This paper gives a toy model of quantum mechanics over the field 2, where the vectors can be interpreted as subsets of a universe set, and hence the name: “Quantum mechanics over sets.” It gives the “logic” of QM in the old-fashioned sense of the essential logic of a theory pared down to operations on sets (vectors over 2). This includes the simplest logical treatment of the double-slit experiment, Bell’s Theorem, the probability calculus based on Born’s Rule, and much else (all restated in the context of sets).

## Information as distinctions

This paper is sub-titled “New Foundations for Information Theory” since it is based on the logical notion of entropy from the logic of partitions. The basic logical idea is that of “distinctions.” Logical entropy is normalized counting measure of the set of distinctions of a partition, and Shannon entropy is the number of binary partitions needed, on average, to make the same distinctions of the partition.

## The Objective Indefiniteness Interpretation of Quantum Mechanics

The purpose of this blog entry is to briefly describe a new interpretation of quantum mechanics (QM). A long paper introducing this objective indefiniteness interpretation is available at the Quantum Physics ArXiv and (a more recent version) on my website.

## History of the Logical Entropy Formula

The logical entropy formula Given a partition on a finite universe set U, the set of distinctions or dits is the set of ordered pairs of elements in distinct blocks of the partition. The logical entropy of the partition is the normalized cardinality of the dit set: . The logical entropy can be interpreted probabilistically […]

## From Partition Logic to Information Theory

A new logic of partitions has been developed that is dual to ordinary logic when the latter is interpreted as the logic of subsets rather than the logic of propositions. For a finite universe, the logic of subsets gave rise to finite probability theory by assigning to each subset its relative cardinality as a Laplacian probability. The analogous development for the dual logic of partitions gives rise to a notion of logical entropy that is related in a precise manner to Claude Shannon’s entropy.

## Series-Parallel Duality: Part II: Financial arithmetic

In financial arithmetic and in the appraisal literature, it has been noticed that the basic formulas occur in pairs, one being the reciprocal of the other. This Part II of the series-parallel duality post shows that these reciprocal formulas are an example of the SP duality normally associated with electrical circuit theory.

## Series-Parallel Duality: Part I: Combating Series Chauvinism

This post describes the duality between the usual (series) addition and the dual parallel addition. This duality is normally considered in electrical circuit theory and combinatorics, but it has a much wider applications. In Part I of this post, the focus is on developing series-parallel dual formulas—in contrast to the usual focus on formulas using only the series sum.

## The Math of Double-Entry Bookkeeping: Part I (scalars)

Double-entry bookkeeping illustrates one of the most astonishing examples of intellectual insulation between disciplines—the very opposite of intellectual trespassing.

## The Math of Double-Entry Bookkeeping: Part II (vectors)

Although double-entry bookkeeping (DEB) has been used in the business world for 5 centuries, the mathematical formulation of the double entry method is almost completely unknown. The correct mathematical formulation allows the generalization from the value scalars of ordinary DEB to multi-dimensional accounting using vectors–which is the topic of this post.