′ = ∑m ∑i pi |〈m|ψi〉|

2 |m〉 〈m|.
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Modeling measurement in general: II

• But

∑m PmρPm = ∑m |m〉 〈m|∑i pi |ψi〉 〈ψi| |m〉 〈m|
= ∑m ∑i pi 〈m|ψi〉 〈ψi|m〉 |m〉 〈m| = ρ′.

• Thus the effect of the m-basis measurement is:

ρ =

ρ11 · · · ρ1d
... . . . ...

ρd1 · · · ρdd

 meas.−→ ρ′ =

ρ11 0 0

0 . . . 0
0 0 ρdd

.
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Measurement increases vN entropy

• From information inequality:
0 ≤ S (ρ′||ρ) = −S (ρ)− tr (ρ log ρ′) so it would be
sufficient to show that − tr (ρ log ρ′) = S (ρ′).

• Using ∑m Pm = I, P2
m = Pm, and tr(AB) = tr(BA);

− tr (ρ log ρ′) = − tr (∑m Pmρ log ρ) = − tr (∑m Pmρ log ρ′Pm)

and ρ′Pm = PmρPm = Pmρ′ so Pm commutes with ρ′ and thus
with log ρ′, so

− tr (ρ log ρ′) = − tr (∑m PmρPm log ρ′) = S (ρ′).

• Proof gives no insight as to why measurement increases vN
entropy (in addition to no interpretation to vN entropy).
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Measurement increases logical entropy: I

• Let ρ =

ρ11 · · · ρ1d
... . . . ...

ρd1 · · · ρdd

 be the representation of ρ in the

measurement basis. Then the off-diagonal terms ρmm′ for
m 6= m′ represent the coherence, i.e., the amplitude for
superposition (indistinction) between m and m′.

• Measurement decoheres, i.e.,

ρ
meas.−→ ρ′ = ∑m PmρPm =

ρ11 0 0

0 . . . 0
0 0 ρdd

.

• Logical entropy after measurement:
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Measurement increases logical entropy: II
h (ρ′) = 1− tr

(
ρ′2
)
= 1−∑m ρ2

mm.

• Logical entropy before measurement (ρ not nec. pure):

h (ρ) = 1− tr
(
ρ2) = 1−∑m

(
ρ2)

mm = 1−∑m ∑m′ ρmm′ρm′m
= 1−∑m ρ2

mm −∑m 6=m′ ρmm′ρm′m = h (ρ′)−∑m 6=m′ |ρmm′ |
2

so
h (ρ′)− h (ρ) = ∑m 6=m′ |ρmm′ |

2.
Increase in entropy = sum of new distinction probs

resulting from disappeared off-diagonal coherence terms.

• Coherence terms give amplitude for keeping eigenvectors
indistinct in a superposition. Measurement makes the
distinctions that takes away that coherence.

• Logical entropy records precisely that loss of the coherence
terms in the measurement.
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Logical Cross-Entropy and Cross-Fidelity
• Given two probability distributions {px} and {qx} with the

same indices, the (classical) logical cross-entropy is:

h (px||qx) = ∑x px [1− qx] = 1−∑x pxqx.

• The interpretation of the logical cross-entropy of two
distributions is the probability of drawing distinct indices
("distinction probability") if one draw is according to px and
the other draw according to qx. Note: h (px||px) = h (px).

• The complementary notion might be defined as the
(classical) logical cross-fidelity:

f (px||qx) = ∑x pxqx = 1− h (px||qx).

• It is the probability of drawing the same index
("indistinction probability") with one draw according to px
and the other according to qx.



Quantum logical cross-entropy and
cross-fidelity: I

• Given mixed states ρ and σ, the quantum logical cross-entropy
is:

h (ρ||σ) = 1− tr (ρσ).

• And the complementary notion is the quantum logical
cross-fidelity (purity or cross-coherence?):

f (ρ||σ) = tr (ρσ) = 1− h (ρ||σ).

• If ρ = ∑ pk |k〉 〈k| and σ = ∑k qk |k〉 〈k| share an orthonormal
basis, then tr (ρσ) = ∑k pkqk and we are back in the classical
case.
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Quantum logical cross-entropy and
cross-fidelity: II

• In general, ρ and σ have orthogonal decompositions
ρ = ∑i pi |i〉 〈i| and σ = ∑j qj |j〉 〈j| and then:

f (ρ||σ) = tr (ρσ) = 〈σ〉ρ = ∑i pi 〈i|σ|i〉
= ∑i pi

〈
i|∑j qj |j〉 〈j| i

〉
= ∑i,j piqj |〈i|j〉|2.

• For the probability interpretation, we consider the direct
and indirect ways of getting |i〉 twice:

1 Direct draw: the mixed state ρ gives an ordinary probability
distribution {pi} over the states {|i〉}, so in the direct draw,
we get a specific |i〉 with probability pi.
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Quantum logical cross-entropy and
cross-fidelity: III

2 Indirect draw: the mixed state σ similarly gives a draw of a
basis state |j〉 with probability qj, and then a quantum
measurement in the {|i〉} basis gives the state |i〉 with
probability |〈i|j〉|2 so the total probability of getting |i〉 by
this indirect method is ∑j qj |〈i|j〉|2.

3 Thus the probability of getting the same |i〉 in both draws is
the indistinction probability:

f (ρ||σ) = tr (ρσ) = ∑i,j piqj |〈i|j〉|2
and the distinction probability is:

h (ρ||σ) = 1− tr (ρσ) = 1− f (ρ||σ).
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Example: I

• Consider the following states in C2 associated with spin
states (±z spin basis):

ρ = 1
3 |x+〉 〈x+|+

2
3 |y−〉 〈y−| =

[ 1
2

1+2i
6

1−2i
6

1
2

]
σ = Px− = |x−〉 〈x−| =

[
1/2 −1/2
−1/2 1/2

]

• Then the product and the trace are computed as follows:

ρσ =

[ 1
2

1+2i
6

1−2i
6

1
2

] [
1/2 −1/2
−1/2 1/2

]
= 1

6

[
1− i −1+ i
−1− i 1+ i

]
.
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Example: II

The product the other way is: σρ = 1
6

[
1+ i −1+ i
−1− i 1− i

]
so the

trace is the same:

tr (ρσ) = 1
3 and h (ρ||σ) = 2

3 .

• We now work through the interpretation. Since
σ = |x−〉 〈x−| is pure, q1 = 1 so we only need to compute
the two ways to get that state |x−〉 from the two states that
make up ρ. There is a probability 1

3 of getting |x+〉 but
〈x−|x+〉 = 0 so there is no contribution there. There is a
probability 2

3 of getting |y−〉 and:
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Example: III

〈x_|y_〉 = x†
_y_ =

[
1/
√

2 −1/
√

2
] [ i√

2
1√
2

]
= i

2 −
1
2

〈x_|y_〉 〈y_|x_〉 =
(

i
2 −

1
2

) (
− i

2 −
1
2

)
= 1

4 +
1
4 =

1
2 = |〈x_|y_〉|2

so we have:

tr (ρσ) = 1
3 |〈x_|x+〉|2 + 2

3 |〈x−|y_〉|2 = 0+ 2
3

1
2 =

1
3 .X
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"Criticism" of fidelity measure: I

• Richard Jozsa [1994. Fidelity for mixed quantum states.
Journal of Modern Optics. 41 (12)] notes that if ρ = I

N
(completely mixed state), then tr

( I
N σ
)
= 1

N tr (σ) = 1
N

regardless of σ so tr (ρσ) "is unsatisfactory as a measure of
fidelity."

• This assumes that the purpose of "cross-fidelity" [or
"purity" or "cross-coherence" or whatever] is to distinguish
states, but that is the role of divergence.

• This aspect of the complement of cross-entropy is there
even in the classical case. Given two probabilities
distributions, an arbitrary one {pi} and the uniform
distribution

{ 1
N
}

over the same indices, what is the
indistinction probability if the first draw is according to {pi}
and the second draw according to the uniform distribution?
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"Criticism" of fidelity measure: II

• No matter what was drawn on the first draw according to
{pi}, the probability of getting that same index on the
second draw is 1

N .
• Totally incoherent state is the "dominant gene" w.r.t.

cross-fidelity, purity, or cross-coherence (or whatever it is
called).
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Divergence: I

• For mixed states ρ, σ, the quantum logical divergence is:

d (ρ||σ) = tr
[
(ρ− σ)2

]
.

• The Hermitian operator ρ− σ can be unitarily diagonalized
as ρ− σ = UDU† and then the diagonal matrix D has the
Jordan decomposition D = D+ −D

_
as the difference of

two positive matrices with orthogonal support. Thus

ρ− σ = U (D+ −D−)U† = UD+U† −UD−U† = P−Q

is the difference of two positive operators P, Q of orthogonal
support.
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Divergence: II
d (ρ||σ) = tr

[
(ρ− σ)2

]
= tr

[
(P−Q)2

]
=

tr
(
P2)− 2 tr (PQ) + tr

(
Q2)

where PQ = 0 since they have orthogonal support and thus
tr (PQ) = 0 so we have:

d (ρ||σ) ≥ 0
Quantum information inequality.

• Equivalent formulas are immediate:

d (ρ||σ) = tr
(

ρ2
)
+ tr

(
σ2
)
− 2 tr (ρσ)

= [1− h (ρ)] + [1− h (σ)]− 2f (ρ||σ)
= 2h (ρ||σ)− h (ρ)− h (σ) .
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Divergence: III

• Hence the information inequality gives:

h (ρ||σ) ≥ h(ρ)+h(σ)
2

Cross-entropy ≥ average entropy.

• An inequality for the entropy of the average h( ρ+σ
2 ) is:

4h
(

ρ+σ
2

)
− 2 [h (ρ) + h (σ)] = tr

(
ρ2)+ tr

(
σ2)− 2 tr (ρσ) =

d (ρ||σ)
so the information inequality also gives:

h
(

ρ+σ
2

)
≥ h(ρ)+h(σ)

2
"Mixing increases logical entropy"
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Divergence: IV

• Interpretation of divergence:

1 h(ρ||σ) = distinction probability in the direct/indirect or
"mixed" measurements;

2 h (ρ) = distinction probability with the "straight"
measurements both in the {|i〉} basis;

3 h (σ) = distinction probability with both measurements in
the {|j〉} basis.

• Hence the interpretation of the divergence,

d (ρ||σ) = [h (ρ||σ)− h (ρ)] + [h (ρ||σ)− h (σ)],

is the total excess distinction probability of the two mixed
measurements over the two straight measurements.
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Divergence: V

• In the case that worried Jozsa where we want to measure
the divergence between the completely mixed state ρ = I

N
and any state σ, h

( I
N ||σ

)
= h

( I
N
)

so the term
[h (ρ||σ)− h (ρ)] drops out and thus:

d
( I

N ||σ
)
= h

( I
N
)
− h (σ) = 1− 1

N − h (σ) = tr
(
σ2)− 1

N

which is just the difference in the distinction probability for the
completely mixed state and the σ state (or the difference the
other way around between the indistinction probabilities).
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Square root of logical divergence = Euclidean
metric in matrix space: I

• Using an idea suggested by John DePillis and others, one
can treat n× n matrices in n-dimensional Hilbert space as
being the vectors in n× n-dimensional Hilbert space.

• An inner product is defined on n× n-dimensional space by:

〈B|A〉 ≡ tr
(
AB†) for any two n× n matrices.

• In any Hilbert space, the Cauchy-Schwarz inequality is (N&C,
p. 68):

|〈B|A〉|2 ≤ 〈A|A〉 〈B|B〉.
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Square root of logical divergence = Euclidean
metric in matrix space: II

• If A, B are Hermitian matrices, i.e., A = A† and B = B†, like
density matrices ρ, σ, then we have:
[tr (ρσ)]2 ≤ tr

(
ρ2) tr

(
σ2) where, incidentally,

[1− h (ρ||σ)]2 = [tr (ρσ)]2 and tr
(
ρ2) tr

(
σ2) =

[1− h (ρ)] [1− h (σ)] = 1− h (ρ⊗ σ) = tr
[
(ρ⊗ σ)2

]
.

• For
√

d (ρ||σ) =
√

tr
[
(ρ− σ)2

]
to be a metric, we need:

1

√
tr
[
(ρ− σ)2

]
≥ 0 (non-negativity);

2

√
tr
[
(ρ− σ)2

]
= 0 if and only if ρ = σ;
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Square root of logical divergence = Euclidean
metric in matrix space: III

3

√
tr
[
(ρ− σ)2

]
=

√
tr
[
(σ− ρ)2

]
(symmetry);

4

√
tr
[
(ρ− τ)2

]
≤
√

tr
[
(ρ− σ)2

]
+

√
tr
[
(σ− τ)2

]
(triangle

inequality).

• Only the triangle inequality needs a proof.

Since ρ− τ = (ρ− σ) + (σ− τ),

tr
(
(ρ− τ)2

)
=

tr
[
(ρ− σ)2

]
+ 2 tr [(ρ− σ) (σ− τ)] + tr

[
(σ− τ)2

]
.

David Ellerman (UCR) Cross-entropy, divergence, and related concepts March 2012 18 / 32



Square root of logical divergence = Euclidean
metric in matrix space: IV

By the Cauchy-Schwarz inequality,
[tr [(ρ− σ) (σ− τ)]]2 ≤ tr

[
(ρ− σ)2

]
tr
[
(σ− τ)2

]
so taking the

square root of each side:

tr [(ρ− σ) (σ− τ)] ≤
√

tr
[
(ρ− σ)2

]√
tr
[
(σ− τ)2

]
.

Substituting in the middle term of the expansion for
tr
(
(ρ− τ)2

)
gives:
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Square root of logical divergence = Euclidean
metric in matrix space: V

tr
(
(ρ− τ)2

)
≤

tr
[
(ρ− σ)2

]
+ 2
√

tr
[
(ρ− σ)2

]√
tr
[
(σ− τ)2

]
+ tr

[
(σ− τ)2

]
=

[√
tr
[
(ρ− σ)2

]
+

√
tr
[
(σ− τ)2

]]2

so taking the square root of each side yields:√
tr
(
(ρ− τ)2

)
≤
√

tr
[
(ρ− σ)2

]
+

√
tr
[
(σ− τ)2

]
,

the triangle inequality for the Euclidean metric in
n× n-dimensional Hilbert space. �
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Limit cases

• The limits for quantum logical cross-entropy and
cross-fidelity are complementary and since both are
interpreted as distinction or indistinction probabilities, they
are between 0 and 1:

0 ≤ h (ρ||σ) ≤ 1 and 1 ≥ f (ρ||σ) ≥ 0
left equality iff ρ = σ = pure

right equality iff orthogonal support.

• The limits for the quantum logical divergence are:

0 ≤ d (ρ||σ) ≤ 2
left equality iff ρ = σ

right equality iff ρ, σ pure and orthogonal, i.e., ρσ = 0.
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Tensor product and entropies: I

Theorem (Joint entropy theorem (N&C, p. 513))
Suppose pi are probabilities, |i〉 are orthogonal states for the system A,
and ρi is any set of density operators for another system B, then

S (∑i pi |i〉 〈i| ⊗ ρi) = H (pi) +∑i piS (ρi);
h (∑i pi |i〉 〈i| ⊗ ρi) = h (pi) +∑i p2

i h (ρi).

• For any mixed states ρ and σ:
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Tensor product and entropies: II

S (ρ⊗ σ) = S (ρ) + S (σ)

h (ρ⊗ σ) = h (ρ) [1− h (σ)] + h (σ)
= h (ρ) + h (σ) [1− h (ρ)]
= h (ρ) + h (σ)− h (ρ) h (σ)

• Interpretation of h (ρ⊗ σ) = distinction probability of ρ
times indistinction probability of σ plus distinction
probability for σ.

• Special cases:
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Tensor product and entropies: III

S (ρ⊗ |ψ〉 〈ψ|) = S (ρ) for any pure state σ = |ψ〉 〈ψ|
h (ρ⊗ |ψ〉 〈ψ|) = h (ρ) for any pure state σ = |ψ〉 〈ψ|

Tensoring with a zero entropy state adds nothing to entropy
–

S
(
ρ⊗ I

N
)
= S (ρ) + log N

h
(
ρ⊗ I

N
)
= h(ρ)

N + 1− 1
N

Tensoring with max entropy state
–

S
( I

N ⊗
I
N
)
= 2 log N

h
( I

N ⊗
I
N
)
= 1− 1

N2

Max entropy state tensor-squared
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"Bad" definitions for vN entropy: I

• A joint probability distribution pxy = p (x, y)
= Pr (X = x, Y = y) is defined on the direct product X× Y,
and the classical joint entropies are defined using that
distribution: H (X, Y) = ∑x,y pxy log

(
1

pxy

)
and

h (X, Y) = ∑xy pxy
(
1− pxy

)
.

• The tensor product of vector spaces is substantially
different than the direct product (since it allows
superposition), and yet the "vN joint entropy" is defined as
if it were the quantum generalization.

• Given a composite system AB represented by HA ⊗HB for
component systems A and B, and given a density operator
ρAB on the tensor product, the vN joint entropy is defined
(N&C, p. 514) as:
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"Bad" definitions for vN entropy: II

S(A, B) = − tr(ρAB log
(
ρAB)).

• To make matters worse, where S (A) = S
(
ρA) and

S (B) = S
(
ρB) are the vN entropies of the reduced density

operators, then the conditional vN entropy and the mutual vN
information are simply defined by formulas analogous to the
classical case (where classically they at least had some
motivation):

S (A|B) =df S (A, B)− S (B)
S (A : B) =df S (A) + S (B)− S (A, B).

A bit of trouble with Shannon’s explanation of conditional
entropy:
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"Bad" definitions for vN entropy: III
• Given a joint distribution pxy, a conditional probability

distribution is p (Y = y|x) = pxy
px

where px = ∑y pxy, and
thus there is a Shannon entropy H (p (Y|x)) = H (Y|x) of
that probability distribution.

• Shannon then defines the conditional entropy H (Y|X) as the
average of these entropies of the conditional distributions:

H (Y|X) = ∑x pxH (Y|x).

• After this motivated definition of the conditional entropy,
then it is a theorem (not a definition) that:

H (Y|X) = H (X, Y)−H (X) = H (Y)−H (X : Y).
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"Bad" definitions for vN entropy: IV

• Since the Shannon conditional entropy is a non-negative
sum of non-negative entropies (N&C, p. 514),

H (X) ≤ H (X, Y).

• N&C explain this as "surely we cannot be more uncertain
about the state of X than we are about the joint state of X
and Y." (Ibid.)

• Since the Shannon mutual information H (X : Y) is also
always non-negative, we also have:

H (Y|X) ≤ H (Y).
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"Bad" definitions for vN entropy: V
• Shannon explains this with a similar remark: "The

uncertainty about Y is never increased by knowledge of X."
[quoted in: Uffink, Jos. Measures of Uncertainty and the
Uncertainty Principle, University of Utrecht dissertation,
1990, p. 82 (on the web)].

• The intuition behind this explanation is wrong as is shown
by Uffink’s example:

[
pxy
]
=

[
p11 p12
p21 p22

]
=

[
.98 0
.01 .01

]
.

• The joint entropy is H (X, Y) = 0.16 and the entropy of the
marginal distribution py is H (Y) = 0.08. The conditional
distribution p (Y|X = 2) = (0.5, 0.5) so that H (Y|x = 2) = 1
and thus:
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"Bad" definitions for vN entropy: VI
H (Y|x = 2) = 1 � 0.08 = H (Y).

• Thus the explanation that "The uncertainty about Y is never
increased by knowledge of X" is clearly wrong, but
Shannon’s formula for conditional entropy is an average of
the entropies of the conditional distributions.
• The other conditional distribution p (Y|x = 1) = (1, 0) with

the entropy H (Y|x = 1) = 0.
• Hence the conditional entropy is:

H (Y|X) = 0.98× 0+ 0.01× 1 = .01 ≤ 0.08 = H (Y).

• While there are some "problems" with the explanations of
Shannon’s conditional entropy, the definition of "vN
conditional entropy" is shameless:
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"Bad" definitions for vN entropy: VII

S (A|B) =df S (A, B)− S (B).

• As if to emphasize the lack of interpretation of the "vN
conditional entropy" and the shameless
formula-mongering, they go on to show that "vN
conditional entropy" can be negative!

• Take a combined two qubit system AB in the pure state
1√
2
[|00〉+ |11〉] so that the reduced density operator for B

(and A) is I
2 so that:

S (A|B) = S (A, B)− S (B) = 0− 1 = −1!
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"Bad" definitions for vN entropy: VIII

• Instead of taking this as definitive evidence that the
formula-mongering has taken a wrong turn, they say
"intuition fails for quantum states." Woo-woo.

• They even derive the "result" that since separated pure
states |ψ〉 〈ψ| ⊗ |ϕ〉 〈ϕ| have components in pure states (so
all have zero entropy), we have that: pure states |AB〉 are
entangled iff the conditional entropy S (B|A) < 0.
Entanglement (woo-woo) means negative (conditional)
entropy! More woo-woo.

• IMHO, this is another case (like retrocausality) where
people have lost track of what is reasonable, and just accept
the "result" as more quantum weirdness.
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Statistical Mechanics entropy and Shannon
entropy: I

• There is a constant meme in Shannon’s information theory
that his entropy H (p) = ∑i pi ln

(
1
pi

)
(where I have used

natural logs rather than base 2 logs) has the same
functional form as entropy in statistical mechanics.

• However, the connection is only via a numerical
approximation, the Stirling approximation, where only if
the first two terms in the Stirling approximation are used,
then the Shannon formula is obtained.

• The first two terms in the Stirling approximation for ln(N!)
are: ln (N!) ≈ N(ln(N)− 1). The first three terms in the
Stirling approximation are:
ln (N!) ≈ N(ln(N)− 1) + 1

2 ln (2πN).
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Statistical Mechanics entropy and Shannon
entropy: II

• If we consider a partition on a finite U with |U| = N, with n
blocks of size N1, ..., Nn, then the number of ways of
distributing the individuals in these n boxes with those
numbers Ni in the ith box is: W = N!

N1!×...×Nn! . The
normalized natural log of W, 1

N ln (W) is one form of
entropy in statistical mechanics.

• On Boltzmann’s gravestone:
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Statistical Mechanics entropy and Shannon
entropy: III

• The entropy formula can then be developed using the first
two terms in the Stirling approximation.

S = 1
N ln (W) = 1

N ln
(

N!
N1!×...×Nn!

)
= 1

N [ln(N!)−∑i ln(Ni!)]

≈ 1
N [N [ln (N)− 1]−∑i Ni [ln (Ni)− 1]]

= 1
N [N ln(N)−∑ Ni ln(Ni)] =

1
N [∑ Ni ln (N)−∑ Ni ln (Ni)]

= ∑ Ni
N ln

(
1

Ni/N

)
= ∑ pi ln

(
1
pi

)
= H (p)

where pi =
Ni
N .
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Statistical Mechanics entropy and Shannon
entropy: IV

• The Stirling approximation is an excellent numerical
approximation for large N (e.g., in statistical mechanics).
But the common meme is not that Shannon’s entropy
formula is a good numerical approximation for entropy in
statistical mechanics, but that it has the same functional form.
That is simply false in view of the use of Stirling’s
approximation in the above derivation.

• The point can be emphasized by using the three-term
Stirling approximation to get an even better numerical
approximation.

David Ellerman (UCR) Miscellany March 2012 5 / 27



Statistical Mechanics entropy and Shannon
entropy: V

1
N ln (W) = 1

N ln
(

N!
N1!×...×Nn!

)
= 1

N [ln(N!)−∑i ln(Ni!)]
≈

1
N
[
N [ln (N)− 1] + 1

2 ln (2πN)−∑i
{

Ni [ln (Ni)− 1]− 1
2 ln (2πNi)

}]
= 1

N
[
N ln(N) + 1

2 ln (2πN)−∑
{

Ni ln (Ni)− 1
2 ln (2πNi)

}]
=

1
N [∑i Ni ln(N)−∑ Ni ln (Ni)] +

1
N
[1

2 ln (2πN)−∑ 1
2 ln (2πNi)

]
=
[
∑i

Ni
N ln

(
1

Ni/N

)]
+ 1

N
1
2 [ln (2πN)− ln ((2πn)ΠNi)]

= H (p) + 1
2N ln

(
2πN

(2π)nΠNi

)
= H (p) + 1

2N ln
(

2πNn

(2π)nΠpi

)
.
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Statistical Mechanics entropy and Shannon
entropy: VI

• Thus the expression H (p) + 1
2N ln

(
2πNn

(2π)nΠpi

)
is an even

better approximation to the entropy 1
N ln (W) than H (p). If

anyone really thinks the Shannon functional form is
"justified" by the connection to entropy in statistical
mechanics, then they are welcome to redo information
theory with the even "better" entropy formula:
H (p) + 1

2N ln
(

2πNn

(2π)nΠpi

)
.

• Thus any justification of the functional form of Shannon’s
entropy formula should not be done by waving one’s hand
in the direction of statistical mechanics.
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Entropy invariance under trace-preserving
transformations

• Both the vN quantum entropy and the quantum logical
entropy are defined using the trace of density operators, so
those notions are invariant under similarity transformation
(including unitary transformations) and indeed under any
trace-preserving transformation.

• The logical cross-entropy h (ρ||σ) = 1− tr (ρσ) is also
invariant for the same reason. For instance, under the
unitary evolution U (t0, t1), ρ→ UρU† and σ→ UσU† so
ρσ→ UρU†UσU† = UρσU† so

h
(
UρU†||UσU†) = h (ρ||σ).

• Since the divergence d (ρ||σ) = 2h (ρ||σ)− h (ρ)− h (σ), we
also have:

d
(
UρU†||UσU†) = d (ρ||σ).



Positive semidefiniteness of matrices: I

• Any density operator or matrix ρ is a positive semidefinite
operator or matrix which means that x†ρx ≥ 0 for all
vectors x, i.e., all its eigenvalues are non-negative.

• Another characterization of positive semidefiniteness uses
the notion of a principal minor.

• One must be careful to distinguish between "successive
principal minors" and "principal minors" in general.

1 A principal minor of order k is the determinant of any square
submatrix whose diagonal is along the main diagonal of the
matrix, and where "submatrix" allows any permutation of
indices or, equivalently interchanging the ith and jth rows
and the ith and jth columns.
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Positive semidefiniteness of matrices: II

2 The successive principal minors are the principal minors of
orders 1, ..., n starting in the NW corner of the matrix
without any interchanging of rows and columns.∣∣∣∣∣∣

p1 ρ12 ρ13
ρ21 p2 ρ23
ρ31 ρ32 p3

∣∣∣∣∣∣.
Successive principal minors of ρ

• While positive definiteness can be characterized by all the
successive principal minors being positive, one cannot
similarly characterize positive semidefiniteness as all the
successive principal minors being non-negative. For
instance,
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Positive semidefiniteness of matrices: III

[
0 0
0 −1

]
has all the successive principal minors being non-negative, but
it is not positive semidefinite (in fact it is negative semidefinite).
Hence we need to strengthen the non-negativity condition to all
principal minors.

• A matrix ρ is positive semidefinite if and only if all
principal minors are non-negative.
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Positive semidefiniteness of matrices: IV

• In the previous counterexample, the principal minor [−1]
has a negative determinant, so it fails this stronger
condition. The condition referring to all principal minors
could be equivalently stated in terms of the successive
principal minors if we allow the arbitrary interchanges of
the same rows and columns. For instance, interchanging
the first and second rows and columns moves the −1 up to
become the first successive principal minor.[

0 0
0 −1

]
row−→

[
0 −1
0 0

]
col−→

[
−1 0
0 0

]
.
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Connecting classical and quantum logical
entropy: I

• Any density operator ρ can be represented as a density
matrix (e.g., n = 3):

ρ =

 p1 ρ12 ρ13
ρ21 p2 ρ23
ρ31 ρ32 p3


in any orthonormal basis M = {|mi〉} where pi = ρii.

• The logical entropy h (ρ) is defined as: h (ρ) = 1− tr
(
ρ2).

• It was previously shown that:

tr
(
ρ2) = ∑i,j

∣∣∣ρij

∣∣∣2 = ∑i p2
i + 2 ∑i<j

∣∣∣ρij

∣∣∣2,
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Connecting classical and quantum logical
entropy: II

i.e., the trace of ρ2 is just sum of probabilities
∣∣∣ρij

∣∣∣2 associated
with all the (amplitudes) ρij entries in ρ.

• But the 1 in h (ρ) = 1− tr
(
ρ2) can be expanded as:

1 = (∑i pi)
(

∑j pj

)
= ∑i,j pipj = ∑i p2

i + 2 ∑i<j pipj.

• Hence we have:

h (ρ) = 1− tr
(
ρ2)

=
[
∑i p2

i + 2 ∑i<j pipj

]
−
[

∑i p2
i + 2 ∑i<j

∣∣∣ρij

∣∣∣2]
= 2 ∑i<j

[
pipj −

∣∣∣ρ2
ij

∣∣∣].
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Connecting classical and quantum logical
entropy: III

• That is the characterization of the logical entropy as the
sum of the terms pipj −

∣∣∣ρ2
ij

∣∣∣ for any i 6= j where since ρ is
Hermitian, we can just double the sum of those terms from
the upper triangular section where i < j.

• When measuring ρ using the measurement basis M, pi is the
probability of getting the result |mi〉 = |i〉. If ρ was a
diagonal matrix in the M basis with all ρij = 0 for i 6= j, then
we have essentially a classical discrete partition
{{|1〉} , ..., |n〉} or {{1} , ..., {n}} with the logical entropy
1−∑i p2

i = 2 ∑i<j pipj.
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Connecting classical and quantum logical
entropy: IV

• But even classically the elements i might be in
bigger-than-singleton blocks and then the terms pipj are
counted only when i and j are in different blocks. That is, if
i, j were in the same block, then we might say that their
"indistinction amplitude" was √pipj and their indistinction

probability was
∣∣∣√pipj

∣∣∣2 = pipj which would have to be
subtracted off from the pipj that appeared in the sum
2 ∑i<j pipj for the discrete partition to account for the fact
that now i, j are in the same block. Thus that i, j term in the

sum becomes pipj −
∣∣∣√pipj

∣∣∣2 = 0 as the net distinction
probability associated with i, j and that is how it "drops out"
of the sum when i, j are in the same block.
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Connecting classical and quantum logical
entropy: V

• This interpretation carries over to the quantum case where:

1 ρij is the indistinction amplitude;

2

∣∣∣ρij

∣∣∣2 is the indistinction probability;

3 pipj − |ρij|2 is the net distinction probability for the pair |i〉 and
|j〉; and

4 h (ρ) = 2 ∑i<j

[
pipj −

∣∣∣ρij

∣∣∣2] is the total of the net distinction

probabilities for the pairs of basis states |i〉 and |j〉.
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Connecting classical and quantum logical
entropy: VI

• Thus we not only have a simple interpretation of logical
entropy in the quantum case that directly generalizes the
classical case, we can use the associated concepts like
"indistinction amplitude" to interpret the entries ρij in the
density matrix itself. Previously ρij was seen as an indicator
of the "coherence" between the basis states |i〉 and |j〉 in the
mixed state ρ.
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Seeing classical case through quantum lens: I

• We can retro-engineer the classical case using some of the
fancy concepts from the quantum case–like density
matrices.

• Let’s take the "classical case" as having a finite set of points
U = {1, 2, ..., n} where each point i has the probability pi.

• If the partition is the discrete one, 1 = {{1} , ..., {n}}, then
the logical entropy of that partition is just the logical
entropy of the probability distribution p = {p1, ..., pn}, i.e.,

h (1) = h (p) = 1−∑i p2
i = 2 ∑i<j pipj.

• The "classical" density matrix corresponding to this discrete
case is the n× n diagonal matrix with the pi along the
diagonal.

David Ellerman (UCR) Miscellany March 2012 19 / 27



Seeing classical case through quantum lens:
II

• But when the elements are grouped together in larger
blocks, then some pairs (i, j) of indices that were
distinctions in the discrete case now become indistinctions
since they are in the same block. Hence the off-diagonal
term corresponding to the indistinction pairs goes from 0 to√pipj as the indistinction amplitude that gives the
indistinction probability pipj.

• If, for instance, U = {1, 2, 3} and the elements 2, 3 are
grouped together in a block of a non-discrete partition
π = {{1} , {2, 3}}, then the associated density matrix is:

ρ =

p1 0 0
0 p2

√
p2p3

0
√

p2p3 p3
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Seeing classical case through quantum lens:
III

and the logical entropy is:

h (π) = 2 ∑i<j

[
pipj −

∣∣∣ρij

∣∣∣2]
= 2

[
(p1p2 − 0) + (p1p3 − 0) +

(
p2p3 −

∣∣√p2p3
∣∣2)]

= 2p1p2 + 2p1p3.

• Since each off-diagonal term √pipj wipes out the pipj term
in the sum for logical entropy, the terms that survive
correspond to the off-diagonal zero terms.

• If U = {1, 2, 3, 4} and the partition π = {{1, 3} , {2, 4}},
then the density matrix is:
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Seeing classical case through quantum lens:
IV

ρ =


p1 0

√
p1p3 0

0 p2 0
√

p2p4√
p1p3 0 p3 0
0

√
p2p4 0 p4


and the logical entropy is:

h (π) = 2 ∑i<j

[
pipj −

∣∣∣ρij

∣∣∣2]
= 2p1p2 + 2p1p4 + 2p2p3 + 2p2p4.
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Seeing classical case through quantum lens:
V

• Note that by interchanging rows and columns, each
classical density matrix representing a partition can be
turned into a block-diagonal matrix where the "blocks" of
the matrix correspond to the blocks of the partition.

• In the special case of equiprobable points pi =
1
n , then we

can factor a 1
n scalar outside of the classical density matrix.

The remaining matrix then just has 0, 1 entries and it is
precisely the incidence matrix of the reflexive, symmetric,
and transitive equivalence relation for the partition.

• For instance in the last example:
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Seeing classical case through quantum lens:
VI

ρ =


1
4 0 1

4 0
0 1

4 0 1
4

1
4 0 1

4 0
0 1

4 0 1
4

 = 1
4


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1


where the 0, 1 matrix is the incidence matrix for the equivalence
relation corresponding to the partition {{1, 3} , {2, 4}}. That
binary equivalence relation is exactly the set of indistinctions or
"indits" of the partition, so the 1’s in the 0, 1 matrix occur where
there are indistinctions (all with "amplitude" 1

4 in this case).

• By seeing classical case through a quantum lens, we can
better understand the quantum case by keeping in mind the
classical precursor.
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Seeing classical case through quantum lens:
VII

• Classically, a pair (i, j) is either a distinction of a partition
(so ρij = 0) or the pair is an indistinction (so ρij =

√pipj). It
is a yes-or-no business. In terms of the coherence language,
the elements i, j are either totally coherent or indistinct (i.e.,
in the same block) or totally decoherent or distinct (in
distinct blocks).

• In the quantum case, a state ρ can have the basis states |i〉
and |j〉 as being partially indistinct–as indicated by the
indistinction amplitude ρij–and thus partially distinct so the

net distinction probability pipj −
∣∣∣ρij

∣∣∣2 can be anywhere
between the classical limits of 0 and pipj.
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Another characterization of logical entropy: I

• We know that h (ρ) = 1− tr
(
ρ2) ≥ 0 since 1

n ≤ tr
(
ρ2) ≤ 1.

• But in the expansion:

h (ρ) = ∑i<j

[
pipj −

∣∣∣ρij

∣∣∣2],

we have not shown that each term pipj −
∣∣∣ρij

∣∣∣2 is non-negative.

• The slick proof of this is that since ρ is positive
semi-definite, all principal minors of any order k are
non-negative, and the principal minors of order 2 are:∣∣∣∣∣pi ρij

ρ∗ij pj

∣∣∣∣∣ = pipj −
∣∣∣ρij

∣∣∣2 ≥ 0.
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Another characterization of logical entropy:
II

• Moreover, we thus have a new characterization of the
logical entropy as the sum of all the principal minors of
order 2:

h (ρ) = ∑i 6=j

∣∣∣∣∣pi ρij
ρji pj

∣∣∣∣∣.
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Projective measurement and generalized
"measurement": I

• The usual sort of measurement in QM determined by a
Hermitian operator is given by a set of projection operators
{Pm} such that ∑m Pm = I and PmPm′ = Pmδmm′ , and it is
now given the retronym, "projective" measurement. The
probability of getting the result m is tr(Pmρ) and the
post-measurement state is ρm = PmρPm/ tr(Pmρ).

• There are other quantum operation called generalized
"measurements" given by a set of "measurement" operators
{Mm} such that ∑m M†

mMm = I (but no orthogonality
condition). The probability of getting the result m is
tr
[
M†

mMmρ
]

and the post-measurement state is
ρm = MmρM†

m/ tr
[
M†

mMmρ
]
.
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Projective measurement and generalized
"measurement": II

• For projective measurement, entropy increases (or remains
the same) for both vN and logical entropy.

• But for so-called generalized "measurement", entropy
might decrease for both types of entropy.
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Example of entropy-decreasing
"measurement": I

• Let M1 = |0〉 〈0| and M2 = |0〉 〈1|. Then as matrices in the
basis {|0〉 , |1〉},

M1 =

[
1 0
0 0

]
and M2 =

[
0 1
0 0

]
so that

M†
1M1 =

[
1 0
0 0

] [
1 0
0 0

]
=

[
1 0
0 0

]
M†

2M2 =

[
0 0
1 0

] [
0 1
0 0

]
=

[
0 0
0 1

]
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Example of entropy-decreasing
"measurement": II

and thus ∑m M†
mMm = I as required. Then for any:

ρ =

[
p1 ρ12
ρ21 p2

]
the result of the generalized "measurement" is
ρ̂ = M1ρM†

1 +M2ρM†
2

=

[
1 0
0 0

] [
p1 ρ12
ρ21 p2

] [
1 0
0 0

]
+

[
0 1
0 0

] [
p1 ρ12
ρ21 p2

] [
0 0
1 0

]
[

p1 0
0 0

]
+

[
p2 0
0 0

]
=

[
p1 + p2 0

0 0

]
=

[
1 0
0 0

]
which is a pure state of entropy 0 with either notion of entropy.
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Example of entropy-decreasing
"measurement": III

• Yet the initial state ρ could be any state such as ρ = I/2
which has positive entropy S (ρ) = log 2 = 1 or
h (ρ) = 1− 1

2 =
1
2 .

• Hence the so-called "generalized measurement" decreased
entropy.

• Both notions of entropy are related to the notion of
distinctions, and any notion of measurement worth the
name is about making distinctions. Hence these general
quantum operations called "generalized measurements" are
not well-named and that has caused much confusion.
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Example of entropy-decreasing
"measurement": IV

• Since M†
1M1 = P1 and M†

2M2 = P2 are both projection
matrices, the resultant state of a projective measurement
using those projections is with probability tr(P1ρ) = p1 the
state:

ρ1 = P1ρP1/ tr(P1ρ) = 1
p1

[
1 0
0 0

] [
p1 ρ12
ρ21 p2

] [
1 0
0 0

]
=

1
p1

[
p1 0
0 0

]
=

[
1 0
0 0

]
and with probability tr(P2ρ) = p2, the resultant state is:

ρ2 = P2ρP2/ tr(P2ρ) = 1
p2

[
0 0
0 1

] [
p1 ρ12
ρ21 p2

] [
0 0
0 1

]
=

1
p2

[
0 0
0 p2

]
=

[
0 0
0 1

]
.
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Example of entropy-decreasing
"measurement": V

• Hence the total resulting state is:

ρ̂ = p1

[
1 0
0 0

]
+ p2

[
0 0
0 1

]
=

[
p1 0
0 p2

]
.

• For the probability distribution p = {p1, p2},

H (p) = S (ρ̂) = ∑i pi log
(

1
pi

)
≥ S (ρ) , and

h (p) = h (ρ̂) = 1−∑i p2
i = 2p1p2 ≥ h (ρ) = 2

[
p1p2 − |ρ12|

2
]
.

• Both type of entropy increase ("increase" always includes
staying the same) under projective measurements.
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Example of entropy-decreasing
"measurement": VI

• Using the Church of the Larger Hilbert Space, the
generalized "measurement" is turned into a projective
measurement by embedding it in a larger Hilbert space.

• In our example, take the qubit space to be HA and tensor it
with HB with the basis {|0B〉 , |1B〉}.

• Then without going through all the details, the two results
of the generalized measurement are now "marked" by the
ancillia basis to become orthogonal so the measurement
becomes projective.

• That is, the results of the measurement are:[
p1 0
0 0

]
⊗ |0B〉 〈0B| and

[
p2 0
0 0

]
⊗ |1B〉 〈1B|
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Example of entropy-decreasing
"measurement": VII

so the resultant state in the larger Hilbert space is:

ρ̂ =


p1 0 0 0
0 p2 0 0
0 0 0 0
0 0 0 0


which is a mixed state.
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Example of entropy-decreasing
"measurement": VIII

• Moreover the entropy is now h (ρ̂) = 1−∑i p2
i = 2p1p2

whereas the entropy before the embedding and
measurement was h (ρ) = 2

[
p1p2 − |ρ12|

2
]

so the entropy

now increased by the amount 2 |ρ12|
2, as in the case when a

projective measurement was made in the first place without
going through the embedding in the larger Hilbert space.
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Projective measurement decreases logical
divergence: I

• The logical entropy of each state and the logical divergence
between states stays constant under unitary transformation,
so the question is what happens when a projective
measurement takes place so that

ρ→ ρ̂ = ∑m PmρPm and σ→ σ̂ = ∑m PmσPm.

• We have already seen that projective measurement
increases logical entropy (as well as vN entropy), i.e.,

h (ρ) ≤ h (ρ̂) under projective measurement.
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Projective measurement decreases logical
divergence: II

• Hence the question is: what happens to the logical
divergence between states under projective measurement?

Theorem
For projective measurement: d (ρ̂||σ̂) ≤ d (ρ||σ).

Proof: (ρ̂− σ̂)2 = (∑m PmρPm −∑m PmσPm)
2

= (∑m Pm(ρ− σ)Pm)
2

= ∑m,m′ [Pm (ρ− σ)Pm] [Pm′ (ρ− σ)Pm′ ]
= ∑m Pm (ρ− σ)PmPm (ρ− σ)Pm
= ∑m Pm (ρ− σ)Pm (ρ− σ)Pm.
Hence d (ρ̂||σ̂) = tr

[
(ρ̂− σ̂)2

]
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Projective measurement decreases logical
divergence: III

= tr [∑m Pm (ρ− σ)Pm (ρ− σ)Pm]
= ∑m tr [Pm (ρ− σ)Pm (ρ− σ)Pm]
≤ ∑m tr [Pm (ρ− σ) (ρ− σ)Pm]

= ∑m tr
[
PmPm (ρ− σ)2

]
= tr

[
∑m Pm (ρ− σ)2

]
= tr

[
(ρ− σ)2

]
= d (ρ||σ). �

David Ellerman (UCR) Miscellany II March 2012 14 / 16



vN quantum relative entropy: I

• The vN quantum relative entropy S (ρ||σ) seems to have a
similar role to the quantum logical divergence d (ρ||σ) in
that both satisfy the basic inequalities, S (ρ||σ) ≥ 0 and
d (ρ||σ) ≥ 0 with equality iff ρ = σ.

• Since
√

d (ρ||σ) is a metric and d (ρ||σ) decreases under
projective measurement, it is natural to ask if S (ρ||σ) has
the same properties.

• Firstly, S (ρ||σ) is not symmetric so
√

S (ρ||σ) fails to be a
metric for that simple reason.

• Hence we symmetrize it: S∗ (ρ||σ) = 1
2 [S (ρ||σ) + S (σ||ρ)]

and then ask the same question about the symmetric
version.
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vN quantum relative entropy: II

• At his point, I have neither proofs nor counterexamples that√
S∗ (ρ||σ) is a metric or that S (ρ||σ) or S∗ (ρ||σ) decreases

under projective measurements, but I suspect that if those
were true, then surely N&C would have mentioned it.
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Basic mixed state entropy formula: I

• In general, any mixed state ρ can be expressed as the
probability mixture of mixed states:

ρ = ∑k qkρk
General mixed state representation

• Any ρ can also be expressed as the probability mixture of
pure states

ρ = ∑k qk |ψk〉 〈ψk|
Pure state representation
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Basic mixed state entropy formula: II
• One particular way to express a mixed state as a probability

sum of pure states is its orthogonal decomposition where
the probabilities pi are the real non-negative eigenvalues of
ρ.

ρ = ∑i pi |i〉 〈i|
Orthogonal pure state representation

• Section 11.3.6 (p. 518) of N&C is entitled: "The entropy of a
mixture of quantum states" where they refer to vN entropy.
For a general mixed state ρ = ∑k qiρk, the best relation there
seems to be for vN entropy is the inequality:

∑k qkS (ρk) ≤ S (∑k qkρk) ≤ ∑k qkS (ρk) +H (qi).
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Basic mixed state entropy formula: III
• For logical entropy, however, there is mixed state master

equation that gives the entropy h (ρ) of a mixed state as the
same mixture of the entropies "within" the states plus the
weighted average of the divergences "between" the ρk
states.

Theorem (Entropies and divergence form)
Given any representation ρ = ∑k qkρk, the logical entropy of ρ is:

h

(
∑
k

qkρk

)
= ∑

k
qkh (ρk) +

1
2 ∑

j,k
qjqkd

(
ρj||ρk

)
.

Proof:
h (ρ) = h (∑k qkρk)
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Basic mixed state entropy formula: IV

= 1− tr
[
(∑k qkρk)

2
]

= 1− tr
[
∑k q2

kρ2
k + 2 ∑j<k qjqkρjρk

]
= 1−∑k q2

k tr
(
ρ2

k
)
− 2 ∑j<k qjqk tr

(
ρjρk

)
=
[
∑k q2

k + 2 ∑j<k qjqk

]
−∑k q2

k tr
(
ρ2

k
)
− 2 ∑j<k qjqk tr

(
ρjρk

)
= ∑k q2

k
[
1− tr

(
ρ2

k
)]
+ 2 ∑j<k qjqk[1− tr

(
ρjρk

)
]

= ∑k q2
kh (ρk) + 2 ∑j<k qjqkh

(
ρj||ρk

)
[this is used later in the

cross-entropies version]
= ∑k qkqkh (ρk) +∑j<k qjqk2h

(
ρj||ρk

)
= ∑k qkqkh (ρk) +∑j<k qjqk

[
d
(

ρj||ρk

)
+ h

(
ρj

)
+ h (ρk)

]
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Basic mixed state entropy formula: V

= ∑k qkqkh (ρk) +∑j<k qjqkd
(

ρj||ρk

)
+∑j<k qjqkh

(
ρj

)
+

∑j<k qjqkh (ρk)

= ∑k qkqkh (ρk) +∑j<k qjqkd
(

ρj||ρk

)
+∑k<j qjqkh (ρk) +

∑j<k qjqkh (ρk)

= ∑k,j qkqjh (ρk) +∑j<k qjqkd
(

ρj||ρk

)
= ∑k qkh (ρk) +∑j<k qjqkd

(
ρj||ρk

)
= ∑k qkh (ρk) +

1
2 ∑j,k qjqkd

(
ρj||ρk

)
.�
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Basic mixed state entropy formula: VI

Remark
• There is some tension here between defining "divergence" as I

did, d
(

ρj||ρk

)
= tr

[(
ρj − ρk

)2
]

so it is the Euclidean distance

squared or defining it as half that so that the 1
2 can be left out of

the above formula.
• These formulas were derived in biostatistics with great generality

in: Rao, C. R. 1982. Diversity and Dissimilarity Coefficients: A
Unified Approach. Theoretical Population Biology. 21: 24-43.
Rao calls (a more general form of) the logical entropy, the
"diversity coefficient" and he uses half-divergence as the
"dissimilarity coefficient." This reinforces the theme that
"entropy" is about distinctions, differences, and decoherence
which in biostatistics are diversity and dissimilarity.
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Other mixed state entropy formulas: I

Corollary (Cross-entropy form)
Given any representation ρ = ∑k qkρk, the logical entropy of ρ is:

h (ρ) = ∑
k

q2
kh (ρk) +∑

j 6=k
qjqkh

(
ρj||ρk

)
= ∑

j,k
qjqkh

(
ρj||ρk

)
.

Proof.
Picking up at a line in the above proof:
h (ρ) = ∑k q2

kh (ρk) + 2 ∑j<k qjqkh
(

ρj||ρk

)
= ∑k q2

kh (ρk) +∑j 6=k qjqkh
(

ρj||ρk

)
= ∑j,k qjqkh

(
ρj||ρk

)
.
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Other mixed state entropy formulas: II

• The cross-entropy version of the master formula is formally
like the ANOVA formula that gives the variance of a
weighted set of populations as a weighted average of the
variances "within" each population plus a weighted
average of the covariances "between" the populations. The
two formulas are:

h

(
∑
k

qkρk

)
= ∑

k
q2

kh (ρk) +∑
j 6=k

qjqkh
(

ρj||ρk

)
Var

(
∑

i
aiXi

)
= ∑

i
a2

i Var (Xi) +∑
i 6=j

aiajCov
(
Xi, Xj

)
.
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Other mixed state entropy formulas: III
• Since tr

(
ρ2) is just the complement of cross-entropy, i.e.,

tr
(

ρjρj

)
= 1− h

(
ρj||ρj

)
, we immediately have a trace

version of the formula (which is easy to prove directly).

Corollary (Trace form)
Given any representation ρ = ∑k qkρk:

tr
(

ρ2
)
= ∑

j,k
qjqk tr

(
ρjρk

)
.

• Since tr [ρσ] and h (ρ||σ) are complements, one might ask:
"Why not just work with trace formulas rather than
(logical) entropy formulas?" The answer is that we are
trying to develop a theory of quantum information where:
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Other mixed state entropy formulas: IV
• Information is about: distinctions, discernibility,

distinguishability, discrimination, diversity, dissimilarity,
divergence, decoherence, and the like.

• There could be a complementary trace-based theory about
"lack-of-information" or ignorance where:

• "Ignorance" is about indistinction, indiscernibility,
indistinguishability, lack-of-diversity, similarity,
convergence, coherence, and the like .

• The same choice occurred in the development of partition
logic where one could work with partition relations or their
complements, equivalence relations. To develop the
analogies with ordinary logic, it was key to work with
partition relations, although all formulas have a dual form
in terms of equivalence relations.
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Special cases: I

• Each special type of representation of a mixed state can be
plugged into the general formula to derive a special
formula.

• Any mixed state can be expressed as a mixture of pure states
(in many different ways).
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Special cases: II

Corollary (Mixture of pure states)
Given any representation ρ = ∑k qk |ψk〉 〈ψk| in terms of pure states,
the logical entropy of ρ is:

h (ρ) = ∑
j,k

qjqk

[
1−

∣∣∣〈ψj|ψk

〉∣∣∣2]

(where
∣∣∣〈ψj|ψk

〉∣∣∣2 can be interpreted as an "indistinction
probability").
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Special cases: III

Proof.
Using the cross-entropy form of the theorem:
h (ρ) = ∑j,k qjqkh

(∣∣∣ψj

〉 〈
ψj

∣∣∣ || |ψk〉 〈ψk|
)

= ∑j,k qjqk

[
1− tr

(∣∣∣ψj

〉 〈
ψj

∣∣∣ |ψk〉 〈ψk|
)]

where

tr
(∣∣∣ψj

〉 〈
ψj

∣∣∣ |ψk〉 〈ψk|
)
=
〈

ψj|ψk

〉
tr
[∣∣∣ψj

〉
〈ψk|

]
=∣∣∣〈ψj|ψk

〉∣∣∣2.
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Special cases: IV

Corollary (Trace form for pure states)
Given any representation ρ = ∑k qk |ψk〉 〈ψk| in terms of pure states:

tr
(

ρ2
)
= 1−∑

j 6=k
qjqk

[
1−

∣∣∣〈ψj|ψk

〉∣∣∣2] .
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Special cases: V

Remark
Does tr

(
ρ2) = 1 imply that ρ is a pure state? By the above formula,

since all the qj > 0 and 0 ≤
∣∣∣〈ψj|ψk

〉∣∣∣2 ≤ 1, tr
(
ρ2) = 1 implies∣∣∣〈ψj|ψk

〉∣∣∣2 = 1 for all ψj and ψk. This means the |ψk〉 are vectors that

differ at most in an absolute phase factor eiϕk (different ϕk for different

k). Then any ρ = ∑k qk |ψk〉 〈ψk| has
∣∣∣〈ψj|ψk

〉∣∣∣2 = 1 for any j, k so

that tr
(
ρ2) = 1. But all the projection matrices |ψk〉 〈ψk| are the same

|ψ〉 〈ψ| (since the phases cancel out) so that
ρ = ∑k qk |ψk〉 〈ψk| = |ψ〉 〈ψ| which is a pure state.
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Special cases: VI

• It should be recalled that there is no connection between the
dimension of the Hilbert space and the number of ρk’s
involved in a representation ρ = ∑k qkρk using mixed states
or ρ = ∑k qk |ψk〉 〈ψk| using pure states.

• Another special case is the orthogonal decomposition
ρ = ∑i pi |i〉 〈i| where the states |i〉 are orthonormal. Then
the entropy formula is: h (ρ) = ∑i,j pipj

[
1− |〈i|j〉|2

]
where

〈i|j〉 = δij so:

h (ρ) = ∑i,j pipj
[
1− δij

]
= ∑i 6=j pipj = 1−∑i p2

i .
Entropy of orthogonal decomposition is classical logical entropy
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Special cases: VII

Remark
We have not discussed logical entropy in the continuous case, but the
formula h (ρ) = ∑i,j pipj

[
1− δij

]
indicates one approach. Given a

continuous probability distribution P (x), the logical entropy of the
probability distribution is:
h (P) =

∫
(1− δ (x1 − x2))P(x1)P (x2) dx1dx2 where δ (x1 − x2) is

the Dirac delta function. But h (P) = 1−
∫

P (x)2 dx is much
simpler.

• Another special case is the Schmidt decomposition of a
pure state |ψ〉 on HA ⊗HB which is: |ψ〉 = ∑i

√
pi |iA〉 ⊗ |iB〉

where the iA and iB are orthonormal states of the two
systems HA and HB. Then the reduced density matrices on
HA and HB are:
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Special cases: VIII
ρA = ∑i pi |iA〉 〈iA| and ρB = ∑i pi |iB〉 〈iB|.

• Now we can apply the formula:

h
(
ρA) = ∑j 6=k

[
pjpk − pjpk |〈jA|kA〉|2

]
= ∑j 6=k pjpk = 1− p2

i .

• Since the result depends on the pi’s, the logical entropy of
ρB is the same.

• If |ψ〉 is not only a pure state but a separated (or product)
state, then |ψ〉 = |iA〉 ⊗ |iB〉, p1 = 1, and
h
(
ρA) = 0 = h

(
ρB). Hence:

|ψ〉 is entangled iff h
(
ρA) = h

(
ρB) > 0

(similarly for vN entropy).
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Joint entropy theorem: I

• The joint entropy theorem for vN entropy was proven in
the N&C book (p. 513). The theorem for logical entropy
was previously stated but not proven. It can be proven by
adapting the proof for vN entropy that uses the orthogonal
decomposition but it can also be derived using the mixed
state entropy formula.

Lemma
If p = {pi} is a probability distribution and the states ρi have
orthogonal support, then:

h

(
∑

j
pjρj

)
= h (p) +∑

j
p2

j h
(

ρj

)
.
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Joint entropy theorem: II

Proof.
Using the cross-entropy version of the formula:

h (ρ) = ∑j,k pjpkh
(

ρj||ρk

)
= ∑j,k pjpk −∑j,k pjpk tr

(
ρjρk

)
= ∑j p2

j +∑j 6=k pjpk −∑j p2
j tr
(

ρ2
j

)
= h (p) +∑j p2

j

[
1− tr

(
ρ2

j

)]
= h (p) +∑j p2

j h
(

ρj

)
.
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Joint entropy theorem: III

Theorem (Joint entropy theorem)
Suppose p = {pi} are probabilities, |i〉 are orthogonal states for system
A, and {ρi} are any set of density operators for system B. If
ρ = ∑i pi |i〉 〈i| ⊗ ρi, then:

h

(
∑

i
pi |i〉 〈i| ⊗ ρi

)
= h (p) +∑

i
p2

i h (ρi) .
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Joint entropy theorem: IV

Proof.
The states |i〉 〈i| ⊗ ρi have orthogonal support so the lemma
gives h (ρ) = h (p) +∑i p2

i h (|i〉 〈i| ⊗ ρi). It was previous shown
that for any states σ, τ, h (σ⊗ τ) = h (σ) + h (τ)− h (σ) h (τ)
and |i〉 〈i| is a pure state so h (|i〉 〈i|) = 0 and thus
h (|i〉 〈i| ⊗ ρi) = h (ρi).
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End of seminar

For other writings on quantum mechanics, see my website:
www.ellerman.org/category/qm/
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