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Abstract

Category theory has foundational importance because it provides con-

ceptual lenses to characterize what is important and universal in mathematics—

with adjoint functors being the primary lense. Our topic is a theory showing
"where adjoints come from." The theory is based on the object-to-object
"heteromorphisms" between the objects of different categories (e.g., inser-
tion of generators as a set-to-group map). After showing that heteromor-
phisms can be treated rigorously using the machinery of category theory
(bifunctors), we show that all adjunctions between two categories arise as
the representations (i.e., universal models) within each category of the het-
eromorphisms between the two categories. The heteromorphic theory may
lead to new philosophical or scientific applications of adjoint functors.
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5 Concluding Remarks 24

1 The Importance of Adjoints

Category theory is of foundational importance in mathematics but it is not “foun-
dational” in the sense normally claimed by set theory. It does not try to provide
some basic objects (e.g., sets) from which other mathematical objects can be
constructed. Instead, the foundational role of category theory lies in providing
conceptual lenses to characterize what is universal and natural in mathematics.!
Two of the most important concepts are universal mapping properties and nat-
ural transformations. These two concepts are combined in the notion of adjoint
functors. In recent decades, adjoint functors have emerged as the principal lens
through which category theory plays out its foundational role of characterizing
what is important in mathematics.

The developers of category theory, Saunders MacLane and Samuel Eilen-
berg, famously said that categories were defined in order to define functors, and
functors were defined in order to define natural transformations. Their original
paper [6] was entitled not “General Theory of Categories” but General The-
ory of Natural Equivalences. Adjoints were defined more than a decade later by
Daniel Kan [13] but the realization of their foundational importance has steadily
increased over time [17, 15]. Now it would perhaps not be too much of an exag-
geration to see categories, functors, and natural transformations as the prelude
to defining adjoint functors. As Steven Awodey put it in his recent text:

The notion of adjoint functor applies everything that we have learned up to now
to unify and subsume all the different universal mapping properties that we have
encountered, from free groups to limits to exponentials. But more importantly, it
also captures an important mathematical phenomenon that is invisible without
the lens of category theory. Indeed, I will make the admittedly provocative claim
that adjointness is a concept of fundamental logical and mathematical importance

that is not captured elsewhere in mathematics. [2, p.179]
Other category theorists have given similar testimonials.

To some, including this writer, adjunction is the most important concept in cat-

egory theory. [23, p. 6]

The isolation and explication of the notion of adjointness is perhaps the most
profound contribution that category theory has made to the history of general
mathematical ideas.[12, p. 438]

Nowadays, every user of category theory agrees that [adjunction] is the concept

which justifies the fundamental position of the subject in mathematics. [22, p.
367]

IFor summary statements, see [1], [16], or [8].



Given the importance of adjoint functors in category theory and in mathematics
as a whole, it would seem worthwhile to further investigate the concept of an
adjunction. Whence adjoints? Where do adjoint functors come from; how do
they arise? In this paper we will present a theory of adjoint functors to address
these questions [9, 10].

Category theory groups together in categories the mathematical objects
with some common structure (e.g., sets, partially ordered sets, groups, rings,
and so forth) and the appropriate morphisms between such objects. Since the
morphisms are between objects of similar structure, they are ordinarily called
“homomorphisms” or just “morphisms” for short.

But there have always been other morphisms which occur in mathematical
practice that are between objects with different structures (i.e., in different cate-
gories) such as the insertion-of-generators map from a set to the free group on that
set. Indeed, the working mathematician might well characterize the free group
F(X) on a set X as the group such that for any set-to-group map f: X = G,
there is a unique group homomorphism f: F (X) — G that factors f through
the canonical insertion of generators i : X = F (X), i.e., f = fz In order to
contrast these morphisms such as f : X = G and i : X = F (X) with the
homomorphisms between objects within a category such as f: F(X) — @G, the
former might be called heteromorphisms or, more colorfully, chimera morphisms
(since they have a tail in one category and a head in another category). The usual
machinery of category theory (bifunctors, in particular) can be adapted to give a
rigorous treatment of heteromorphisms (and their compositions with homomor-
phisms) that is parallel to the usual bifunctorial treatment of homomorphisms.

With a precise notion of heteromorphisms in hand, it can then be seen that
adjoint functors arise as the functors giving the representations, using homo-
morphisms within each category, of the heteromorphisms between two categories.
Often one of the representations is the important one in the adjunction (with the
other being a matter of conceptual bookkeeping). In the case of the free group
adjunction, the important representation is the representation of the hetermor-
phisms Het (X, G) by the group homomorphisms Hom (F (X), G) which is given
by the natural isomorphism Het (X, G) = Hom (F (X), G) which pairs f «— 7.
And, conversely, given a pair of adjoint functors, then heteromorphisms can be
defined between (isomorphic copies of) the two categories so that the adjoints
arise out of the representations of those heteromorphisms. Hence this heteromor-
phic theory shows where adjoints “come from” or “how they arise.” It would
seem that this theory of adjoint functors was not developed in the conventional
treatment of category theory since heteromorphisms, although present in math-
ematical practice, are not part of the usual machinery of category theory.



2 Overview of the Theory of Adjoints

The cross-category object-to-object morphisms c : © = a, called heteromorphisms
(hets for short) or chimera morphisms, will be indicated by double arrows (=)
rather than single arrows (—). The first question is how do heteromorphisms
compose with one another? But that is not necessary. Chimera do not need to
‘mate’ with other chimera to form a ‘species’ or category; they only need to
mate with the intra-category morphisms on each side to form other chimera. The
appropriate mathematical machinery to describe that is the generalization of a
group acting on a set to a generalized monoid or category acting on a set (where
each element of the set has a “domain” and a “codomain” to determine when
composition is defined). In this case, it is two categories acting on a set, one on
the left and one on the right. Given a chimera morphism ¢ : £ = a from an
object in a category X to an object in a category A and morphisms h : 2’ — x
in X and k : a — a' in A, the composition ch : ' — = = a is another chimera
2’ = a and the composition kc : x = a — a’ is another chimera x = a’ with
the usual identity, composition, and associativity properties. Such an action of
two categories acting on a set on the left and on the right is exactly described
by a bifunctor Het : X°? x A — Set where Het(z,a) = {z = a} and where
Set is the category of sets and set functions. Thus the natural machinery to
treat object-to-object chimera morphisms between categories are het-bifunctors
Het : X°P x A — Set that generalize the hom-bifunctors Hom : X°? x X — Set
used to treat object-to-object morphisms within a category.

How might the categorical properties of the heteromorphisms be expressed
using homomorphisms? Represent the het-bifunctors using hom-functors on the
left and on the right (see any category theory text such as [19] for Alexander
Grothendieck’s notion of a representable functor). Any bifunctor D : X°P x A —
Set is represented on the left® if for each z in X there is an object Fx in A
and an isomorphism Homa (Fz, a) & D(z,a) natural in a. It is a standard result
that the assignment x — Fx extends to a functor F' and that the isomorphism
is also natural in x. Similarly, D is represented on the right if for each a there
is an object Ga in X and an isomorphism D(z,a) = Homx (z, Ga) natural in
x. And similarly, the assignment a — Ga extends to a functor G and that the
isomorphism is also natural in a.

If a het-bifunctor Het : X°? x A — Set is represented on both the left
and the right, then we have two functors /' : X — A and G : A — X and the
isomorphisms are natural in x and in a:

Homa (Fz,a) = Het(z, a) = Homx (z, Ga).

It only remains to drop out the middle term Het(z, a) to arrive at the pas de deux
of the ‘official’ definition of a pair of adjoint functors which does not mention
heteromorphisms.

2This terminology “represented on the left” or “on the right” is used to agree with the
terminology for left and right adjoints.



While a birepresentation of a het-bifunctor gives rise to an adjunction, do all
adjunctions arise in this manner? To round out the theory, we give an “adjunction
representation theorem” which shows how, given any adjunction F': X = A : G,
heteromorphisms can be defined between (isomorphic copies of) the categories X
and A so that (isomorphic copies of) the adjoints arise from the representations
on the left and right of the het-bifunctor. Given any set function f : X — A from
the set X to a set A, the graph graph (f) = {(z, f(z)) : z € X} C X x A of the
function is set-isomorphic to the domain of the function X. The embedding z ——
(z, f (z)) maps X to the set-isomorphic copy of X, namely graph (f) C X x A.
That isomorphism generalizes to categories and to functors between categories.
Given any functor F' : X — A, the domain category X is embedded in the
product category X x A by the assignment 2 — (x, F'z) to obtain the isomorphic
copy X (which can be considered as the graph of the functor F). Given any other
functor G : A — X, the domain category A is embedded in the product category
by a — (Ga,a) to yield the isomorphic copy A (the graph of the functor G). If
the two functors are adjoints, then the properties of the adjunction can be nicely
expressed by the commutativity within the one category X x A of “hom-pair
adjunctive squares” where morphisms are pairs of homomorphisms (in contrast
to a “het adjunctive square” defined later).

(z, Fx) (FF{) (Ga, FGa)
(7713 lF.’E) l \(f,g) l« (1Gaa 5(1)

(GFz,Fx) (Go.9) (Ga,a)
Hom-pair adjunctive square

The main diagonal (f,g) in a commutative hom-pair adjunctive square pairs
together maps that are images of one another in the adjunction isomorphism
Homa (Fz,a) = Homx (z,Ga). If f € Homx(z,Ga), g = f* € Homa (Fz,a) is
the corresponding homomorphism on the other side of the isomorphism between
hom-sets called its adjoint transpose (or later “adjoint correlate”) and similarly
J = g". Since the maps on top are always in X and the maps on the bottom
are in A, the main diagonal pairs of maps (including the vertical maps)—which
are ordinary morphisms in the product category——have all the categorical prop-
erties of heteromorphisms from objects in X = X to objects in A = A. Hence
the heteromorphisms are abstractly defined as the pairs of adjoint transposes,

Het(z,a) = {(z, Fx) CLK (Ga,a)}, and the adjunction representation theorem
is that (isomorphic copies of) the original adjoints F' and G arise from the rep-
resentations on the left and right of this het-bifunctor.

Heteromorphisms are formally treated using bifunctors of the form Het :
X x A — Set. Such bifunctors and generalizations replacing Set by other cat-
egories have been studied by the Australian school under the name of profunctors
[14], by the French school under the name of distributors [3], and by William Law-
vere under the name of bimodules [18]. However, the guiding interpretation has



been interestingly different. “Roughly speaking, a distributor is to a functor what
a relation is to a mapping” [4, p. 308] (and hence the name “profunctor” in the
Australian school). For instance, if Set was replaced by 2, then the bifunctor
would just be the characteristic function of a relation from X to A. Hence in

the general context of enriched category theory, a “bimodule” VP @ X —SO> Vv
would be interpreted as a “V-valued relation” and an element of ¢(y,x) would
be interpreted as the “truth-value of the p-relatedness of y to z” [18, p. 158 (p.
28 of reprint)].

The subsequent development of profunctors-distributors-bimodules has been
along the lines suggested by that guiding interpretation. For instance, composi-
tion is defined between distributors as “relational” generalizations of functors to
define a category of distributors in analogy with composition defined between
relations as generalizations of functions which allows the definition of a category
of relations [4, Chapter 7].

The heteromorphic interpretation of the bifunctors X°P x A — Set is rather
different. Each such bifunctor is taken as defining how the chimeras in Het(z, a)
compose with morphisms in A on one side and with morphisms in X on the
other side to form other chimeras. This provides the formal treatment of the het-
eromorphisms that have always existed in mathematical practice. The principal
novelty here is the use of the chimera morphism interpretation of these bifunctors
to carry out a whole program of interpretation for adjunctions, i.e., a theory of
adjoint functors. In the concrete examples, heteromorphisms have to be “found”
as is done in the broad classes of examples treated here. However, in general, the
adjunction representation theorem shows how abstract heteromorphisms (pairs
of adjoint transposes in the product category X x A) can always be found so that
any adjunction arises (up to isomorphism) out of the representations on the left
and right of the het-bifunctor of such heteromorphisms. Following this summary,
we now turn to a slower development of the theory along with examples.

3 The Heteromorphic Theory of Adjoints

3.1 Definition and Directionality of Adjoints

There are many equivalent definitions of adjoint functors [19], but the most ‘of-
ficial’ one seems to be the one using a natural isomorphism of hom-sets. Let X
and A be categories and F' : X — A and G : A — X functors between them.
Then F and G are said to be a pair of adjoint functors or an adjunction, written
F 4G, if for any z in X and a in A, there is an isomorphism ¢ natural in x and
in a:

¢z,q : Homa (Fz,a) = Homx (z, Ga).

With this standard way of writing the isomorphism of hom-sets, the functor
F on the left is called the left adjoint and the functor G on the right is the



right adjoint. Maps associated with each other by the adjunction isomorphism
("adjoint transposes" of one another) are indicated by an asterisk soif g : Fo — a
then g* : © — Ga is the associated map ¢4 4(g) = ¢* and similarly if f : ¢ — Ga
then ¢, L (f) = f* : Fo — a is the associated map.

In much of the literature, adjoints are presented in a seemingly symmetrical
fashion so that there appears to be no directionality of the adjoints between the
categories X and A. But there is a directionality and it is important in under-
standing adjoints. Both the maps that appear in the adjunction isomorphism,
Fz — a and ¢ — Ga, go from the “z-thing” (i.e., either x or the image F'z) to
the “a-thing” (either the image Ga or a itself), so we see a direction emerging
from X to A. That direction of an adjunction is the direction of the left adjoint
(which goes from X to A). Then X might called the sending category and A the
receiving category.3

In the theory of adjoints presented here, the directionality of adjoints results
from being representations of heteromorphisms which have that directionality.
Such morphisms can exhibited in concrete examples of adjoints (see the later
examples). To abstractly define chimera morphisms or heteromorphisms that
work for all adjunctions, we turn to the presentation of adjoints using adjunctive
squares.

3.2 Embedding Adjunctions in a Product Category

Our approach to a theory of adjoints uses a certain “adjunctive square” diagram
that is in the product category X x A associated with an adjunction F : X &
A : G. With each object = in the category X, we associate the element T =
(z, Fz) in the product category X x A so that Ga would have associated with
it Ga = (Ga, FGa). With each morphism in X with the form h : 2/ — z, we
associate the morphism i = (h, Fh) : ' = (2/, F2') — @ = (z, Fz) in the product
category X x A (maps compose and diagrams commute component-wise). Thus
the mapping of = to (z, Fx) extends to an embedding (1x,F) : X — X x A
whose image X (the graph of F') is isomorphic with X.

With each object a in the category A, we associate the element a = (Ga, a)
in the product category X x A so that F'xz would have associated with it Fr =
(GFz, Fx). With each morphism in A with the form % : a — a’,we associate the
morphism k = (Gk, k) : (Ga,a) — (Ga’,d’) in the product category X x A. The
mapping of a to (Ga,a) extends to an embedding (G,14) : A — X x A whose
image A (the graph of @) is isomorphic to A.

The adjoint transpose of the identity map 1g, € Homy (Fz, Fz) is the unit
morphism 7, : © — GFz € Homx(x,GFx). That pair (ny,1p) : (z,Fz) —
(GFz, Fz) of adjoint transposes is the left vertical ‘heteromorphism’ in the hom-

3Sometimes adjunctions are written with this direction as in the notation (F, G, #) : X— A
(MacLane [19,p.78]). This also allows the composition of adjoints to be defined in a straight-
forward manner (MacLane [19, p.101]).



pairs adjunctive square diagram. We use the raised-eyebrow quotes on ‘hetero-
morphism’ since it is a perfectly ordinary homomorphism in the product category
X x A which plays the role of a heteromorphism from X, the isomorphic copy
of X, to A, the isomorphic copy of A, both subcategories of X x A. The ad-
joint transpose of the identity map 1g, € Homyx (Ga, Ga) is the counit morphism
€a : FGa — a € Homy(FGa,a). That pair (1g,&,) : (Ga, FGa) — (Ga,a) of
adjoint transposes is the right vertical ‘heteromorphism’ in the adjunctive square
diagram.

These various parts can then be collected together in the (hom-pair adjunc-
tive square diagram of the representation theorem.

(z, Fx) (FED (Ga, FGa)

(77:1:7 1Fz) l \(f,g) l (1Ga75a)
(GFz,Fx) (Go.g) (Ga,a)

Hom-pair Adjunctive Square Diagram

The adjunctive square diagram conveniently represents the properties of an
adjunction in the format of commutative squares. The map on the top is in X
and the map on the bottom is in A and the vertical maps as well as the main
diagonal (f, g) in a commutative adjunctive square are morphisms from X-objects
to K—objects.

Given f : x — Gla, the rest of the diagram is determined by the requirement
that the square commutes. Commutativity in the second component uniquely
determines that g = glp, = €, Ff so g = f* = ¢, Ff is the map associated
with f in the adjunction isomorphism. Commutativity in the first component
is the universal mapping property (UMP) factorization of any given f : x — Ga

through the unit z % GFx 9T, Ga =z~ Ga which is often pictured as:
x

e LN

GFz %L Ga
.

Fe 25 4

Hom-pair adjunctive square south-west of the diagonal.
Similarly, if we were given g : F'x — a, then commutativity in the first

component implies that f = lg.f = Ggn, = ¢g*. And commutativity in the
second component is the UMP factorization of any given g : Fx — a through the

counit Fz 7% FGa <% a = Fa —% a which is usually pictured as:

T E Ga
Fx LN FGa
D A,

a



Hom-pair adjunctive square north-east of the diagonal.

Splicing together the two triangles along the diagonals so that the two diago-
nals form the hom-pair (f,g) (and supplying the identity maps 1, and lg, as
required to form the left and right vertical hom-pairs), the hom-pair adjunctive
square is put back together.

3.3 Heteromorphisms and Het-bifunctors

Heteromorphisms (in contrast to homomorphisms) are like mongrels or chimeras
that do not fit into either of the two categories. Since the inter-category hetero-
morphisms are not morphisms in either of the categories, what can we say about
them? The one thing we can reasonably say is that heteromorphisms can be
precomposed or postcomposed with morphisms within the categories (i.e., intra-
category morphisms) to obtain other heteromorphisms.* This is easily formal-
ized using bifunctors similar to the hom-bifunctors Hom(z, y) in homomorphisms
within a category. Using the sets-to-groups example to guide intuition, one might
think of Het(x,a) = {z = a} as the set of set functions from a set x to a group
a. For any A-morphism k : @ — o’ and any chimera morphism z = a, intuitively

. . . . 4 k ke 4 . .

there is a composite chimera morphism =z = a — o’ = x = d/, i.e., k induces
a map Het(z, k) : Het(z,a) — Het(z,a’). For any X-morphism h : 2’ — x and
chimera morphism 2 = a, intuitively there is the composite chimera morphism
o baSa=a2a e, hinduces a map Het(h,a) : Het(z,a) — Het(z/, a)
(note the reversal of direction). The induced maps would respect identity and
composite morphisms in each category. Moreover, composition is associative in
the sense that (kc)h = k(ch). This means that the assignments of sets of chimera
morphisms Het(z,a) = {z = a} and the induced maps between them constitute
a bifunctor Het : X°P x A — Set (contravariant in the first variable and covariant
in the second).

With this motivation, we may turn around and define heteromorphisms
from X-objects to A-objects as the elements in the values of a bifunctor Het :
X x A — Set. This would be analogous to defining the homomorphisms in X
as the elements in the values of a given hom-bifunctor Homyx : X°? x X — Set
and similarly for Homp : A°? x A — Set.

With heteromorphisms rigorously described using het-bifunctors, we can
use Grothendieck’s notion of a representable functor to show that an adjunction
arises from a het-bifunctor Het : X°? x A — Set that is “birepresentable” in the
sense of being representable on both the left and right.

Given any bifunctor Het : X°P? x A — Set, it is representable on the left if for
each X-object x, there is an A-object Fz: that represents the functor Het(z, —),
i.e., there is an isomorphism v, , : Homa (Fz,a) = Het(z, a) natural in a. For

4The chimera genes are dominant in these mongrel matings. While mules cannot mate with
mules, it is ‘as if’ mules could mate with either horses or donkeys to produce other mules.



each z, let h, be the image of the identity on Fz, ie., ¥y ps(lry) = hy €
Het(z, Fz). We first show that h, is a universal element for the functor Het(x, —)
and then use that to complete the construction of F' as a functor. For any ¢ €
Het(z,a), let g(c) = ¢, 4(c) : Fx — a. Then naturality in ¢ means that the
following diagram commutes.

Homa (Fz, Fz) = Het(z, Fz)
Hom(Fz,g(c)) l l Het(z,g9(c))
Homa (Fz,a) = Het(z,a)
Het (x, a) representable on the left

Chasing 1p, around the diagram yields that ¢ = Het(x, g(c))(h,) which can
be written as ¢ = g(c)h,. Since the horizontal maps are isomorphisms, g(c) is
the unique map ¢ : Fx — a such that ¢ = gh,. Then (Fz,h,) is a universal
element (in MacLane’s sense [19, p. 57]) for the functor Het(z, —) or equivalently

1 Loy Het(z, Fz) is a universal arrow [19, p. 58] from 1 (the one point set) to
Het(x, —). Then for any X-morphism j : x — /', Fj : Fx — F2' is the unique
A-morphism such that Het(x, F'j) fills in the right vertical arrow in the following
diagram.

1 L=, Het(z, Fz)
hr l l Het(x,Fyj)
Het(z', F') Het(g. =) Het(z, Fz')

It is easily checked that such a definition of F'j : Fx — Fa' preserves identities
and composition using the functoriality of Het(x, —) so we have a functor F :
X — A. It is a further standard result that the isomorphism is also natural in x
(e.g., [19, p. 81] or the "parameter theorem" [20, p. 525]).

Given a bifunctor Het : X°P? x A — Set, it is representable on the right if for
each A-object a, there is an X-object Ga that represents the functor Het(—, a),
i.e., there is an isomorphism ¢, , : Het(z,a) = Homx (2, Ga) natural in z. For
each a, let e, be the inverse image of the identity on Ga, i.e., ¢ai7a(1Ga) =eq €
Het(Ga,a). For any ¢ € Het(z,a), let f(c) = ¢u.q(c) : @ — Ga. Then naturality
in x means that the following diagram commutes.

Het(Ga,a) = Homx(Ga,Ga)
Het(f(c),a) 1 1 Hom(f(c),Ga)
Het(z,a) = Homx(z,Ga)
Het (z, a) representable on the right

Chasing 1g, around the diagram yields that ¢ = Het(f(c),a)(es) = eaf(c) so
(Ga, e,) is a universal element for the functor Het(—, a) and that 1 =% Het(Ga, a)
is a universal arrow from 1 to Het(—, a). Then for any A-morphism % : ¢’ — a,
Gk : Ga’ — Ga is the unique X-morphism such that Het(Gk, a) fills in the right
vertical arrow in the following diagram.

10



1 L, Het(Ga, a)

o l l Het(Gk,a)

Het(Gd',a’) Het(Ga'-k) Het(Gd', a)

e

In a similar manner, it is easily checked that the functoriality of G follows from
the functoriality of Het(—,a). Thus we have a functor G : A — X such that
Ga represents the functor Het(—,a), i.e., there is a natural isomorphism ¢, , :
Het(z,a) = Homx (x, Ga) natural in 2. And in a similar manner, it can be shown
that the isomorphism is natural in both variables.

Thus given a bifunctor Het : X°? x A — Set representable on both sides,
we have the adjunction natural isomorphisms:

Homa (F'z,a) & Het(z, a) = Homx (z, Ga).

Starting with ¢ € Het(z, a), the corresponding f (¢) € Homx (x, Ga) and g (c) €
Homa (F'z,a) are called adjoint correlates of one another. Starting with 1p, €
Homp (Fz, Fx), its adjoint correlates are the het unit h, € Het(x, F'x) and the
ordinary unit 1, € Homx (z, GFx) where this usual unit 7, might also be called
the “hom unit” to distinguish it from its het correlate. Starting with 1, €
Homx (Ga, Ga), its adjoint correlates are the het counit e, € Het(Ga,a) and
the usual (hom) counit e, € Homa (FGa,a). Starting with any ¢ € Het (z, a),
the two factorizations g(c)h, = ¢ = e, f(c) combine to give what we will later
call the “het adjunctive square” with ¢ as the main diagonal [as opposed to the
hom-pair adjunctive square previously constructed which had (f(c), g (c)) as the
main diagonal].

There are cases (see below) where the het-bifunctor is only representable on
the left Homa (Fz,a) = Het(x, a) or on the right Het(x, a) = Homx (z, Ga), and
in that case, it would make perfectly good sense to respectively take F' : X — A as
a left half-adjunction or G : A — X as a right half-adjunction. A half-adjunction
is the simplest expression of a universal mapping property, and, of course, a left
half-adjunction plus a right half-adjunction equals an adjunction.’

3.4 Adjunction Representation Theorem

Adjunctions may be and usually are presented without any thought to any un-
derlying heteromorphisms. However, given any adjunction, there is always an
“abstract” associated het-bifunctor given by the main diagonal maps in the
commutative hom-pair adjunctive squares:

Het(%,a) = {# = (z, Fz) 15 (Ga,a) = @)
Het-bifunctor for any adjunction from hom-pair adjunctive squares.

5For most adjunctions, only one of the half-adjunctions is the important one. The other half-
adjunction is needed to state the universal mapping properties without using heteromorphisms.
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The diagonal maps are closed under precomposition with maps from X and
postcomposition with maps from A. Associativity follows from the associativity
in the ambient category X x A. -

The representation is accomplished essentially by putting a hat on objects
and morphisms embedded in X x A. The categorles X and A are represented
respectlvely by the subcategory X with objects T = (z, Fz) and morphisms
f= (f, Ff) and by the subcategory A with objects @ = (Ga, a) and morphisms
g = (Gyg, g). The twist functor (F,G): X x A — X x A defined by (F,G) (z,a) =
(Ga, Fz) (and similarly for morphisms) restricted to X = X is F which has the
action of F, ie., FZ = (F,G)(x,Fz) = (GF=, Fa) = Fz € A and similarly
for morphisms. The twist functor restricted to A = A \ yields G which has the
action of @, i.e., Ga = (F,G)(Ga,a) = (Ga, FGa) = Ga € X and similarly for
morphisms. These functors provide representations on the left and right of the
— (7 (£.17)

abstract het-bifunctor Het(Z,a) = a}, i.e., the natural isomorphism

Hom (F7,a) = Het(,a) = Homg (7, Ga).

This birepresentation of the abstract het-bifunctor gives an isomorphic copy
of the original adjunction between the isomorphic copies X and A of the original
categories. This hom-pair representation is summarized in the following:

Adjunction Representation Theorem: Every adjunction F' : X &= A : G
can be represented (up to isomorphism) as arising from the left and right
representing universals of a het-bifunctor Het : )A(AOP x A — Set giving the
heteromorphisms from the objects in a category X = X to the objects in a
category A = A5

3.5 Het Adjunctive Squares

We previously used the representations of Het(z, a) to pick out universal elements,
the het unit h, € Het(x, Fx) and the het counit e, € Het(Ga, a), as the respective
adjoint correlates of 1p, and 1g, under the isomorphisms. We showed that from
the birepresentation of Het(z,a), any chimera morphism z = a in Het(z,a)
would have two factorizations: g(c)h, = ¢ = e, f(c). This two factorizations are
spliced together along the main diagonal ¢ : £ = a to form the het (commutative)
adjunctive square.

6In a historical note (19, p. 103], MacLane noted that Bourbaki “missed” the notion of
an adjunction because Bourbaki focused on the left representations of bifunctors W : X°P x
A — Sets. MacLane remarks that given G : A — X, they should have taken W(z,a) =
Homx (z,Ga) and then focused on “the symmetry of the adjunction problem” to find Fz so
that Homa (Fx,a) &2 Homx(xz,Ga). But MacLane thus missed the completely symmetrical
adjunction problem which is: given W (z, a), find both Ga and Fz such that Homa (Fz,a) &
W(z,a) 2 Homx (z,Ga).

12



xMGa

he 4 N e

Fz gte) a
Het Adjunctive Square’

Sometimes the two adjoint transposes are written vertically as in a Gentzen-
style rule of inference:

z— Ga
Fr—a
Gentzen-style presentation of an adjunction

This can be seen as a proto-het-adjunctive square without the vertical morphisms—
at least when the homomorphism involving the left adjoint is on the bottom.
Some of the rigmarole of the conventional treatment of adjoints (sans chimeras)
is only necessary because of the restriction to morphisms within one category or
the other. For instance, the UMP for the hom unit 7, : © — GFz is that given
any morphism f : z — Ga in X, there is a unique morphism g = f*: Foz — a in
the other category A such that G-functorial image back in the original category

X gives the factorization of f through the unit: = s Ga=1z 1 GFz er Ga.
The UMP has to go back and forth between homomorphisms in the two cate-
gories because it avoids mention of the heteromorphisms between the categories.
The universal mapping property for the het unit h, : * = Fz is much simpler
(i.e., no G and no over and back). Given any heteromorphism ¢ : = a, there is
a unique homomorphism ¢ (¢) : Fx — a in the codomain category A such that

H .
wéazx%F&:&a.

For instance, in the “old days” (before category theory), one might have
stated the universal mapping property of the free group F'z on a set z by saying
that for any map ¢ : * = a from z into a group a, there is a unique group
homomorphism g (¢) : Fo — a that preserves the action of ¢ on the generators

z, i.e., such that + = a = 2 — Fx gts) a. That is just the left half-adjunction

part of the free-group adjunction. There is nothing sloppy or ‘wrong’ in that old
way of stating the universal mapping property.

Dually for the hom counit, given any morphism g : F'x — a in A, there
is a unique morphism f = ¢g* : x — Ga in the other category X, such that the
F-functorial image back in the original category A gives the factorization of g

though the counit: Fz - a = Fz T9, FGa <% a. For the het counit, given

any heteromorphism ¢ : x = a, there is a unique homomorphism f (¢) : © — Ga

in the domain category X such that z = a = i Ga £ a. Putting these two

"For typographical reasons, the diagonal heteromorphism ¢ : ¢ = a is represented as a single
arrow rather than a double arrow.
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het UMPs together yields the het adjunctive square diagram, just as previously
putting the two hom UMPs together yielded the hom-pair adjunctive square
diagram.

3.6 Het Natural Transformations

One of the main motivations for category theory was to mathematically charac-
terize the intuitive notion of naturality for homomorphisms as in the standard
example of the canonical linear homomorphism embedded a vector space into
its double dual. Many heteromorphisms are rather arbitrary but certain ones
are quite canonical so we should be able to mathematically characterize that
canonicalness or naturality just as we do for homomorphisms. Indeed, the notion
of a natural transformation immediately generalizes to functors with different
codomains by taking the components to be heteromorphisms. Given functors
F:X — A and H : X — B with a common domain and given a het-bifunctor
Het : A°? x B — Set, a chimera or het natural transformation relative to Het,
¢ F'= H, is given by a set of heteromorphisms {¢, € Het(F'z, Hz)} indexed
by the objects of X such that for any j : z — 2’ the following diagram commutes.

Fr = Hgz

Fj | I Hj
Fo' 2% by

Het natural transformation

As with any commutative diagram involving heteromorphisms, composition and
commutativity are defined using the het-bifunctor (similar remarks apply to any
ordinary commutative hom diagram where it is the hom-bifunctor behind the
scenes). For instance, the above commutative squares which define het natural
transformations unpack as the following behind-the-scenes commutative squares
in Set for the underlying het-bifunctor.

P
1 — Het(Fz, Hz)
Par ! ! Het(Fz, Hj)
Het(Fa', Ha') — Het(Fz, Hz')

Het(Fj, Hx')

The composition Fo =% Hz EiERy TPV Het(Fz,Hj)(p,) € Het(Fx, Hz'),
the composition Fz B, ot 22 Ha s Het(Fj, Hx')(py) € Het(Fx, Hz'),
and commutativity means they are the same element of Het(Fx, Hz'). These het
natural transformations do not compose like the morphisms in a functor category
but they are acted upon by the natural transformations in the functor categories
on each side to yield het natural transformations.

14



There are het natural transformations each way between any functor and the
identity on its domain if the functor itself is used to define the appropriate het-
bifunctor. That is, given any functor F' : X — A, there is a het natural transfor-
mation 1x = F relative to the bifunctor defined as Het(z, a) = Homa (Fx,a) as
well as a het natural transformation F' = 1x relative to Het(a, ) = Homa (a, Fx).

Het natural transformations ‘in effect’ already occur with reflective (or core-
flective) subcategories. A subcategory A of a category B is a reflective subcategory
if the inclusion functor K : A — B has a left adjoint. For any such reflective ad-
junctions, the heteromorphisms Het(b, a) are the B-morphisms with their heads
in the subcategory A so the representation on the right Het(b, a) = Homp (b, Ka)
is trivial. The left adjoint F' : B — A gives the representation on the left:
Homa (F'b,a) = Het(b,a) = Homp (b, Ka). Then it is perfectly ‘natural’ to see
the unit of the adjunction as defining a natural transformation n : 1g = F
but that is actually a het natural transformation (since the codomain of F' is
A). Hence the conventional (“heterophobic”?) treatment (e.g., [19, p. 89]) is to
define another functor R with the same domain and values on objects and mor-
phisms as F' except that its codomain is taken to be B so that we can then have
a hom natural transformation 7 : 1x — R between two functors with the same
codomain. Similar remarks hold for the dual coreflective case where the inclusion
functor has a right adjoint and where the heteromorphisms are turned around,
i.e., are B-morphisms with their tail in the subcategory A.

Given any adjunction isomorphism Homa (Fz, a) & Het(z, a) = Homx (x, Ga),
the adjoint correlates of the identities 1p, € Homa (Fx, Fz) are the het units
hy € Het (x, Fx) and the hom units 7, € Homx (z, GFx). The het units together
give the het natural transformation h : 1x = F while the hom units give the
hom natural transformation ) : 1x — GF'. The adjoint correlates of the identities
lga € Homx (Ga,Ga) are the het counits e, € Het (Ga,a) and the hom counits
€q € Homp (FGa,a). The het counits together give the het natural transfor-
mation e : G = 1a while the hom counits give the hom natural transformation
e: FG — 1A~

4 Examples

4.1 The Product Adjunction for Sets

Let X be the category Set of sets and let A be the category Set® = Set x Set of
ordered pairs of sets. A heteromorphism from a set to a pair of sets is a pair of set
maps with a common domain (f1, f2) : W = (X,Y) which is called a cone. The
het-bifunctor is given by Het (W, (X,Y)) = {W = (X,Y)}, the set of all cones
from W to (X,Y). To construct a representation on the right, suppose we are
given a pair of sets (X,Y) € Set?. How could one construct a set, to be denoted
X x Y, such that all cones W = (X,|Y) from any set W could be represented
by set functions (morphisms within Set) W — X x Y? In the “atomic” case
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of W =1 (the one element set), a 1-cone 1 = (X,Y) would just pick out an
ordered pair (z,y) of elements, the first from X and the second from Y. Any cone
W = (X,Y) would just pick out a set of pairs of elements. Hence the universal
object would have to be the set {(z,y): 2 € X,y € Y} of all such pairs which
yields the Cartesian product of sets X xY . The assignment of that set to each pair
of sets gives the right adjoint G : Set® — Set where G ((X,Y)) = X x Y (and
similarly for morphisms). The het counit e(xy) : X x Y = (X,Y) canonically
takes each ordered pair (z,y) as a single element in X XY to that pair of elements
in (X,Y). The universal mapping property of the Cartesian product X x Y then
holds; given any set W and a cone (f1, f2) : W = (X,Y), there is a unique set
function (fi, fo) : W — X x Y defined by (fi1, f2) (w) = (f1 (w), fa (w)) that
factors the cone through het counit:

w ol x xy
(flan) \ (2 €(X,Y)
(X,Y)

Right half-adjunction of the product adjunction.

For the product adjunction, the right half-adjunction is the important one.

Fixing W in Set, how could we find a universal object in Set?® so that all
heteromorphisms (f1, f2) : W = (X,Y) could be uniquely factored through it.
The obvious suggestion is the pair (W, W) which defines a functor F : Set — Set?
and where the het unit Ay : W = (W, W) is just the pair of identity maps
hw = (1w, 1lw). Then for each cone (fi, f2) : W = (X,Y), there is a unique
pair of maps, also denoted (f1, f2) : (W, W) — (X,Y), which are a morphism in
Set? and which factors the cone through the het unit:

w
hw I N (fis f2)
(ww) = (xy)
Left half-adjunction of the product adjunction.

Splicing the two half-adjunctions along the diagonal gives the:

woo B x sy
hw 3 N\ ef2) U e(x,Y)
) E(xy)
Het adjunctive square for the product adjunction.

The two factor maps on the top and bottom are uniquely associated with
the diagonal cones, and the isomorphism is natural so that we have natural
isomorphisms between the hom-bifunctors and the het-bifunctor:

Homgeez (W, W), (X,Y)) = Het (W, (X,Y)) = Homget (W, X x Y).
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4.2 The Coproduct Adjunction for Sets

The construction dual to the product is the coproduct which for the category of
sets is the disjoint union of sets. Let A be the category Set of sets and let X
be the category Set? = Set x Set of ordered pairs of sets. A heteromorphism
from a pair of sets to a set is a pair of set maps with a common codomain
(91,92) : (X,Y) = Z which is called a cocone. The het-bifunctor is given by
Het (X,Y),Z) = {(X,Y) = Z}, the set of all cocones from (X,Y) to Z. To
construct a representation on the left, suppose we are given a fixed pair of sets
(X,Y) € Set®. The coproduct or disjoint union is the set F((X,Y)) = X +Y
such that all cocones (X,Y) = Z to any set Z could be represented by set
functions (morphisms within Set) X +Y — Z. The het unit A (x y) is a canonical
“injection” cocone h(xy) = (ix,iy) : (X,Y) = X +Y where for x € X, ix(x) is
the copy of z in X +Y and similarly for y € Y, iy (y) is the copy of y in X + Y.
Given any cocone (g1,g2) : (X,Y) = Z, there is a unique set map {g1,92} :
X +Y — Z [which takes z in the copy of X in X +Y to g1(z) and takes y in the

copy of Y to g2(y)] such that (X,Y) i) +Y tongel 7 (X,Y) o192 7
(X,Y)
(ix,iy) 4 N (91,92)
Xty ‘weboog
Left half-adjunction for coproduct adjunction.

The left half-adjunction is the important one for the coproduct adjunction.
The factor map {gi, g2} represents within Set the action of the cocone (g1, ¢2) :
(X,Y) = Z which is a heteromorphism from an object in Set? to an object in
Set. That representation gives the natural isomorphism:

Homget (X +Y, Z) = Het ((X,Y), 2).

Now fix the object Z € Set and find the representation on the right of
any heteromorphism from any object (X,Y) € Set? to Z. We need a universal
object in Set? and a universal morphism from that object to Z so that any
cocone (g1,92) : (X,Y) = Z can be uniquely factored through the universal.
The obvious choice of the object in Set? to represent Z is G (Z) = (Z, Z) and
the obvious universal cocone (Z,Z) = Z is the het counit ez = (1z,1z), a
pair of identity maps. The unique factorization is so trivial that we will use
the same notation (g1, g2) for both the heteromorphism (X,Y) = Z and the
homomorphism (X,Y) — (Z, Z) within the category Set?.

(xX.v) ‘=% (z.2)

(91,92)  \ (8 (17,1z)
Z

Right half-adjunction of the coproduct adjunction.
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The correlation between the het (g1,92) and the hom (g1,g2) gives the
representation on the right:

Het((X,Y),Z) = Homgez (X,Y), (Z, Z)).

Splicing the two half-adjunctions along the diagonal gives the:

xy) % (z.2)
hixy) \ N L ey

Xty ‘webo oz
Het adjunctive square for the coproduct adjunction.

Combining the left and right representations gives the usual characterization
of an adjunction as a natural isomorphism of two hom-functors (ignoring the het-
bifunctor middle term):

Homsget (X + Y, Z) & Het((X,Y), Z) = Homge2 (X,Y), (Z, 2)).

4.3 Adjoints to Forgetful Functors

Perhaps the most accessible adjunctions are the free-forgetful adjunctions be-
tween X = Set and a category of algebras such as the category of groups
A = Grps. The right adjoint G : A — X forgets the group structure to give
the underlying set GA of a group A. The left adjoint F': X — A gives the free
group F'X generated by a set X.

For this adjunction, the heteromorphisms are any set functions X = A (with
the codomain being a group A) and the het-bifunctor is given by such functions:
Het(X,A) = {X = A} (with the obvious morphisms). A heteromorphism c :
X = A determines a set map f(c) : X — GA trivially and it determines a
group homomorphism g(c) : FX — A by mapping the generators x € X to
their images c(z) € A and then mapping the other elements of FX as they
must be mapped in order for g (c) to be a group homomorphism. The het unit
hx : X = FX is insertion of the generators into the free group and the het
counit e4 : GA = A is just the retracting of the elements of the underlying set
back to the group. These factor maps f (¢) and g (¢) uniquely complete the usual
two half-adjunction triangles which together give the:

x 19 aga
hx I N° | ea
rx 29 4

Het adjunctive square for the free group adjunction.

These associations also give us the two representations:

Hom(FX, A) = Het(X, A) = Hom(X, GA).
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In general, the existence of a left adjoint to U : A — Set (i.e., a left
representation of Het(X, A) = {X = A}) will depend on whether or not there
is an A-object F'X with the least or minimal structure so that every chimera
X 5 A will determine a unique representing A-morphism g (c) : FX — A.

The existence of a right adjoint to U will depend on whether or not for any
set X there is an A-object I X with the greatest or maximum structure so that
any chimera A = X can be represented by an A-morphism A — I.X.

Consider the underlying set functor U : Pos — Set from the category of
partially ordered sets (an ordering that is reflexive, transitive, and anti-symmetric)
with order-preserving maps to the category of sets. It has a left adjoint since
each set has a least partial order on it, namely the discrete ordering. Hence any

chimera function X = A from a set X to a partially ordered set or poset A could

be represented as a set function X i) UA or as an order-preserving function

DX gte) A where DX gives the discrete ordering on X. The functor giving the

discrete partial ordering on a set is left adjoint to the underlying set function.
In the other direction, one could take as a chimera any function 4 = X

(from a poset A to a set X) and it is represented on the left by the ordinary set

function U A ste) X so the left half-adjunction trivially exists:

A 2 oIx?
ha 4 N\ 17
ua 9 x

Left half-adjunction (with no right half-adjunction).

But the underlying set functor U does not have a right adjoint since there
is no maximal partial order X on X so that any chimera A = X could be
represented as an order-preserving function f(c) : A — IX. To receive all the
possible orderings, the ordering relation would have to go both ways between
any two points which would then be identified by the anti-symmetry condition
so that IX would collapse to a single point and the factorization of ¢ through
IX would fail.® Thus poset-to-set chimera A = X can only be represented on
the left.

Relaxing the anti-symmetry condition, let U : Ord — Set be the underlying
set functor from the category of preordered sets (reflexive and transitive order-
ings) to the category of sets. The discrete ordering again gives a left adjoint. But
now there is also a maximal ordering on a set X, namely the ‘indiscrete’ ordering
IX on X (the ‘indiscriminate’ or ‘chaotic’ preorder on X) which has the order-
ing relation both ways between any two points. Then a preorder-to-set chimera
morphism A = X (just a set function ignoring the ordering) can be represented

on the left as a set function UA gt X and on the right as an order-preserving

function A oA IX sothat U also has a right adjoint I and we have the following:

8Thanks to Vaughn Pratt for the example.

19



f(9
—

A IX
ha N ex
va 24 x

Het adjunctive square for the indiscrete-underlying adjunction on preorders.

4.4 Reflective Subcategories

Suppose that A is a subcategory of X with G : A — X the inclusion functor and
suppose that it has a left adjoint F' : X — A. Then A is said to be a reflective
subcategory of X, the left adjoint F is the reflector, and the adjunction is called
a reflection: Homa (Fz,a) = Homx (x, Ga). For all reflections, the chimera mor-
phisms are the morphisms x = a in the ambient category X with their heads in
the reflective subcategory A. Hence the het-bifunctor would be:

Het(z,a) = Homxa (z,a)

where the X A subscript indicates that x can be any object in X but that a is any
element of the subcategory A. Note the two ways of seeing any ¢ € Het(z,a) =
Homxa (x,a). From one viewpoint, ¢ € Homxa (z,a) C Homx (z,a) so that ¢ is
just a morphism inside the category X, but we also view it as a chimera with its
tail in X and head in A. Since G is the inclusion functor, it just takes a as an
element of A to itself as an element of X and similarly for morphisms. Thus we
insert Het (x,a) in the middle to get the two representation isomorphisms:

Homa (Fz,a) = Het(z, a) = Homx (z, Ga).

There is also the dual case of a coreflective subcategory where the inclusion
functor has a right adjoint and where the chimera morphisms are turned around
(tail in subcategory and head in ambient category). This case will be used in the
next section but here I will focus on reflective subcategories.

For an interesting example of a reflector dating back five centuries, we use
the modern mathematical formulation of double-entry bookkeeping [7]. Let Ab
be the category of abelian (i.e., commutative) groups where the operation is
written as addition. Thus 0 is the identity element, a +a’ = a’ + a, and for each
element a, there is an element —a such that a + (—a) = 0. Let CMon be the
category of commutative monoids so the addition operation has the identity 0
but does not necessarily have an inverse. Let G : Ab — CMon be the inclusion
functor.

In 1494, the mathematician Luca Pacioli published an accounting technique
that had been developed in practice during the 1400s and which became known
as double-entry bookkeeping [21]. In essence, the idea was to do additive arith-
metic with additive inverses using ordered pairs [z // 2] of non-negative numbers
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called T-accounts.” The number on the left side was called the debit entry and
the number on the right the credit entry. T-accounts added by adding the cor-
responding entries: [z // 2/ + [y // ¥'] =[x +y // ' + y']. Two T-accounts
were deemed equal if their cross-sums were equal (the additive version of the
equal cross-multiples used to define equality of multiplicative ordered pairs or
fractions). Thus

[z /)@=y //ylifz+y =2"+y.

Hence the additive inverse was obtained by “reversing the entries” (as ac-
countants say):

[z /) &)+ [a" /) 2] =[x +a’ [/ 2"+ 2] =1[0// 0]

To obtain the reflector or left adjoint ' : CMon — Ab to G, we need
only note that Pacioli was implicitly using the fact that the normal addition
of numbers is cancellative in the sense that z 4+ z = y + z implies * = y. Since
commutative monoids do not in general have that property we need only to tweak
the definition of equality of T-accounts [5, p. 17]:

[ // 2=y // y]if there is a z such that x + ¢/ + z =2/ + y + 2.

This construction with the induced maps then yields a functor F' : CMon —
Ab that takes a commutative monoid m to a commutative group F'm = P(m).
The group P(m) is usually called the “group of differences” or “inverse-completion”
and, in algebraic geometry, its generalization is called the “Grothendieck group.”
However, due to about a half-millennium of priority, we will call the additive
group of differences the Pacioli group of the commutative monoid m. For any
such m, the het unit h,, : m = Fm = P(m) which takes an element x to the
T-account [0 // z] with that credit balance (the debit balance mapping would
do just as well).

For this adjunction, a heteromorphism ¢ : m = a, is any monoid homo-
morphism from a commutative monoid m to any abelian group a (being only a
monoid homomorphism, it does not need to preserve any inverses that might exist
in m). The Pacioli group has the following universality property: for any hetero-
morphism ¢ : m = a, there is a unique group homomorphism g(¢) : Fm — a

such that m 2 Fm 99 a = m = a. The group homomorphism factor map

is: g(e)([z" /] z]) = c(z) + (—c(z')). This establishes the other representation
isomorphism of the adjunction:

Homap(F'm,a) = Het(m, a) = Homemon (M, Ga).

9The double-slash separator was suggested by Pacioli. “At the beginning of each entry,
we always provide ‘per’, because, first, the debtor must be given, and immediately after the
creditor, the one separated from the other by two little slanting parallels (virgolette), thus,
//s .7 [21, p. 43]
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4.5 The Special Case of Endo-Adjunctions

Since the heteromorphic theory of adjoints is based on representing the hetero-
morphisms between the objects of two different categories with homomorphisms
within each category, the case of an endo-adjunction all within one category is
clearly going to require some special attention. The product-exponential adjunc-
tion in Set is an important example of adjoint endo-functors F' : Set = Set : G.
For any fixed (non-empty) “index” set A, the product functor F(—) = — x A :
Set — Set has a right adjoint G(—) = (—)” : Set — Set which makes Set a
Cartesian-closed category. For any sets X and Y, the adjunction has the form:
Hom(X x A,Y) = Hom(X,Y4).

Since both functors are endo-functors on Set, we don’t have the two cat-
egories between which to have heteromorphisms. Moreover, we don’t have the
expected canonical maps as the het unit or counit. For instance, the het unit
should be a canonical morphism hyx : X = FX but if FX = X x A, there is no
canonical (het or otherwise) map X — X x A (except in the special case where A
is a singleton). Similarly, the het counit should be a canonical map ey : GY = Y
but if GY = Y4 then there is no canonical (het or otherwise) map Y4 — Y (un-
less A is a singleton). Hence a special treatment is required. It consists of showing
that the endo-adjunction can be parsed in two ways as adjunctions each of which
is between different categories and then the heteromorphic theory applies.

The key is the following special case of a result by Freyd [11, p. 83]. Consider
any endo-adjunction F' : C = C : G on a category C where the functors are
assumed one-one on objects. Then the image of G is a subcategory of C, i.e.,
Im(G) — C, and similarly the image of F' is also a subcategory of C, i.e.,
Im (F) — C. The operation of taking the G-image of the hom-set Homg (Fx, a)
to obtain Hompy ) (GFz,Ga) is onto by construction. It is one-one on objects
by assumption and one-one on maps since if for g,¢' : Fx — a and Gg = G¢/,
then g = ¢’ by the uniqueness of the factor map f* : Fx — a to factor 4,

. Gg=Gg' . . -
Ga =z % GFz "2 Ga through the hom unit 7,. The isomorphism is also
natural in x and a so we have:

Homyy, gy (GFx,Ga) = Home (Fz, a).
If 2’ = Ga, then using that isomorphism and the adjunction, we have:

Homyy, ¢ (GFz,2") = Homyy,g)(GFz, Ga) = Home (Fz,a) = Home(z, Ga) =
Homc(z, z').

Thus Hompy,(g)(GFz,2') = Homg(x,2') so that GF : C — Im(G) (where G
is construed as having the codomain Im (G)) is left adjoint to the inclusion
Im (G) — C and thus Im (G) is a reflective subcategory of C.

Dually, we also have the natural isomorphism

Homg (z, Ga) = Homyy,py (Fz, FGa)
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by taking the F-image of Homg(z, Ga) and using the universal mapping property
of the hom counit. If ' = Fx then using that isomorphism and the adjunction,
we have:

Homc(a', a) = Home(Fz,a) = Homg(z, Ga) = Hompy, gy (Fz, FGa) =
Homppy,(py(a', FGa).

Thus Homg(a',a) = Homyyry(a', FGa) so that FG : C — Im (F) (where F'
is construed as having the codomain Im (F')) is right adjoint to the inclusion
Im (F) — C and thus Im(F) is a coreflective subcategory of C.

Therefore the endo-adjunction can be analyzed or parsed into two adjunc-
tions between different categories, a reflection and a coreflection. It was previously
noted that in the case of a reflection, i.e., a left adjoint to the inclusion functor,
heteromorphisms can be found as the morphisms with their tails in the ambient
category and their heads in the subcategory. For a coreflection (right adjoint to
the inclusion functor), the heteromorphisms would be turned around, i.e., would
have their tails in the subcategory and their heads in the ambient category. The
heteromorphic theory applies to each of these adjunctions.

In the case of the exponential endo-adjunction on Set, X = Set = A. To
parse the adjunction as a reflection, let APower be the subcategory of G(—) =
(—)4 images (G is one-one since A is non-empty) so that APower — Set, and
that inclusion functor has a left adjoint GF(—) = (— x A)4 : Set — APower.
Then the heteromorphisms are those with their tail in Set and head in APower,
i.e., the morphisms of the form X — Y“. But now we have the het unit and
counit in accordance with the heteromorphic theory. The het unit hx : X =
GFX = (X x A)4 is the canonical map that takes an z in X to the function
(x,—) : A — X x A which takes a in A to (x,a) € X x A. This is the ‘same’ as the
ordinary unit nx : X — (X x A)? in the original product-exponential adjunction,
i.e., it is the ‘same’ modulo the fact that h, is viewed as a heteromorphism
with its tail in Set and its head in APower while the same set-map nx is
viewed as a homomorphism in Set. Since the right adjoint in the reflective case
is the inclusion, the het counit eya : Y4 — Y4 is the identity but seen as a
heteromorphism from an object in Set to the same object in APower. The het
adjunctive square then is the following commutative diagram.

X 4, ya
hx (3 NS eya
(fHA

(X x A4 =4 yA
Het adjunctive square for exponential endo-adjunction parsed as a reflection

As a coreflection, let AProd be the subcategory of FI(—) = — x A images
(F is one-one since A is non-empty) so that AProd — Set, and that inclusion
functor has a right adjoint FG(—) = (—)4 x A : Set — AProd. Then the
heteromorphisms are those with their tail in AProd and their head in Set, i.e.,
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the morphisms of the form X x A — Y. And now we again have the het unit
and counit. The het counit ey : Y4 x A = FGY = Y is the evaluation map
which is the ‘same’ as the ordinary counit ey : Y4 x A — Y in the original
product-exponential adjunction. Since the left adjoint in the coreflective case is
the inclusion, the het unit hxy4 : X x A = X X A is the identity (again seen as
a heteromorphism). The het adjunctive square is then the following commutative
diagram.

g xA

X x A YA x A
hxxa N[ N\ (8 ey
XxA % Y

Het adjunctive square for exponential endo-adjunction parsed as a coreflection

One might well ask: “Why the special treatment since the heteromorphisms
are supposed to given (up to isomorphism) by the hom-pair adjunctive square
diagram of the adjunction representation theorem?” The answer is that this is
exactly what has been derived. For the exponential adjunction, the hom-pair
adjunctive square diagram is as follows:

(X, X x A) PIXA (yA v« 4)
(nx,1xxa) ! N9 ! (1ya,ey)
*\ A

Hom-pair adjunctive square for exponential adjunction

The left component of each pair is the ‘same’ as the het adjunctive square
for the adjunction parsed as a reflection (see the previous diagram for the re-
flection) modulo the point that the codomains of the vertical maps are taken
as APower so they become heteromorphisms (e.g., nx becomes hx). Dually,
the right component of each pair is the ‘same’ as the het adjunctive square for
the adjunction parsed as a coreflection (see the previous diagram) modulo the
point that the domains of the vertical maps are taken as AProd so they become
heteromorphisms (e.g., ey becomes ey ).

5 Concluding Remarks

This paper inevitably has two themes. The main theme is showing how adjoint
functors arise from the representations within two categories of the heteromor-
phisms between the categories. But the logically prior theme is showing that
heteromorphisms can be rigorously treated as part of category theory—rather
than just as stray chimeras roaming in the wilds of mathematical practice.
Taking the logically prior theme first, category theory has always been pre-
sented as embodying the idea of grouping mathematical objects of a certain sort
together with their appropriate morphisms in a “category.” In some respects, this
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homomorphic theme became the leading theme just as in Felix Klein’s Erlanger
Program where geometries were characterized by the invariants of a specified class
of transformations. Indeed, in their founding paper, Eilenberg and MacLane noted
that category theory “may be regarded as a continuation of the Klein Erlanger
Program, in the sense that a geometrical space with its group of transformations
is generalized to a category with its algebra of mappings.” [6, p. 237] Hence the
whole concept of a “heteromorphism” between objects of different categories has
seemed like a cross-species hybrid that is out-of-place and running against the
spirit of the enterprise. Functors were defined to handle all the external relations
between categories so object-to-object inter-category morphisms had no ‘official’
role.

At the outset of this paper, a number of testimonials were quoted about
the centrality of adjunctions in category theory. Once heteromorphisms were
rigorously treated using het-bifunctors (in analogy to treating homomorphisms
with hom-bifunctors), it quickly became clear that an adjunction between two
categories was closely related to the heteromorphisms between the objects of the
two categories. Our main theme is that left and right adjoints arise as the left
and right representations within the categories of the heteromorphisms between
the categories. Given the importance of adjoints, this made an argument for
taking heteromorphisms “out of the closet” and recognizing them as part of the
conceptual family of category theory.

Adjoints arise from universals that represent and internalize the structural
external relationships between the objects of two categories within each of the
categories. And that may help explain why adjoints have emerged as the principal
lens to focus on what is important in mathematics. It would not be surprising
if the same was true in the empirical world [10]. Structures, mathematical or
empirical, are important that have within them universal models representing
the relationships with external entities of a different kind.
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