
The Objective Indefiniteness Interpretation
of Quantum Mechanics

David Ellerman
University of California at Riverside
Draft Version 2 (not for quotation)

November 30, 2012

Abstract

The common-sense view of reality is expressed logically in Boolean subset logic (each element
is either definitely in or not in a subset, i.e., either definitely has or does not have a property).
But quantum mechanics does not agree with this "properties all the way down" picture of micro-
reality. Are there other coherent alternative views of reality? A logic of partitions, dual to the
Boolean logic of subsets (partitions are dual to subsets), was recently developed along with a
logical version of information theory. In view of the subset-partition duality, partition logic is
the alternative to Boolean subset logic and thus it abstractly describes the alternative dual view
of micro-reality. Perhaps QM is compatible with this dual view? Indeed, when the mathematics
of partitions using sets is "lifted" from sets to vector spaces, then it yields the mathematics
and relations of quantum mechanics. Thus the vision of micro-reality abstractly characterized
by partition logic matches that described by quantum mechanics. The key concept explicated
by partition logic is the old idea of "objective indefiniteness" (emphasized by Shimony). Thus
partition logic, logical information theory, and the lifting program provide the back story so
that the old idea then yields the objective indefiniteness interpretation of quantum mechanics.
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1 Introduction: the back story for objective indefiniteness

Classical physics is compatible with the common-sense view of reality that is expressed at the logical
level in Boolean subset logic. Each element in the Boolean universe set is either definitely in or not
in a subset, i.e., each element either definitely has or does not have a property. Each element is
characterized by a full set of properties, a view that might be referred to as "properties all the way
down."

It is now rather widely accepted that this common-sense view of reality is not compatible
with quantum mechanics (QM). If we think in terms of only two positions, here and there, then
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in classical physics a particle is either definitely here or there, while in QM, the particle can be
"neither definitely here nor there."[29, p. 144]1 This is not an epistemic or subjective indefiniteness
of location; it is an ontological or objective indefiniteness. The notion of objective indefiniteness in
QM has been most emphasized by Abner Shimony ([25],[26]).

From these two basic ideas alone —indefiniteness and the superposition principle —it
should be clear already that quantum mechanics conflicts sharply with common sense. If
the quantum state of a system is a complete description of the system, then a quantity
that has an indefinite value in that quantum state is objectively indefinite; its value
is not merely unknown by the scientist who seeks to describe the system. ...Classical
physics did not conflict with common sense in these fundamental ways.[25, p. 47]

Other quantum philosophers have used similar concepts. For instance, in his discussion of Heisen-
berg’s uncertainty2 principle, Paul Feyerabend asserted that "inherent indefiniteness is a universal
and objective property of matter."[11, p. 202] Thus one path to arrive at the notion of "inherent
indefiniteness" is to understand that Heisenberg’s indefiniteness principle is not about the clumsi-
ness of instruments in simultaneously measuring incompatible observables that always have definite
values.

But there the development seems to have stalled. What was the logic that plays the role analo-
gous to Boolean subset logic for the notion of objective indefiniteness? And given such a logic, how
would one fill in the gap between the austere level of logic and the rich mathematical framework
of quantum mechanics?

These questions can now be answered. The logic of objective indefiniteness that plays the role
analogous to subset logic is the recently developed dual logic of partitions.[9] The dual relationship
between subsets and partitions (explained below) shows that partition logic is not just an alternative
but is the alternative to subset logic. Moreover, Boole developed a logical finite probability theory
out of his logic of subsets [1], and the analogous theory developed out of the logic of partitions is
a logical version of information theory.[8]

The concepts and operations of partition logic and logical information theory are developed in
the rather austere set-theoretic context; they needed to be "lifted" to the richer environment of
vector spaces. This lifting program from sets to vector spaces is part of the mathematical folklore
(e.g., used intuitively by von Neumann). When applied to the concepts and operations of partition
mathematics, the lifting program indeed yields the mathematics of quantum mechanics. This cor-
roborates that the vision of micro-reality provided by the dual form of logic (i.e., partition logic
rather than subset logic) is, in fact, the micro-reality described by QM. Thus the development of
the logic of partitions, logical information theory, and the lifting program provides the back story
to the notion of objective indefiniteness. The result is the objective indefiniteness interpretation of
quantum mechanics.

1This is usually misrepresented in the popular literature as the particle being "both here and there at the same
time." Weinberg also mentions a particle "spinning neither definitely clockwise nor counterclockwise" and then notes
that for elementary particles, "it is possible to have a particle in a state in which it is neither definitely an electron
nor definitely a neutrino until we measure some property that would distinguish the two, like the electric charge."[29,
pp. 144-145 (thanks to Noson Yanofsky for this reference)]

2Heisenberg’s German word was "Unbestimmtheit" which could well be translated as "indefiniteness" or "inde-
terminateness" rather than "uncertainty."
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2 The logic of partitions

2.1 From "propositional" logic to subset logic

George Boole [1] originally developed his logic as the logic of subsets. As noted by Alonzo Church:

The algebra of logic has its beginning in 1847, in the publications of Boole and De
Morgan. This concerned itself at first with an algebra or calculus of classes,. . . a true
propositional calculus perhaps first appeared. . . in 1877.[4, pp. 155-156]

In the logic of subsets, a tautology is defined as a formula such that no matter what subsets of
the given universe U are substituted for the variables, when the set-theoretic operations are applied,
then the whole formula evaluates to U . Boole noted that to determine these valid formulas, it suffi ces
to take the special case of U = 1 which has only two subsets 0 = ∅ and 1. Thus what was later
called the "truth table" characterization of a tautology was a theorem, not a definition.3

But over the years, the whole became identified with the special case. The Boolean logic of
subsets was reconceptualized as "propositional logic" and the truth-table characterization of a tau-
tology became the definition of a tautology. This facilitated the further analysis of the propositional
atoms into statements with quantifiers and the development of model theory. But the restricted
notion of "propositional" logic also had a downside; it hid the idea of a dual logic since propositions
don’t have duals.

Subsets and partitions (or equivalence relations or quotient sets) are dual in the category-
theoretic sense of the duality between monomorphisms and epimorphisms. This duality is familiar in
abstract algebra in the interplay of subobjects (e.g., subgroups, subrings, etc.) and quotient objects.
William Lawvere calls the general category-theoretic notion of a subobject a part, and then he notes:
"The dual notion (obtained by reversing the arrows) of ‘part’is the notion of partition."[20, p. 85]
The image of monomorphic or injective map between sets is a subset of the codomain, and dually
the inverse-image of an epimorphic or surjective map between sets is a partition of the domain.
But the development of the dual logic of partitions was delayed by the conceptualization of subset
logic as "propositional" logic.

2.2 Basic concepts of partition logic

In the Boolean logic of subsets, the basic algebraic structure is the Boolean lattice ℘ (U) of subsets
of a universe set U enriched by the implication A ⇒ B = Ac ∪ B to form the Boolean algebra of
subsets of U . In a similar manner, we form the lattice of partitions on U enriched by the partition
operation of implication and other partition operations.

Given a universe set U , a partition π on U is a set of non-empty subsets or blocks {B} of U
that are pairwise disjoint and whose union is U . Given two partitions π = {B} and σ = {C} on
the same universe U , the partition σ is refined by π, written by σ � π, if for every block B ∈ π,
there is a block C ∈ σ such that B ⊆ C. Given the two partitions on the same universe, their join
π∨σ is the partition whose blocks are the non-empty intersections B∩C. To define the meet π∧σ,
consider an undirected graph on U where there is a link between any two elements u, u′ ∈ U if
they are in the same block of π or the same block of σ. Then the blocks of π ∧ σ are the connected
components of that graph. The top of the lattice is the discrete partition 1 = {{u} : u ∈ U} whose

3Alfred Renyi [23] gave a generalization of the theorem to probability theory.
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blocks are all the singletons, and the bottom is the indiscrete partition (nicknamed the "blob")
0 = {{U}} whose only block is all of U . This defines the lattice of partitions

∏
(U) on U .4

As late as 2001, it was noted that:

the only operations on the family of equivalence relations fully studied, understood and
deployed are the binary join ∨ and meet ∧ operations.[2, p. 445]

For anything worthy to be called "partition logic," an operation of implication would be needed
if not partition versions of all the sixteen binary subset operations. Given π = {B} and σ = {C},
the implication σ ⇒ π is the partition whose blocks are like the blocks of π except that whenever
a block B is contained in some block C ∈ σ, then B is discretized, i.e., replaced by the singletons
of its elements. If we think of a whole block B as a mini-0 and a discretized B as a mini-1, then
the implication σ ⇒ π is just the indicator function for the inclusion of the π-blocks in the σ-
blocks. In the Boolean algebra ℘ (U), the implication is related to the partial order by the relation,
A ⇒ B = U iff A ⊆ B, and we immediately see that the corresponding relation holds in the
partition lattice

∏
(U) enriched with implication, i.e., σ ⇒ π = 1 (discrete partition) iff σ � π.

There are at least two algorithms to define partition operations in terms of the corresponding
subset operations. We will use the representation of the partition lattice

∏
(U) as a lattice of subsets

of U × U .5 Given a partition π = {B} on U , the distinctions or dits of π are the ordered pairs
(u, u′) where u and u′ are in distinct blocks of π, and dit (π) is the set of distinctions or dit set of
π. Similarly, an indistinction or indit of π is an ordered pair (u, u′) where u and u′ are in the same
block of π, and indit (π) is the indit set of π. Of course, indit (π) is just the equivalence relation
determined by π, and it is the complement of dit (π) in U × U .

The complement of an equivalence relation is properly called a partition relation. An equivalence
relation is reflexive, symmetric, and transitive, so a partition relation is anti-reflexive [i.e., contains
no diagonal pairs (u, u)], symmetric, and anti-transitive where a binary relation R is anti-transitive
if for any (u, u′) ∈ R, and for any chain of elements u = u1, u2, ..., un = u′ from u to u′, then for at
least one of the pairs, (ui, ui+1) ∈ R. Otherwise all the consecutive pairs in the chain would be in
the complement Rc which is transitive so (u, u′) ∈ Rc contrary to the assumption.

Every subset S ⊆ U × U has a reflexive-symmetric-transitive closure S which is the smallest
equivalence relation containing S. Hence we can define an interior operation as the complement
of the closure of the complement, i.e., int (S) =

(
Sc
)c
, which is the largest partition relation

included in S. While some motivation might be supplied by thinking of the partition relations as
"open" subsets and the equivalence relations as "closed" subsets, they do not form a topology. The
closure operation is not a topological closure operation since the union of two closed subsets is not
necessarily closed, and the intersection of two open subsets is not necessarily open.

Every partition π is represented by its dit set dit (π). The refinement relation between partitions,
σ � π is represented by the inclusion relation between dit sets, i.e., σ � π iff dit (σ) ⊆ dit (π).6 The
join π∨σ is represented in U×U by the union of the dit sets, i.e., dit (π ∨ σ) = dit (π)∪dit (σ). But
the intersection of two dit sets is not necessarily a dit set so to find the dit set of the meet π∧σ, we

4Unfortunately in much of the literature of combinatorial theory, the refinement partial ordering is written the
other way around (so Gian-Carlo Rota sometimes called it "unrefinement"), and thus the "join" and "meet" are
reversed, and the lattice of partitions is then "upside-down."

5The other method uses graph theory as in the above definition of the meet. See [9] for the details.
6The more customary upside-down representation of the "lattice of partitions" uses the indit sets so it is actually

the lattice of equivalence relations rather than the lattice of partition relations.
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have to take the interior of the intersection of their dit sets, i.e., dit (π ∧ σ) = int (dit (π) ∩ dit (σ)).
These equations for the dit sets of the join and meet are theorems, not definitions, since the join
and meet were already defined above. The general algorithm to represent a partition operation is
to apply the corresponding set operation to the dit sets and then apply the interior to the result
(if it is not already a partition relation). Thus, for instance,

dit (σ ⇒ π) = int (dit (σ)c ∪ dit (π)).

It is a striking fact (see [9] for a proof) that int (dit (σ)c ∪ dit (π)) is the dit set of σ ⇒ π previously
defined as the indicator function for the inclusion of π-blocks in σ-blocks. In this manner, the lattice
of partitions

∏
(U) enriched by implication and other partition operations can be represented by

the lattice of partition relations O (U × U) on U × U .

Representation
∏

(U) O (U × U)

Partition π dit (π)

Refinement order σ � π dit (σ) ⊆ dit (π)

Top 1 = {{u} : u ∈ U} dit (1) = U × U −∆U all dits
Bottom 0 = {{U}} dit (0) = ∅ no dits
Join π ∨ σ dit (π ∨ σ) = dit (π) ∪ dit (σ)

Meet π ∧ σ dit (π ∧ σ) = int (dit (π) ∩ dit (σ))

Implication σ ⇒ π dit (σ ⇒ π) = int (dit (σ)c ∪ dit (π))

Any logical op. # σ#π Int. of subset op. # applied to dit sets
Lattice of partitions

∏
(U) represented as lattice of partition relations O (U × U).

2.3 Analogies between subset logic and partition logic

The development of partition logic was guided by some basic analogies between the two dual forms
of logic. The most basic analogy is that a distinction or dit of a partition is the analogue of an
element of a subset—so saying that a partition distinguishes a pair (u, u′) is the analogue of saying
that a subset contains an element u. The top of the subset lattice is the universe set U of all
possible elements and the top of the partition lattice is the partition 1 with all possible distinctions
dit(1) = U × U − ∆U (all the ordered pairs minus the diagonal self-pairs which can never be
distinctions). The bottoms of the lattices are the null subset ∅ of no elements and the indiscrete
partition 0 of no distinctions. The partial order in the lattices is inclusion of elements and inclusion
of distinctions.

Intuitively, a property on U is something that each element has or does not have (like a person
being female or not), while intuitively an attribute on U is something that each element has but
with various values (like the weight or height of a person). The subsets of U can be thought of as
abstract versions of properties of the elements of U while the partitions on U are abstract versions
of the attributes on U where the different blocks of a partition represent the different values of the
attribute. Technically, an attribute is given by a function f : U → R (for some value set R) and the
partition induced by the attribute is the inverse image partition

{
f−1 (r) 6= ∅ : r ∈ R

}
.

We can use the same formulas for both subset logic and partition logic, and just interpret the
variables as being either subsets of U or partitions π on U with the corresponding operations. In
subset logic, we require |U | ≥ 1 so the top and bottom of the subset lattice are not the same, and
similarly in partition logic, we require |U | ≥ 2 so the top and bottom of the partition lattice are not
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the same. A formula is a subset tautology if for any universe U (|U | ≥ 1) and for any subsets of U
substituted for the variables, the result of applying the subset operations is the top of the lattice U ,
i.e., the subset formula holds of all elements. A partition tautology is defined analogously. That is,
a formula is a partition tautology if for any U (|U | ≥ 2) and for any partitions on U substituted for
the variables, the result of applying the partition operations is the top of the lattice, the discrete
partition 1, i.e., the partition formula distinguishes all pairs (u, u′) of distinct elements.

For the universe U = 2 = {0, 1}, the discrete partition 1 = {{0} , {1}} and the indiscrete
partition 0 = {{0, 1}} are the only partitions. Moreover, the partition operations applied to these
two partitions are isomorphic to the subset operations applied to the two subsets of a singleton set
1. For instance, we can describe the action of the partition implication by a "truth table."

σ π σ ⇒ π

0 0 1

0 1 1

1 0 0

1 1 1

"Truth table" for partition implication in
∏

(2)

Thus on the two partitions of 2, the partition implication is isomorphic to the subset implication
in ℘ (1) and similarly for the other partition operations.

Proposition 1 All partition tautologies are subset tautologies.

Proof: If a formula is a partition tautology, then it will evaluate to 1 for all partitions on all
universes |U | ≥ 2 including U = 2. Then by the isomorphism

∏
(2) ∼= ℘ (1), the formula will

evaluate to 1 for all subsets of 1 which suffi ces to make it a subset tautology. �
The converse is not true. For instance, negation would be defined as ¬σ = σ ⇒ 0 which is always

0 except when σ = 0 in which case it is 0 ⇒ 0 = 1. Hence the excluded middle formula ¬σ ∨ σ
would always evaluate to σ unless σ = 0 in which case, it evaluates to 1. Hence the formula does
not evaluate to 1 for any σ 6= 0,1. But the weak excluded middle formula ¬¬σ ∨ ¬σ is a partition
tautology even for the generalized relative π-negation

π¬σ = σ ⇒ π, i.e., ((σ ⇒ π)⇒ π) ∨ (σ ⇒ π)
is a partition tautology since each block B ∈ π would be discretized by one of the disjuncts. The
modus ponens formula (σ ∧ (σ ⇒ π))⇒ π is also a partition tautology as can be readily checked.

There is no inclusion either way between the partition tautologies and the intuitionistic valid
propositional formulas. The accumulation formula σ ⇒ (π ⇒ (π ∧ σ)) is valid in intuitionistic logic
but not in partition logic, while the partition tautology of the weak excluded middle formula is not
valid in intuitionistic logic.
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Table of analogies between subset logic and partition logic

For a more complete treatment of the basics of partition logic, including the correctness and
completeness theorems for a system of partition tableaus, see [9]. For our purposes in lifting the
mathematics of partition logic to vector spaces, the most important operation is the join operation
that "joins" together the distinctions of two partitions.

3 Logical information theory

We have so far made no assumptions about the finitude of the universe U . For a finite universe
U , Boole developed the "logical" version of finite probability theory by assigning the quantitative
measure of the relative cardinality Pr (S) = |S|

|U | to each subset which can be interpreted as a prob-
ability under the Laplacian assumption of equiprobable elements. Using the elements-distinctions
analogy, we can assign the analogous quantitative measure of the relative cardinality of the dit set
of a partition h (π) = |dit(π)|

|U×U | to each partition which can be interpreted as the logical information
content or logical entropy of the partition. Under the assumption of equiprobable elements, the
logical entropy of a partition can be interpreted as the probability that two drawings from U (with
replacement) will give a distinction of the partition.
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Logical probability theory is to subset logic
as logical information theory is to partition logic

The probability of drawing an element from a block B ∈ π is pB = |B|
|U | so the logical entropy of a

partition can be written in terms of these block probabilities since |dit (π)| =
∑

B 6=B′∈π |B ×B′| =
|U |2 −

∑
B∈π |B|

2. Hence:

h (π) = |dit(π)|
|U×U | =

|U |2−
∑
B∈π |B|

2

|U |2 = 1−
∑

B∈π p
2
B.

This formula has a long history (see [8]) and is usually called the Gini-Simpson diversity index
in the biological literature [22]. For instance, if we partition animals by species, then it is the
probability in two independent samples that we will find animals of different species.

This version of the logical entropy formula also makes clear the generalization path to define
the logical entropy of any finite probability distribution p = (p1, ..., pn):

h (p) = 1−
∑

i p
2
i .
7

C. R. Rao [22] has defined a general notion of quadratic entropy in terms of a distance function
d(u, u′) between the elements of U . In the most general "logical" case, the natural logical distance
function is:

d (u, u′) = 1− δ (u, u′) =

{
1 if u 6= u′

0 if u = u′

and, in that case, the quadratic entropy is just the logical entropy.
The Shannon entropy for a partition:

H (π) =
∑

B∈π pB log2

(
1
pB

)
can also be interpreted in terms of distinctions. In the special case where π has 2n equal-sized

blocks, then H (π) = 2n 1
2n log2

(
1

1/2n

)
= log2 (2n) = n. Think of the 2n blocks as being enumerated

by an n-digit binary number. Then the n questions, "Is the ith digit a 1?" will partition the blocks
into two equal groups and thus will partition U into two equal blocks. Thus each of the n questions
gives a binary partition of U into two equal parts, and the join of those n binary partitions is

the original partition π. Thus the Shannon entropy H (π) = log2

(
1
pB

)
= log2

(
1

1/2n

)
= n in this

case is the number of equal binary partitions ("bits") necessary to make all the distinctions of π.

The general formula H (π) =
∑

B∈π pB log2

(
1
pB

)
can then be seen as the average number of equal

binary partitions or bits necessary to make all the distinctions of π. In contrast, the logical entropy
h (π) involves no averaging in its interpretation as the normalized number of distinctions in π.

A number of compound entropy concepts (e.g., mutual entropy, cross-entropy, divergence) are
defined for Shannon entropy, and corresponding concepts are easily defined for logical entropy.
The following table summarizes the relationships where two partitions π = {B} and σ = {C} are
stochastically independent if for any B ∩ C 6= ∅, pB∩C = pBpC , and where p = (p1, ..., pn) and
q = (q1, ..., qn) are two finite probability distributions.

7 In the general case, the pi becomes a probability density function and the summation an integral.
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Corresponding concepts for Shannon entropy and logical entropy

Further details about logical information theory can be found in [8]. For our purposes here,
the important thing is the lifting of logical entropy to the context of vector spaces and quantum
mathematics where for any density matrix ρ, the logical entropy h (ρ) = 1 − tr

[
ρ2
]
allows us to

directly measure and interpret the changes made in a measurement.

4 Partitions and objective indefiniteness

4.1 Representing objective indistinctness

It has already been emphasized how Boolean subset logic captures at the logical level the common
sense vision of reality where an entity definitely has or does not have any property. We can now
describe how the dual logic of partitions captures at the logical level a vision of reality with ob-
jectively indefinite (or indistinct)8 entities. The key step is to interpret a subset such as a block B
in a partition, not as a subset of the distinct elements u ∈ B, but as a single objectively indistinct
element that, with further distinctions, could become any of the fully distinct elements u ∈ B. To
anticipate the lifted concepts in vector spaces, the fully distinct elements u ∈ U might be called
"eigen-elements" and the single indistinct element B is a "superposition" of the eigen-elements
u ∈ B (thinking of the collecting together {u, u′, ...} = B of the elements of B as their "superposi-
tion"). With distinctions, the indistinct element B might be refined into one of the singletons {u}
for u ∈ B [where {u} is the "superposition" consisting of a single eigen-element so it just denotes
that element u].

Abner Shimony ([25] and [26]), in his description of a superposition state as being objectively
indefinite, adopted Heisenberg’s [15] language of "potentiality" and "actuality" to describe the
relationship of the eigenstates that are superposed to give an objectively indefinite superposition.
This terminology could be adapted to the case of the sets. The elements u ∈ B are "potential" in
the objectively indefinite "superposition" B, and, with further distinctions, the indefinite element
B might "actualize" to {u} for one of the "potential" u ∈ B. Starting with B, the other u /∈ B are
not "potentialities" that could be "actualized" with further distinctions.

8The adjectives "indefinite" and "indistinct" will be used interchangeably as synonyms. The word "indefiniteness"
is more common in the QM literature, but "indistinctness" has a better noun form as "indistinctions" (with the
opposite as "distinctions").
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This terminology is, however, somewhat misleading since the indefinite element B is perfectly
actual; it is only the multiple eigen-elements u ∈ B that are "potential" until "actualized" by
some further distinctions. In a "measurement," a single actual indefinite element becomes a single
actual definite element. Since the "measurement" goes from actual indefinite to actual definite, the
potential-to-actual language of Heisenberg should only be used with proper care—if at all.

Consider a three-element universe U = {a, b, c} and a partition π = {{a} , {b, c}}. The block
{b, c} is objectively indefinite between {b} and {c} so those singletons are its "potentialities" in the
sense that a distinction could result in either {b} or {c} being "actualized." However {a} is not a
"potentiality" when one is starting with the indefinite element {b, c}.

Note that this objective indefiniteness is not well-described as saying that indefinite pre-
distinction element is "simultaneously both b and c"; it is indefinite between b and c. That is,
a "superposition" should not be thought of like a double exposure photograph which has two fully
definite images. That imagery is a holdover from classical wave imagery (e.g., in Fourier analysis)
where definite eigen-waveforms are superposed to give a superposition waveform. Instead, the ob-
jectively indistinct element is like an out-of-focus photograph that with some sharpening could be
resolved into one of two or more definite images. Yet one needs some way to indicate what are the
definite eigen-elements that could be "actualized" from a single indefinite element B, and that is
the role in the set case of conceptualizing B as a collecting together or a "superposition" of certain
"potential" eigen-elements u.

The following is another attempt to clarify the imagery.

Indistinct pre-distinction state represented as superposition

The following table gives yet another attempt at visualization by contrasting a classical picture
and an objectively indefinite (or "quantum") picture of a "particle" getting from A to B.
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Getting from A to B in classical and quantum ways

The classical trajectory is a sequence of definite positions. A state of subjective indefiniteness
is compatible with a classical trajectory when we have a "cloud of ignorance" about the actual
definite location of the particle. The "quantum trajectory" might be envisaged as starting with a
definite focus or location at A, then evolving to an objectively indefinite state (with the various
positions as potentialities), and then finally another "look" or measurement that achieves a definite
focus at location B. The particle in its objectively indefinite position state is represented as the
superposition of the possible definite position states.

4.2 The conceptual duality between the two lattices

The conceptual duality between the lattice of subsets and the lattice of partitions could be described
using the rather meta-physical notions of substance and form. Consider what happens when one
starts at the bottom of each lattice and moves towards the top.

Conceptual duality between the two lattices

At the bottom of the Boolean lattice is the empty set ∅ which represents no substance. As one
moves up the lattice, new fully propertied elements of substance appear until finally one reaches

12



the top, the universe U . Thus new substance is created but each element is fully formed and
distinguished in terms of its properties.

At the bottom of the partition lattice is the blob 0 which represents all the substance but with
no distinctions to in-form the substance. As one moves up the lattice, no new substance appears
but distinctions objectively in-form the indistinct elements as they become more and more distinct,
until one finally reaches the top, the discrete partition 1, where all the eigen-elements of U have
been fully distinguished from each other. Thus one ends up at the same place either way, but by
two totally different but dual ways.

The notion of logical entropy expresses this idea of objective in-formation as the normalized
count of the informing distinctions. For instance, in the partition lattice on a three element set
pictured above, the logical entropy of the blob is always h (0) = 0 since there are no distinctions.
For a middle partition such as π = {{a} , {b, c}}, the distinctions are (a, b), (b, a), (a, c), and (c, a)

for a total of 4 where |U |2 = 32 = 9 so the logical entropy is h (π) = |dit(π)|
|U×U | = 4

9 . For the discrete

partition, there are all possible distinctions for a total of |U |2 − |∆U | = 9 − 3 = 6 so the logical
entropy is h (1) = 1 − 1

|U | = 6
9 . In each case, the logical entropy of a partition is the probability

that two independent draws from U will yield a distinction of the partition.
The progress from bottom to top of the two lattices could also be described as two creation

stories.

• Subset creation story : “In the Beginning was the Void”, and then elements are created, fully
propertied and distinguished from one another, until finally reaching all the elements of the
universe set U .

• Partition creation story : “In the Beginning was the Blob”, which is an undifferentiated “sub-
stance,”and then there is a "Big Bang" where elements (“its”) are created by being objectively
in-formed (objective "dits") by the making of distinctions (e.g., breaking symmetries) until
the result is finally the singletons which designate the elements of the universe U .9

These two creation stories might also be illustrated as follows.

9Heisenberg identifies the "substance" with energy.

Energy is in fact the substance from which all elementary particles, all atoms and therefore all things are
made, and energy is that which moves. Energy is a substance, since its total amount does not change,
and the elementary particles can actually be made from this substance as is seen in many experiments
on the creation of elementary particles.[15, p. 63]

In his sympathetic interpretation of Aristotle’s treatment of substance and form, Heisenberg refers to the substance
as: "a kind of indefinite corporeal substratum, embodying the possibility of passing over into actuality by means of the
form."[15, p. 148] It was previously noted that Heisenberg’s "potentiality" "passing over into actuality by means of
the form" should be seen as the actual indefinite "passing over into" the actual definite by being objectively in-formed
through the making of distinctions.
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Two ways to create a universe U

One might think of the universe U (in the middle of the above picture) as the macroscopic world
of fully definite entities that we ordinarily experience. Common sense and classical physics assumes,
as it were, the subset creation story on the left. But a priori, it could just as well have been the
dual story, the partition creation story pictured on the right, that leads to the same macro-picture
U . And, as we will see, that is indeed the message of quantum mechanics.

5 The Lifting Program

5.1 From sets to vector spaces

We have so far outlined the mathematics of set partitions such as the representation of an indefinite
element as a (non-singleton) block in a partition and carving out the fully distinct eigen-elements
by making more distinctions, e.g., joining together the distinctions of different partitions (on the
same universe). The lifting program lifts these set-based concepts to the much richer environment
of vector spaces.

Why vector spaces? Dirac [7] noted that the notion of superposition was basic to and charac-
teristic of quantum mechanics. At the level of sets, there is only a very simple and austere notion
of "superposition," namely collecting together definite eigen-elements into one subset interpreted
as one indefinite element (indistinct between the "superposed" eigen-elements). In a vector space,
superposition is represented by a weighted vector sum with weights drawn from the base field.10

Thus the lifting of set concepts to vector spaces (Hilbert spaces in particular) gives a much richer
version of partition mathematics, and, as we will see, the lifting gives the mathematics of quantum
mechanics.

The lifting program is not an algorithm but there is a guiding:

Basis Principle: Apply the set concept to a basis set and then generate the lifted vector space
concept.

For instance, what is the vector space lift of the set concept of cardinality? We apply the set concept
of cardinality to a basis set of a vector space where it yields the notion of dimension of the vector
space (after checking that all bases have equal cardinality). Thus the lift of set-cardinality is not
the cardinality of a vector space but its dimension.11 Thus the null set ∅ with cardinality 0 lifts to
the trivial zero vector space with dimension 0.

It is often convenient to refer to a set concept in terms of its lifted vector space concept. This
will be done by using the name of the vector space concept enclosed in scare quotes, e.g., the
cardinality of a set is its "dimension."

5.2 Lifting set partitions

To lift set partition mathematics to vector spaces, the first question is the lift of a set partition.
The answer is immediately obtained by applying the set concept of a partition to a basis set and
10A vector expressed in a certain basis can be thought as a "multi-set" with a field element assigned as a weight

to each element of the basis set.
11 In QM, the extension of concepts on finite dimensional Hilbert space to infinite dimensional ones is well-known.

Since our expository purpose is conceptual rather than mathematical, we will stick to finite dimensional spaces.
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then seeing what it generates. Each block B of the set partition of a basis set generates a subspace
WB ⊆ V , and the subspaces together form a direct sum decomposition: V =

∑
B ⊕WB. Thus the

proper lifted notion of a partition for a vector space is not a set partition of the space, e.g., defined
by a subspace W ⊆ V where v ∼ v′ if v − v′ ∈W , but is a direct sum decomposition of the vector
space.12 Or put the other way around (i.e., delifted), a set partition is a "direct sum decomposition"
of a set.

5.3 Lifting partition joins

The main partition operation that we need to lift to vector spaces is the join operation. Two
set partitions cannot be joined unless they are compatible in the sense of being defined on the
same universe set. This notion of compatibility lifts to vector spaces by defining two vector space
partitions ω = {Wλ} and ξ = {Xµ} on V as being compatible if there is a basis set for V so that
the two vector space partitions arise from two set partitions of that common basis set.

If two set partitions π = {B} and σ = {C} are compatible, then their join π ∨ σ is defined as
the set partition whose blocks are the non-empty intersections B ∩C. Similar the lifted concept is
that if two vector space partitions ω = {Wλ} and ξ = {Xµ} are compatible, then their join ω∨ ξ is
defined as the vector space partition whose subspaces are the non-zero intersections Wλ ∩Xµ. And
by the definition of compatibility, we could generate the subspaces of the join ω ∨ ξ by the blocks
in the join of the two set partitions of the common basis set.

5.4 Lifting attributes

A set partition might be seen as an abstract rendition of the inverse image partition
{
f−1 (r)

}
defined by some concrete attribute f : U → R on U (where we take the value set as the reals
since that is also the relevant value set for QM). What is the lift of an attribute? At first glance,
the basis principle would seem to imply: define a set attribute on a basis set (with values in the
base field) and then linearly generate a functional from the vector space to the base field. But a
functional does not define a vector space partition; it only defines the set partition of the vector
space determined by the kernel of the functional. Hence we need to try a more careful application
of the basis principle.

It is helpful to first give a suggestive reformulation of a set attribute f : U → R. If f is constant
on a subset S ⊆ U with a value r, then we might symbolize this as:

f � S = rS

and suggestively call S an "eigenvector" and r an "eigenvalue." For any "eigenvalue" r, define
f−1 (r) = "eigenspace of r" as the union of all the "eigenvectors" with that "eigenvalue." Since the
"eigenspaces" span the set U , the attribute f : U → R can be represented by:

f =
∑

r rχf−1(r)
"Spectral decomposition" of set attribute f : U → R

12The usual quantum logic approach to define a ‘propositional’logic for QM focused on the question of whether or
not a vector was in a subspace, which in turn lead to a misplaced focus on the set equivalence relations defined by
the subspaces, equivalence relations that have a special property of being commuting [14]. If "quantum logic" is to
be the logic that is to QM as Boolean subset logic is to classical mechanics, then that is partition logic.
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[where χf−1(r) is the characteristic function for the "eigenspace" f
−1 (r)]. Thus a set attribute

determines a set partition and has a constant value on the blocks of the set partition, so by the
basis principle, that lifts to a vector space concept that determines a vector space partition and
has a constant value on the blocks of a vector space partition.

The suggestive terminology gives the proper lift. The lift of f � S = rS is the eigenvector
equation Lv = λv where L is a linear operator on V . In particular, if Lv1 = λv1 and Lv2 = λv2
for two basis vectors v1 and v2, then Lv = λv for all v ∈ [v1, v2] (the subspace generated by v1
and v2). The lift of an "eigenspace" f−1 (r) is the eigenspace Wλ of an eigenvalue λ. The lift of
the simplest attributes, which are the characteristic functions χf−1(r), are the projection operators
Pλ that project to the eigenspaces Wλ. The characteristic property of the characteristic functions
χ : U → R is that they are idempotent in the sense that χ (u)χ (u) = χ (u) for all u ∈ U , and the
lifted characteristic property of the projection operators P : V → V is that they are idempotent
in the sense that P 2 : V → V → V = P : V → V . Finally, the "spectral decomposition" of a set
attribute lifts to the spectral decomposition of a vector space attribute:

f =
∑

r rχf−1(r) lifts to L =
∑

λ λPλ.
Lift of a set attribute to a vector space attribute

Thus a vector space attribute is just a linear operator whose eigenspaces span the whole space
which is called a diagonalizable linear operator [17]. Then we see that the proper lift of a set
attribute using the basis principle does indeed define a vector space partition, namely that of the
eigenspaces of a diagonalizable linear operator, and that the values of the attribute are constant on
the blocks of the vector space partition—as desired. To keep the eigenvalues of the linear operator
real, quantum mechanics restricts the vector space attributes to Hermitian (or self-adjoint) linear
operators, which represent observables, on a Hilbert space.

Set attributes lift to linear operators

One of the mysteries of quantum mechanics is that the set attributes such as position or
momentum on the phase spaces of classical physics become linear operators on the state spaces
of QM. The lifting program should take away some of that mystery.
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5.5 Lifting compatible attributes

Since two set attributes f : U → R and g : U ′ → R define two inverse image partitions
{
f−1 (r)

}
and

{
g−1 (s)

}
on their domains, we need to extend the concept of compatible partitions to the

attributes that define the partitions. That is, two attributes f : U → R and g : U ′ → R are
compatible if they have the same domain U = U ′.13 We have previously lifted the notion of com-
patible set partitions to compatible vector space partitions. Since real-valued set attributes lift to
Hermitian linear operators, the notion of compatible set attributes just defined would lift to two
linear operators being compatible if their eigenspace partitions are compatible. It is a standard fact
of the QM literature (e.g., [18, pp. 102-3] or [17, p. 177]) that two (Hermitian) linear operators
L,M : V → V are compatible if and only if they commute, LM = ML. Hence the commutativity
of linear operators is the lift of the compatibility (i.e., defined on the same set) of set attributes.

Given two compatible set attributes f : U → R and g : U → R, the join of their "eigenspace"
partitions has as blocks the non-empty intersections f−1 (r) ∩ g−1 (s). Each block in the join of
the "eigenspace" partitions could be characterized by the ordered pair of "eigenvalues" (r, s). An
"eigenvector" S ⊆ f−1 (r) and S ⊆ g−1 (s) would be a "simultaneous eigenvector": S ⊆ f−1 (r) ∩
g−1 (s).

In the lifted case, two commuting Hermitian linear operator L andM have compatible eigenspace
partitions WL = {Wλ} (for the eigenvalues λ of L) and WM = {Wµ} (for the eigenvalues µ of M).
The blocks in the join WL ∨ WM of the two compatible eigenspace partitions are the non-zero
subspaces {Wλ ∩Wµ} which can be characterized by the ordered pairs of eigenvalues (λ, µ). The
nonzero vectors v ∈Wλ ∩Wµ are simultaneous eigenvectors for the two commuting operators, and
there is a basis for the space consisting of simultaneous eigenvectors.14

A set of compatible set attributes is said to be complete if the join of their partitions is discrete,
i.e., the blocks have cardinality 1. Each element of U is then characterized by the ordered n-tuple
(r, ..., s) of attribute values.

In the lifted case, a set of commuting linear operators is said to be complete if the join of
their eigenspace partitions is nondegenerate, i.e., the blocks have dimension 1. The eigenvectors
that generate those one-dimensional blocks of the join are characterized by the ordered n-tuples
(λ, ..., µ) of eigenvalues so the eigenvectors are usually denoted as the eigenkets |λ, ..., µ〉 in the
Dirac notation. These Complete Sets of Commuting Operators are Dirac’s CSCOs [7].

5.6 Summary of lifting program

The lifting program so far is summarized in the following table.

13This simplified definition is justified by the later treatment of compatible attributes in the context of "quantum
mechanics" on sets.
14One must be careful not to assume that the simultaneous eigenvectors are the eigenvectors for the operator

LM = ML due to the problem of degeneracy.
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Summary of Lifts

5.7 Some subtleties of the lifting program

The relation between set concepts and the lifted vector space concepts is not a one-to-one map-
ping.15 For instance, the same subset S = f−1 (r) appears both as an "eigenvector" S such that
f � S = rS and as an "eigenspace"—which are two very different vector space concepts. The two-
dimensional space [a, b] generated by vectors a and b is quite different from the vector a + b, but
at the austere level of sets, they are both {a, b}. Thus the same set concept of a subset {a, b}
(depending on whether it is viewed as {a, b} = f−1 (r) or as f � {a, b} = r {a, b}) lifts to quite
different vector space concepts: the subspace [a, b] or the vector a + b. This is one of the reasons
that the lifting program cannot be reduced to a simple mapping.

Moreover, the same vector space concept, viewed from different angles, may "delift" to quite
different set concepts. Consider the vector space concept of a projection operator P : V → V that
projects to the subspace P (V ) = W . As a linear operator with the eigenvalues 0 and 1, a projection
operator is the lift of a characteristic function χS : U → R as an attribute. The projection operator
assigns the eigenvalues 1 and 0 to the two blocks P (V ) and ker (P ) of its eigenspace partition, just
as the attribute χS assigns the two values to the two blocks χS (1) and χS (0) of its set partition.
But a projection operator also serves to project an arbitrary vector v ∈ V to the part of v, namely
P (v), that is in the range-space W . Since the delift of vectors v ∈ V are subsets S ⊆ U (viewed as
single indefinite elements), the delift of the projecting operation would be a mapping from arbitrary
subsets to the part of each subset that is in the "range eigenspace" χ−1S (1). That "projection" is
the idempotent mapping:

χ−1S (1) ∩ () : ℘ (U)→ ℘ (U).

Thus the same vector space concept of a projection operator delifts to two quite different set
concepts: the set attribute χS : U → R and the subset operator χ−1S (1) ∩ () : ℘ (U)→ ℘ (U).

15Perhaps the lifting program is akin to a type of mathematical "pornography"—it is hard to define exactly but you
know it when you see it.
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The subset operator treatment of a projection allows another type of "spectral decomposition"
associated with an attribute f : U → R. The previous statement for S ⊆ f−1 (r) that f � S = rS
can now be written r

[
f−1 (r) ∩ S

]
= rS so that the action of f on subsets can be symbolically

represented as:

f � () =
∑

r r
[
f−1 (r) ∩ ()

]
that identifies the "eigenvectors" and "eigenvalues" in the set case and thus could be taken as the
set operator analogue of L =

∑
λ λPλ.

6 The Delifting Program: "Quantum mechanics" on sets

6.1 Probabilities in "quantum mechanics" on sets

The lifting program establishes a relationship between concepts and operations for sets and those
for vector spaces. We have so far started with set concepts, like the concept of a set partition, and
then developed the corresponding concept for vector spaces (direct sum decomposition). However
the relation between set and vector space concepts can also be established by going the other way,
by delifting quantum mechanical concepts from vector spaces to sets. By delifting QM concepts
to sets, we can develop a toy model called "quantum mechanics" on sets—which shows the logical
structure of QM in a pedagogically simple and understandable context.

The connection between sets and the complex vector spaces of QM can be facilitated by consid-
ering an intermediate stage. A power set ℘ (U) can be considered as a vector space over Z2 = {0, 1}
with the symmetric difference of subsets, i.e., S∆T = S ∪ T − S ∩ T for S, T ⊆ U , as the vector
addition operation. Thus set concepts can be first translated into sets-as-vectors concepts for vector
spaces over Z2 and then lifted to vector spaces over C (or vice-versa for delifting). One of the key
pieces of machinery in QM, namely the inner product, does not exist in vector spaces over finite
fields but a norm can be defined to play a similar role in the probability algorithm.

Seeing ℘ (U) as the vector space Z|U |2 allows different bases in which the vectors can be expressed
(as well as the basis-free notion of a vector as a ket). Consider the simple case of U = {a, b, c} where
the U -basis is {a}, {b}, and {c}. But the three subsets {a, b}, {b, c}, and {a, b, c} also form a basis
since: {a, b} + {a, b, c} = {c}; {b, c} + {c} = {b}; and {a, b} + {b} = {a}. These new basis vectors
could be considered as the basis-singletons in another equicardinal universe U ′ = {a′, b′, c′} where
a′ = {a, b}, b′ = {b, c}, and c′ = {a, b, c}. In the following table, each row is a ket of V = Z32
expressed in the U -basis and the U ′-basis.

U = {a, b, c} U ′ = {a′, b′, c′}
{a, b, c} {c′}
{a, b} {a′}
{b, c} {b′}
{a, c} {a′, b′}
{a} {b′, c′}
{b} {a′, b′, c′}
{c} {a′, c′}
∅ ∅

Vector space isomorphism (i.e., preserves +) Z32 ∼= ℘ (U) ∼= ℘ (U ′): row = ket.
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In a Hilbert space, the inner product is used to define the norm ‖v‖ =
√
〈v|v〉, and the

probability algorithm can be formulated using this norm. In a vector space over Z2, the Dirac
notation can still be used to define a real-valued norm even though there is no inner product.
The kets |S〉 for S ∈ ℘ (U) are basis-free but the corresponding bras are basis-dependent. For
u ∈ U , the bra 〈{u}|U : ℘ (U) → R is defined: 〈{u} |US〉 = 1 if u ∈ S and 0 otherwise so that
〈{} |US〉 = χS : U → {0, 1}. Assuming a finite U , the bra can also be defined in a more general
basis-dependent form:

〈T |US〉 = |T ∩ S| for T, S ⊆ U .

Note that for u, u′ ∈ U , 〈{u′} |U {u}〉 = δu′u taking the distinct elements of U as being paired with
the vectors in an orthonormal basis in the lift-delift relationship. In fact, this delifting of the Dirac
bracket is easily motivated by considering an orthonormal basis set {|u〉} in a finite dimensional
Hilbert space. Given two subsets T, S ⊆ {|u〉}, consider the unnormalized vector ψT =

∑
|u〉∈T |u〉

and similarly for ψS . Then their inner product in the Hilbert space is 〈ψT |ψS〉 = |T ∩ S|, which
"delifts" (running the basis principle in reverse) to 〈T |US〉 = |T ∩ S| for subsets T, S ⊆ U .

Then the U -norm ‖S‖U : ℘ (U)→ R is defined, as usual, as the square root of the bracket:

‖S‖U =
√
〈S|US〉 =

√
|S|

for S ∈ ℘ (U) which is the delift of the basis-free norm ‖ψ‖ =
√
〈ψ|ψ〉 (since the inner product

does not depend on the basis). Note that a ket has to be expressed in the U -basis to apply the
basis-dependent definition so in the above example, ‖{a′}‖U =

√
2 since {a′} = {a, b} in the U -basis.

For a specific basis {|vi〉} and for any nonzero vector v in a finite dimensional vector space, ‖v‖ =√∑
i 〈vi|v〉 〈vi|v〉

∗ whose delifted version would be: ‖S‖U =
√∑

u∈U 〈{u} |US〉
2. Thus squaring

both sides, we also have:∑
i
〈vi|v〉〈vi|v〉∗

‖v‖2 = 1 and
∑

u
〈{u}|US〉2

‖S‖2U
=
∑

u
|{u}∩S|
|S| = 1

where 〈vi|v〉〈vi|v〉
∗

‖v‖2 is a ‘mysterious’quantum probability while |{u}∩S||S| is the unmysterious probability

Pr ({u} |S) of getting u when sampling S (equiprobable elements of U). We previously saw that a
subset S ⊆ U as a block in a partition could be interpreted as a single indefinite element rather than
a subset of definite elements. In like manner, we can interpret a subset of outcomes (an event) in a
finite probability space as a single indefinite outcome where the conditional probability Pr ({u} |S)
is the objective probability of a "U -measurement" of S yielding the definite outcome {u}.

An observable, i.e., a Hermitian operator, on a Hilbert space determines its home basis set
of orthonormal eigenvectors. In a similar manner, an attribute f : U → R defined on U has the
U -basis as its "home basis set." Then given a Hermitian operator L =

∑
λ λPλ and a U -attribute

f : U → R, we have:

‖v‖ =
√∑

λ ‖Pλ (v)‖ and ‖S‖U =
√∑

r ‖f−1 (r) ∩ S‖2U

where f−1 (r) ∩ S is the "projection operator" f−1 (r) ∩ () applied to S, the delift of applying the
projection operator Pλ to v.16 This can also be written as:
16Since ℘ (U) is now interpreted as a vector space, it should be noted that the projection operator S ∩ () : ℘ (U) →

℘ (U) is linear, i.e., (S ∩ S1) ∆(S ∩ S2) = S ∩ (S1∆S2). Indeed, this is the distributive law when ℘ (U) is interpreted
as a Boolean ring.
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∑
λ
‖Pλ(v)‖2

‖v‖2 = 1 and
∑

r
‖f−1(r)∩S‖2

U

‖S‖2U
=
∑

r
|f−1(r)∩S|
|S| = 1

where ‖Pλ(v)‖
2

‖v‖2 is the quantum probability of getting λ in an L-measurement of v while |f
−1(r)∩S|
|S| has

the rather unmysterious interpretation of the probability Pr (r|S) of the random variable f : U → R
having the value r when sampling S ⊆ U . Under the set version of the objective indefiniteness
interpretation, i.e., "quantum mechanics" on sets, the indefinite element S is being "measured"

using the "observable" f and the probability Pr (r|S) of getting the "eigenvalue" r is |f
−1(r)∩S|
|S|

with the "projected resultant state" as f−1 (r) ∩ S.
These delifts are summarized in the following table for a finite U and a finite dimensional

Hilbert space V .

Set Case Vector space case

Projection B ∩ () : ℘ (U)→ ℘ (U) Projection P : V → V

f � () =
∑

r r
(
f−1 (r) ∩ ()

)
Herm. L =

∑
λ λPλ

∆B∈πB ∩ () = I : ℘ (U)→ ℘ (U)
∑

λ Pλ = I

〈S|UT 〉 = |S ∩ T | where S, T ⊆ U 〈ψ|ϕ〉 = "overlap" of ψ and ϕ
‖S‖U =

√
〈S|US〉 =

√
|S| where S ⊆ U ‖ψ‖ =

√
〈ψ|ψ〉

‖S‖U =
√∑

u∈U ‖{u} ∩ S‖
2
U ‖ψ‖ =

√∑
i 〈vi|ψ〉 〈vi|ψ〉

∗

S 6= ∅,
∑

u∈U
‖{u}∩S‖2U
‖S‖2U

=
∑

u∈S
1
|S| = 1 |ψ〉 6= 0,

∑
i
〈vi|ψ〉〈vi|ψ〉∗

‖ψ‖2 = 1

‖S‖U =
√∑

r ‖f−1 (r) ∩ S‖2U ‖ψ‖ =
√∑

λ ‖Pλ (ψ)‖2

S 6= ∅,
∑

r
‖f−1(r)∩S‖2

U

‖S‖2U
=
∑

r
|f−1(r)∩S|
|S| = 1 |ψ〉 6= 0,

∑
λ
‖Pλ(ψ)‖2

‖ψ‖2 = 1

Given S, prob. of r is
‖f−1(r)∩S‖2

U

‖S‖2U
=
|f−1(r)∩S|
|S| Given ψ, prob. of λ is ‖Pλ(ψ)‖

2

‖ψ‖2

Demystifying quantum probabilities using "quantum mechanics" on sets

6.2 Measurement in "quantum mechanics" on sets

Certainly the notion of measurement is one of the most opaque notions of QM so let’s consider
a set version of (projective) measurement starting at some block (the "state") in a partition in a
partition lattice. In the simple example illustrated below we start at the one block or "state" of
the indiscrete partition or blob which is the completely indistinct element {a, b, c}. A measurement
always uses some attribute that defines an inverse-image partition on U = {a, b, c}. In the case at
hand, there are "essentially" four possible attributes that could be used to "measure" the indefinite
element {a, b, c} (since there are four partitions that refine the blob).

For an example of a "nondegenerate measurement," consider any attribute f : U → R which has
the discrete partition as its inverse image, such as the ordinal number of a letter in the alphabet:
f (a) = 1, f (b) = 2, and f (c) = 3. This attribute or "observable" has three "eigenvectors":
f � {a} = 1 {a}, f � {b} = 2 {b}, and f � {c} = 3 {c} with the corresponding "eigenvalues." The
"eigenspaces" in the inverse image are also {a}, {b}, and {c}, the blocks in the discrete partition of
U all of which have "dimension" (i.e., cardinality) one. Starting in the "state" S = {a, b, c}, a U -
measurement with this observable would yield the "eigenvalue" r with the probability of Pr (r|S) =
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|f−1(r)∩S|
|S| = 1

3 . A "projective measurement" makes distinctions in the measured "state" that are
suffi cient to induce the "quantum jump" or "projection" to the "eigenvector" associated with the
observed "eigenvalue." If the observed "eigenvalue" was 3, then the "state" {a, b, c} "projects" to
f−1 (3) ∩ {a, b, c} = {c} ∩ {a, b, c} = {c} as pictured below.

"Nondegenerate measurement"

It might be emphasized that this is an objective state reduction (or "collapse of the wave
packet") from the single indefinite element {a, b, c} to the single definite element {c}, not a subjec-
tive removal of ignorance as if the "state" had all along been {c}. For instance, Pascual Jordan in
1934 argued that:

the electron is forced to a decision. We compel it to assume a definite position; previously,
in general, it was neither here nor there; it had not yet made its decision for a definite
position... . ... [W]e ourselves produce the results of the measurement. (quoted in [19,
p. 161])

For an example of a "degenerate measurement," we choose an attribute with a non-discrete
inverse-image partition such as {{a} , {b, c}}, which could, for instance, just be the characteristic
function χ{b,c} with the two "eigenspaces" {a} and {b, c} and the two "eigenvalues" 0 and 1 respec-
tively. Since one of the two "eigenspaces" is not a singleton of an eigen-element, the "eigenvalue"
of 1 is a set version of a "degenerate eigenvalue." This attribute χ{b,c} has four "eigenvectors":
χ{b,c} � {b, c} = 1 {b, c}, χ{b,c} � {b} = 1 {b}, χ{b,c} � {c} = 1 {c}, and χ{b,c} � {a} = 0 {a}.

The "measuring apparatus" makes distinctions that further distinguishes the indefinite element
S = {a, b, c} but the measurement returns one of "eigenvalues" with certain probabilities:

Pr(0|S) = |{a}∩{a,b,c}|
|{a,b,c}| = 1

3 and Pr (1|S) = |{b,c}∩{a,b,c}|
|{a,b,c}| = 2

3 .

Suppose it returns the "eigenvalue" 1. Then the indefinite element {a, b, c} "jumps" to the
"projection" χ−1{b,c} (1) ∩ {a, b, c} = {b, c} of the "state" {a, b, c} to that "eigenspace" [5, p. 221].

Since this is a "degenerate" result (i.e., the "eigenspace" of 1 does not have "dimension" one),
another measurement is needed to make more distinctions. Measurements by attributes that give
either of the other two middle partitions, {{a, b} , {c}} or {{b} , {a, c}}, suffi ce to distinguish {b, c}
into {b} or {c}, so either attribute together with the attribute χ{b,c} would form a complete set of
compatible attributes (i.e., the set version of a CSCO). The join of the two attributes’partitions
gives the discrete partition. Taking the other attribute as χ{a,b}, the join of the two attributes’
"eigenspace" partitions is discrete:
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{{a} , {b, c}} ∨ {{a, b} , {c}} = {{a} , {b} , {c}} = 1.

Hence all the singletons can be characterized by the ordered pairs of the "eigenvalues" of these two
attributes: {a} = |0, 1〉, {b} = |1, 1〉, and {c} = |1, 0〉 (using Dirac’s kets to give the ordered pairs).

The second "projective measurement" of the indefinite "superposition" element {b, c} using the
attribute χ{a,b} with the "eigenspace" partition {{a, b} , {c}} would induce a jump to either {b} or
{c} with the probabilities:

Pr (1| {b, c}) = |{a,b}∩{b,c}|
|{b,c}| = 1

2 and Pr (0| {b, c}) = |{c}∩{b,c}|
|{b,c}| = 1

2 .

If the measured "eigenvalue" is 0, then the "state" {b, c} "projects" to χ−1{a,b} (0) ∩ {b, c} = {c}
as pictured below.

"Degenerate measurement"

The two "projective measurements" of {a, b, c} using the complete set of compatible (both defined
on U) attributes χ{b,c} and χ{a,b} produced the respective "eigenvalues" 1 and 0, and the resulting
"eigenstate" was characterized by the "eigenket" |1, 0〉 = {c}.

In this manner, the toy model of "quantum mechanics" on sets provides a set version of "nonde-
generate measurement" by an "observable," a "degenerate measurement," "projections" associated
with "eigenvalues" that "project" to "eigenvectors," and characterizations of "eigenvectors" by
"eigenkets" of "eigenvalues"—all of which shows the bare bones logical structure of QM measure-
ment in the simple context of sets.

6.3 The indeterminacy principle in "quantum mechanics" on sets

Behind Heisenberg’s indeterminacy principle, the basic idea (not the numerical formula) is that a
vector space can have quite different bases so that a ket that is a definite state in one basis is an
indefinite superposition in another basis. And that basic idea can be well illustrated at the set level
by interpreting ℘ (U) as a vector space Zn2 (where |U | = n) which has many bases. In our previous
(simplified) treatment of attributes f : U → R and g : U ′ → R not using Zn2 , the attributes were
compatible if U = U ′. Now we can give a more sophisticated treatment of the set case using Zn2 ,
but with the similar result that attributes are compatible, i.e., "commute," if and only if there is
a common basis set of "simultaneous eigenvectors" on which both attributes can be defined. The
lifted version is the same; two observable operators are compatible if there is a basis of simultaneous
eigenvectors, and that holds if and only if the operators commute—which is also equivalent to all
the projection operators in the two spectral decompositions commuting.
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We are given two basis sets {{a} , {b} , ... | a, b, ... ∈ U} and {{a′} , {b′} , ... | a′, b′, ... ∈ U ′} for
Zn2 such as in the previous example where n = 3 and the U ′-basis was the three kets {a′} = {a, b},
{b′} = {b, c}, and {c′} = {a, b, c}. Then we have two real-valued set attributes defined on the
different bases, f : U → R and g : U ′ → R, and we want to investigate their compatibility.

The set attributes define set partitions
{
f−1 (r)

}
and

{
g−1 (s)

}
respectively on U and U ′.

These set partitions on the basis sets define, as usual, vector space partitions
{
℘
(
f−1 (r)

)}
and{

℘
(
g−1 (s)

)}
on Zn2 . But those vector space partitions cannot in general be obtained as the

eigenspace partitions of Hermitian operators on Zn2 since the only available eigenvalues are 0 and
1. But any set attribute that is the characteristic function χS : U → {0, 1} ⊆ R of a subset S ⊆ U
can represented by an operator, indeed a projection operator, whose action on ℘ (U) ∼= Zn2 is given
by the "projection operator" S ∩ () : ℘ (U) → ℘ (U), and similarly for U ′. The properties of the
real-valued attributes f and g can then stated in terms of these projection operators for subsets
S = f−1 (r) ⊆ U and S′ = g−1 (s) ⊆ U ′.

Consider first the above example and the simple case where the attributes are just characteristic
functions f = χ{b,c} : U → {0, 1} ⊆ R so f−1 (1) = {b, c} and g = χ{a′,b′} : U ′ → {0, 1} ⊆ R so
g−1 (1) = {a′, b′}. The two projection operators are {b, c} ∩ () : ℘ (U) → ℘ (U) and {a′, b′} ∩ () :
℘ (U ′) → ℘ (U ′). Note that this representation of the projection operators is basis-dependent. For
instance, {a′, b′} = {a, c} but the operator {a, c}∩ () operating on ℘ (U) is a very different operator
than {a′, b′}∩() operating on ℘ (U ′). The following ket table computes the two projection operators
and checks if they commute.

U U ′ f �= {b, c} ∩ () g �= {a′, b′} ∩ () g � f � f � g �
{a, b, c} {c′} {b, c} 0 {b, c} 0

{a, b} {a′} {b} {a′} = {a, b} {a, c} {b}
{b, c} {b′} {b, c} {b′} = {b, c} {b, c} {b, c}
{a, c} {a′, b′} {c} {a′, b′} = {a, c} {a, b} {c}
{a} {b′, c′} 0 {b′} = {b, c} 0 {b, c}
{b} {a′, b′, c′} {b} {a′, b′} = {a, c} {a, c} {a, c}
{c} {a′, c′} {c} {a′} = {a, b} {a, b} {b}
∅ ∅ 0 0 0 0

Non-commutativity of the projections {b, c} ∩ () and {a′, b′} ∩ ().

We can move even closer to QM mathematics by using matrices in Zn2 to represent the operators.
The U -basis vectors {a}, {b}, and {c} are represented by the respective column vectors:1

0
0


U

,

0
1
0


U

, and

0
0
1


U

where the subscripts indicate the basis. The projection operator {b, c}∩ () would be represented by
the matrix whose columns give the result of applying the operator to the basis vectors:0 0 0

0 1 0
0 0 1


U

{b, c} ∩ () projection matrix in U -basis.
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In the U ′-basis (with the corresponding basis vectors using the U ′ subscript), the {a′, b′} ∩ ()
projection operator is represented by the projection matrix:1 0 0

0 1 0
0 0 0


U ′

{a′, b′} ∩ () projection matrix in U ′-basis.

These matrices cannot be meaningfully multiplied since they are in different bases but we can
convert them into the same basis to see if they commute. Since {a′} = {a, b}, {b′} = {b, c}, and
{c′} = {a, b, c}, the conversion matrix CU←U ′ to convert U ′-basis vectors to U -basis vectors is given
by the entries such as 〈{a} |U {a′}〉 = 1:

CU←U ′ =

〈{a} |U {a′}〉 〈{a} |U {b′}〉 〈{a} |U {c′}〉〈{b} |U {a′}〉 〈{b} |U {b′}〉 〈{b} |U {c′}〉
〈{c} |U {a′}〉 〈{c} |U {b′}〉 〈{c} |U {c′}〉

 =

1 0 1
1 1 1
0 1 1


U←U ′

.

The conversion the other way is given by the inverse matrix (remember mod (2) arithmetic):

CU ′←U =

0 1 1
1 1 0
1 1 1


U ′←U

= C−1U←U ′

which could also be directly seen from the ket table since {a} = {b′, c′}, {b} = {a, b, c}, and
{c} = {a′, c′}.

The projection matrix for {a′, b′} ∩ () in the U ′-basis can be converted to the U -basis by
computing the matrix that starting with any U -basis vector will convert it to the U ′-basis, then
apply the projection matrix in that U ′-basis and then convert the result back to the U -basis:

CU←U ′

1 0 0
0 1 0
0 0 0


U ′

CU ′←U

=

1 0 1
1 1 1
0 1 1


U←U ′

1 0 0
0 1 0
0 0 0


U ′

0 1 1
1 1 0
1 1 1


U ′←U

=

0 1 1
1 0 1
1 1 0


U

{a′, b′} ∩ () projection operator in the U -basis.

Now the two projection operators are represented as projection matrices in the same U -basis
so they can be multiplied to see if they commute:

g � f � () =

0 1 1
1 0 1
1 1 0


U

0 0 0
0 1 0
0 0 1


U

=

0 1 1
0 0 1
0 1 0


U

f � g � () =

0 0 0
0 1 0
0 0 1


U

0 1 1
1 0 1
1 1 0


U

=

0 0 0
1 0 1
1 1 0


U
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so the two projection matrices do not commute, as we previously saw in the table computation.
There is a standard theorem of linear algebra:

Proposition 2 For two diagonalizable (i.e., eigenvectors span the space) linear operators on a
finite dimensional space: the operators commute if and only if there is a basis of simultaneous
eigenvectors [17, p. 177].

In the above example of non-commuting projection operators, there is no basis of simultaneous
eigenvectors (in fact {b, c} = {b′} is the only common eigenvector).

In the following example of a third U ′′-basis where U ′′ = {a′′, b′′, c′′} with the set attributes
f = χ{b,c} : U → {0, 1} and g = χ{a′′,b′′} : U ′′ → {0, 1}, the projections {b, c} ∩ () and {a′′, b′′} ∩ ()
commute as we see from the last two columns.

U U ′′ f �= {b, c} ∩ () g �= {a′′, b′′} ∩ () g � f � f � g �
{a, b, c} {a′′, b′′, c′′} {b, c} {a′′, b′′} = {a, c} {c} {c}
{a, b} {b′′, c′′} {b} {b′′} = {a} ∅ ∅
{b, c} {a′′, c′′} {b, c} {a′′} = {c} {c} {c}
{a, c} {a′′, b′′} {c} {a′′, b′′} = {a, c} {c} {c}
{a} {b′′} 0 {b′′} = {a} ∅ ∅
{b} {c′′} {b} ∅ ∅ ∅
{c} {a′′} {c} {a′′} = {c} {c} {c}
∅ ∅ 0 0 0 0

Commuting projection operators {b, c} ∩ () and {a′′, b′′} ∩ ().

Hence in this case, there is a basis of simultaneous eigenvectors {a} = {b′′}, {b} = {c′′}, and
{c} = {a′′}, so that f and g are defined on the same set (which we could take to be either U or
U ′′).

Returning to the two basis sets {{a} , {b} , ... | a, b, ... ∈ U} and {{a′} , {b′} , ... | a′, b′, ... ∈ U ′}
for Zn2 with two real-valued set attributes f : U → R and g : U ′ → R, the attributes cannot
be represented as operators on Zn2 but each block f−1 (r) and g−1 (s) can be analyzed using the
projection operators f−1 (r) ∩ () and g−1 (s) ∩ () for those subsets. Thus instead of the criterion of
operators commuting, we define that attributes f and g "commute" if all their projection operators
f−1 (r)∩ () and g−1 (s)∩ () commute. Then the above proposition about commuting operators can
be applied to the commuting operators to yield the result: f and g "commute" if and only if they
are compatible in the sense that there is a basis set {{a′′} , {b′′} , ...} for Zn2 whose subsets (vectors)
are "simultaneous eigenvectors" for all the projection operators—so that f and g can be taken as
being defined on the same basis set of n vectors. This result also justifies our earlier simplification
that f and g were defined as compatible if they were defined on the same set U = U ′.

If the two set attributes f and g could be defined on the same set, then they could have definite
values at the same time, and that holds if and only if the attributes "commute." But in the non-
commutative case, f and g cannot always have definite values in any state. A definite value for one
means an indefinite value for the other. In the first example, we have f = χ{b,c} and g = χ{a′,b′}
so, for example, in the state {c} = {a′, c′}, f has the definite value f (c) = 1 while g is indefinite
between the values of g (a′) = 1 and g (c′) = 0. In this manner, we see how the essential points (but
not the numerical formulas) of Heisenberg’s indeterminacy principle, i.e., when two observables can
or cannot have simultaneous definite values, are evidenced in the model of "quantum mechanics"
on sets.

26



6.4 Entanglement in "quantum mechanics" on sets

Another QM concept that also generates much mystery is entanglement. Hence it might be useful
to consider entanglement in "quantum mechanics" on sets.

First we need to lift the set notion of the direct (or Cartesian) product X × Y of two sets X
and Y . Using the basis principle, we apply the set concept to the two basis sets {v1, ..., vm} and
{w1, ..., wn} of two vector spaces V and W (over the same base field) and then we see what it
generates. The set direct product of the two basis sets is the set of all ordered pairs (vi, wj), which
we will write as vi ⊗ wj , and then we generate the vector space, denoted V ⊗W , over the same
base field from those basis elements vi ⊗ wj . That vector space is the tensor product, and it not
the direct product V ×W of the vector spaces. The cardinality of X × Y is the product of the
cardinalities of the two sets, and the dimension of the tensor product V ⊗W is the product of the
dimensions of the two spaces (while the dimension of the direct product V ×W is the sum of the
two dimensions).

A vector z ∈ V ⊗W is said to be separated if there are vectors v ∈ V and w ∈ W such that
z = v⊗w; otherwise, z is said to be entangled. Since vectors delift to subsets, a subset S ⊆ X × Y
is said to be "separated" or a product if there exists subsets SX ⊆ X and SY ⊆ Y such that
S = SX ×SY ; otherwise S ⊆ X × Y is said to be "entangled." In general, let SX be the support or
projection of S on X, i.e., SX = {x : ∃y ∈ Y, (x, y) ∈ S} and similarly for SY . Then S is "separated"
iff S = SX × SY .

For any subset S ⊆ X × Y , where X and Y are finite sets, a natural measure of its "entangle-
ment" can be constructed by first viewing S as the support of the equiprobable or Laplacian joint
probability distribution on S. If |S| = N , then define Pr (x, y) = 1

N if (x, y) ∈ S and Pr (x, y) = 0
otherwise.

The marginal distributions17 are defined in the usual way:

Pr (x) =
∑

y Pr (x, y)
Pr (y) =

∑
x Pr (x, y).

A joint probability distribution Pr (x, y) on X × Y is independent if for all (x, y) ∈ X × Y ,

Pr (x, y) = Pr (x) Pr (y).
Independent distribution

Otherwise Pr (x, y) is said to be correlated.

Proposition 3 A subset S ⊆ X × Y is "entangled" iff the equiprobable distribution on S is corre-
lated.

Proof: If S is "separated", i.e., S = SX × SY , then Pr (x) = |SY |/N for x ∈ SX and Pr (y) =
|SX | /N for y ∈ SY where |SX | |SY | = N . Then for (x, y) ∈ S,

Pr (x, y) = 1
N = N

N2 = |SX ||SY |
N2 = Pr (x) Pr (y)

17The marginal distributions are the set versions of the reduced density matrices of QM.
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and Pr(x, y) = 0 = Pr (x) Pr (y) for (x, y) /∈ S so the equiprobable distribution is independent.
If S is "entangled," i.e., S 6= SX × SY , then S $ SX × SY so let (x, y) ∈ SX × SY − S. Then
Pr (x) ,Pr (y) > 0 but Pr (x, y) = 0 so it is not independent, i.e., is correlated. �

Consider the set version of one qubit space where U = {a, b}. The product set U × U has 15
nonempty subsets. Each factor U and U has 3 nonempty subsets so 3× 3 = 9 of the 15 subsets are
"separated" subsets leaving 6 "entangled" subsets.

S ⊆ U × U
{(a, a) , (b, b)}
{(a, b) , (b, a)}

{(a, a) , (a, b), (b, a)}
{(a, a) , (a, b), (b, b)}
{(a, b), (b, a) , (b, b)}
{(a, a), (b, a) , (b, b)}

The six entangled subsets

The first two are the "Bell states" which are the two graphs of bijections U ←→ U and have the
maximum entanglement if entanglement is measured by the logical divergence d (Pr(x, y)||Pr (x) Pr (y))[8].
All the 9 "separated" states have zero "entanglement" by the same measure.

For an "entangled" subset S, a sampling x of left-hand system will change the probability
distribution for a sampling of the right-hand system y, Pr (y|x) 6= Pr (y). In the case of maximal
"entanglement" (e.g., the "Bell states"), when S is the graph of a bijection between U and U , the
value of y is determined by the value of x (and vice-versa).

In this manner, we see that many of the basic ideas and relationships of quantum mechanical
entanglement (e.g., "entangled states," "reduced density matrices," maximally "entangled states,"
and "Bell states"), can be reproduced in "quantum mechanics" on sets.

The two-slit experiment and the Bell inequality for "quantum mechanics" on sets are developed
in Appendices 2 and 3.

7 Waving good-by to waves

7.1 Wave-particle duality = indistinct-distinct particle duality

States that are indistinct for an observable are represented as weighted vector sums or superpositions
of the eigenstates that might be actualized by further distinctions. This indistinctness-represented-
as-superpositions is usually interpreted as "wave-like aspects" of the particles in the indefinite
state. Hence the distinction-making measurements take away the indistinctness—which is usually
interpreted as taking away the "wave-like aspects," i.e., "collapse of the wave packet." But there
are no actual physical waves in quantum mechanics (e.g., the "wave amplitudes" are complex
numbers); only particles with indistinct attributes for certain observables. Thus the "collapse of
the wave packet" is better described as the "collapse of indefiniteness" to achieve definiteness. And
the "wave-particle duality" is actually the indistinct-distinct particle duality or complementarity.

We have provided the back-story to objective indefiniteness by building the notion of distinctions
from the ground up starting with partition logic and logical information theory. But the importance
of distinctions and indistinguishability has been there all along in quantum mechanics.
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Consider the standard double-slit experiment. When there is no distinction between the two
slits, then the position attribute of the traversing particle is indefinite, neither top slit nor bottom
slit (not "going through both slits"), which is usually interpreted as the "wave-like aspects" that
show interference. But when a distinction is made between the slits, e.g., inserting a detector in
one slit or closing one slit, then the distinction reduces the indefiniteness to definiteness so the
indefiniteness disappears, i.e., the "wave-like aspects" disappear. For instance, Feynman makes
this point about distinctions in terms of distinguishing the alternatives or "final states" (such as
"traversing top slit" or "traversing bottom slit").

If you could, in principle, distinguish the alternative final states (even though you do not
bother to do so), the total, final probability is obtained by calculating the probability for
each state (not the amplitude) and then adding them together. If you cannot distinguish
the final states even in principle, then the probability amplitudes must be summed
before taking the absolute square to find the actual probability.[13, p. 3-9]

Moreover, when the properties of entities are carved out by distinctions (starting at the blob),
then it is perfectly possible to have two entities that result from the same distinctions but with
no other distinctions so they are in principle indistinguishable (unlike two twins who are "hard
to tell apart"). In QM, this has enormous consequences as in the distinction between bosons and
fermions, the Pauli exclusion principle, and the chemical properties of the elements. This sort of
in-principle indistinguishability is a feature of the micro-reality envisaged by partition logic, but is
not possible under the "properties all the way down" vision of subset logic.

7.2 Wave math without waves = indistinctness-preserving mathematics

What about the Schrödinger wave equation? Since measurements, or, more generally, interactions
between a quantum system and the environment, may make distinctions (measurement and deco-
herence), we might ask the following question. What is the evolution of a quantum system that is
isolated so that not only are no distinctions made, but even the degree of indistinctness between
state vectors is not changed? Two states ψ and ϕ in a Hilbert space are fully distinct if they are
orthogonal, i.e., 〈ψ|ϕ〉 = 0. Two states are fully indistinct if 〈ψ|ϕ〉 = 1. In between, the degree of
indistinctness can be measured by 〈ψ|ϕ〉, the inner product of the state vectors. Hence the evolution
of as isolated quantum system where the degree of indistinctness does not change is described by
a linear transformation that preserves inner products, i.e., a unitary transformation.18

The connection between unitary transformations and the solutions to the Schrödinger "wave"
equation is given by Stone’s Theorem [28]: there is a one-to-one correspondence between strongly
continuous 1-parameter unitary groups {Ut}t∈R and Hermitian operators A on the Hilbert space
so that Ut = eitA.

In simplest terms, a unitary transformation describes a rotation such as the rotation of the unit
vector in the complex plane.

18A unitary transformation is an isomorphism of inner product vector spaces. In the model of "quantum mechanics"
on sets where there is no inner product to be preserved, the delift would just be an isomorphism of vector spaces over
Z2.

29



Rotating vector

The rotating unit vector traces out the cosine and sine functions on the two axes, and the position
of the arrow can be compactly described as a function of ϕ using Euler’s formula:

eiϕ = cos (ϕ) + i sin (ϕ).

Such complex exponentials and their superpositions are the "wave functions" of QM. The "wave
functions" describe the evolution of particles in indefinite states in isolated systems where there
are no interactions to change the degree of indistinctness between states, i.e., the context where
Schrödinger’s equation holds. Previously it has been assumed that the mathematics of waves must
describe physical waves of some sort, and thus the puzzlement about the "waves" of QM having com-
plex amplitudes and no corresponding physical waves. But we have supplied another interpretation;
wave mathematics is the mathematics of indefiniteness, e.g., superposition represents indefiniteness
and unitary evolution represents the indistinctness-preserving evolution of an isolated system. Thus
the objective indefiniteness approach to interpreting QM provides an explanation for the appear-
ance of the wave mathematics (which implies interference as well as the quantized solutions to the
"wave" equation that gave QM its name) when, in fact, there are no actual physical waves involved.

8 Logical entropy measures measurement

8.1 Logical entropy as the total distinction probability

The notion of logical entropy of a probability distribution p = (p1, ..., pn), h (p) = 1 −
∑

i p
2
i ,

generalizes to the quantum logical entropy of a density matrix ρ [10],

h (ρ) = 1− tr
[
ρ2
]
.

Given a state vector |ψ〉 =
∑

i αi |i〉 expressed in the orthonormal basis {|i〉}i=1,...,n, the density
matrix

ρ = |ψ〉 〈ψ| = [ρij ] =
[
αiα

∗
j

]
(where α∗j is the complex conjugate of αj) is a pure state density matrix. For a pure state density
matrix:

h (ρ) = 1− tr
[
ρ2
]

= 1−
∑

i

∑
j αiα

∗
jαjα

∗
i = 1−

∑
i αiα

∗
i

∑
j αjα

∗
j = 1− 1 = 0.
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Otherwise, a density matrix ρ is said to represent a mixed state, and its logical entropy is positive.
In the set case, the logical entropy h (π) of a partition π was interpreted as the probability

that two independent draws from U (equiprobable elements) would give a distinction of π. For a
probability distribution p = (p1, ..., pn), the logical entropy h (p) = 1−

∑
i p
2
i is the probability that

two independent samples from the distribution will give distinct outcomes i 6= j. The probability
of the distinct outcomes (i, j) for i 6= j is pipj . Since 1 = (p1 + ...+ pn) (p1 + ...+ pn) =

∑
i,j pipj ,

we have:

h (p) = 1−
∑

i p
2
i =

∑
i,j pipj −

∑
i p
2
i =

∑
i 6=j pipj

which is the sum of all the distinction (i.e., distinct indices) probabilities.
This interpretation generalizes to the quantum logical entropy h (ρ). The diagonal terms {pi}

in a density matrix:

ρ =


p1 ρ12 · · · ρ1n
ρ21 p2 · · · ρ2n
...

...
. . .

...
ρn1 ρn2 · · · pn


are the probabilities of getting the ith eigenvector |i〉 in a projective measurement of a system in the
state ρ (using {|i〉} as the measurement basis). The off-diagonal terms ρij give the amplitude that
the eigenstates |i〉 and |j〉 cohere, i.e., are indistinct, in the state ρ so the absolute square |ρij |2 is
the indistinction probability. Since pipj is the probability of getting |i〉 and |j〉 in two independent
measurements, the difference pipj − |ρij |2, is the distinction probability. But 1 =

∑
i,j pipj so we see

that the interpretation of the logical entropy as the total distinction probability carries over to the
quantum case:

h (ρ) = 1− tr
[
ρ2
]

= 1−
∑

ij |ρij |
2 =

∑
ij

[
pipj − |ρij |2

]
=
∑

i 6=j

[
pipj − |ρij |2

]
Quantum logical entropy = sum of distinction probabilities

where the last step follows since pipi − |ρii|2 = 0.

8.2 Measuring measurement

Since h (ρ) = 0 for a pure state ρ, that means that all the eigenstates |i〉 and |j〉 cohere together, i.e.,
are indistinct, in a pure state, like the indiscrete partition or blob in the set case. For set partitions,
the transition, 0 → 1, from the blob to the discrete partition turns all the indistinctions (u, u′)
(where u 6= u′) into distinctions, and the logical entropy increases from 0 to 1 −

∑
i p
2
i = 1 − 1

n
where pi = 1

n for |U | = n.
Similarly in quantum mechanics, a nondegenerate measurement turns a pure state density

matrix ρ into the mixed state diagonal matrix ρ̂ with the same diagonal entries p1, ..., pn:

ρ =


p1 ρ12 · · · ρ1n
ρ21 p2 · · · ρ2n
...

...
. . .

...
ρn1 ρn2 · · · pn

 measurement⇒ ρ̂ =


p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...
0 0 · · · pn

.
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Hence the quantum logical entropy similarly goes from h (ρ) = 0 to h (ρ̂) = 1−
∑

i p
2
i . This is usually

described by saying that all the off-diagonal coherence terms are decohered in a nondegenerate
measurement—which means that all the indistinctions (|i〉 , |j〉) where |i〉 6= |j〉 of the pure state
(like a mini-blob) are distinguished by the measurement. And the sum of all those new distinction
probabilities for the decohered off-diagonal terms is precisely the quantum logical entropy since

h (ρ̂) =
∑

i 6=j

[
pipj − |ρ̂ij |2

]
=
∑

i 6=j pipj . For any measurement (degenerate or not), the increase in

logical entropy

h (ρ̂)− h (ρ) =
∑

new |ρij |
2 = sum of new distinction probabilities

where the sum is over the zeroed or decohered coherence terms |ρij |2 that gave indistinction prob-
abilities in the pure state ρ. Thus we see how quantum logical entropy interprets the off-diagonal
entries in the pure state density matrices and how the change in the quantum logical entropy
measures precisely the decoherence, i.e., the distinctions, made by a measurement.19

9 Lifting to the axioms of quantum mechanics

We have now reached the point where the program of lifting partition logic and logical informa-
tion theory to the quantum concepts of Hilbert spaces essentially yields the axioms of quantum
mechanics.

Using axioms based on [21], the first axiom gives the vector space endpoint of the lifting program.
Axiom 1: An isolated system is represented by a complex inner product vector space (i.e., a

Hilbert space) where the complete description of a state of the system is given by a state vector, a
unit vector in the system’s space.

Two fully distinct states would be orthogonal (thinking of them as eigenstates of an observable),
and a state indefinite between them would be represented as a weighted vector sum or superposition
of the two states.

We previously saw that the evolution of a closed system that preserves the degree of indistinction
between states would be a unitary transformation.

Axiom 2: The evolution of a closed quantum system is described by a unitary transformation.
In the last section, we saw how a projective measurement would zero some or all of the off-

diagonal coherence terms in a pure state ρ to give a mixed state ρ̂ (and how the sum of the absolute
squares of the zeroed coherence terms gave the change in quantum logical entropy).

Axiom 3: A projective measurement for an observable (Hermitian operator) M =
∑

mmPm
(spectral decomposition using projection operators Pm) on a pure state ρ has an outcome m with
probability pm = ρmm giving the mixed state ρ̂ =

∑
m PmρPm.

And finally we saw how the lifting program lifted the notion of combining sets with the direct
product of sets X × Y to the notion of representing combined quantum systems with the vector
space generated by taking the direct product of two bases of the state spaces.

Axiom 4: The state space of a composite system is the tensor product of the state spaces of the
component systems.

19 In contrast, the standard notion of entropy currently used in quantum information theory, the von Neumann
entropy, is only qualitatively related to measurement, i.e., projective measurement increases von Neumann entropy
[21, p. 515].
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10 Conclusion

The objective indefiniteness interpretation of quantum mechanics is based on using partition logic,
logical information theory, and the lifting program to fill out the back story to the old notion of
"objective indefiniteness" ([25], [26]). In Appendix 1, the lifting program is further applied to lift
set representations of groups to vector space representations, and thus to explain the fundamental
importance of group representation theory in quantum mechanics (not to mention particle physics).
But enough of the research program has already been presented to point to some conclusions.

At the level of sets, if we start with a universe set U as representing our common-sense macro-
scopic world, then there are only two logics, the logics of subsets and quotient sets (i.e., partitions),
to envisage the "creation story" for U . Increase the size of subsets or increase the refinement of
quotient sets until reaching the universe U . That is, starting with the empty subset of U , take
larger and larger subsets of well-defined fully definite elements until finally reaching all the fully
definite elements of U . Or starting with the indiscrete partition on U , take more and more refined
partitions, each block interpreted as an indefinite element, until finally reaching all the fully definite
elements of U . Those are the two dual options.

Classical mechanics was fully compatible with the subset creation story, where elements were
always fully propertied ("properties all the way down"). But almost from the beginning, quantum
mechanics was seen not to be compatible with that world view of always fully definite entities; QM
seems to envisage entities at the micro-level that are objectively indefinite. Within the framework
of the two logics given by subset-partition duality, the "obvious" thing to do is to elaborate on the
dual creation story to try to build the other interpretation of QM.

With the development of the logic of partitions (dual to the logic of subsets) and logical in-
formation theory built on top of it, the foundation was in place to lift those set concepts to the
richer mathematical environment of vector spaces (Hilbert spaces in particular). In that manner,
the other interpretation of QM was constructed. Unlike the interpretation based on entities with
fully definite properties expressed by Boolean subset logic, the dual interpretation works. That is,
the result reproduces the basic ideas and mathematical machinery of quantum mechanics, e.g., as
expressed in four axioms given above. That completes an outline of the vision of micro-reality that
provides the objective indefiniteness interpretation of quantum mechanics.

11 Appendix 1: Lifting in group representation theory

11.1 Group representations define partitions

Given a set G of mappings R = {Rg : U → U}g∈G on a set U , what are the conditions on the set
of mappings so that it is a set representation of a group? Define the binary relation on U × U :

u ∼ u′ if ∃g ∈ G such that Rg (u) = u′.

Then the conditions that make R into a group representation are the conditions that imply u ∼ u′

is an equivalence relation:

1. existence of the identity 1U ∈ U implies reflexivity of ∼;

2. existence of inverses implies symmetry of ∼; and
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3. closure under products, i.e., for g, g′ ∈ G, ∃g′′ ∈ G such that Rg′′ = Rg′Rg, implies transitivity
of ∼.

Hence a set representation of a group might be seen as a "dynamic" way to define an equiv-
alence relation and thus a partition on the set. Given this intimate connection between groups
and partitions, it is then no surprise that group representation theory has a basic role to play in
quantum mechanics and in the partition-based objective indefiniteness interpretation of QM.

11.2 Where do the fully distinct eigen-alternatives come from?

In the vector space case, we may be given the observable with its distinct eigenstates so the indefinite
states are linear combinations of those eigenstates.

In the set case, we are given the universe U of distinct eigen-alternatives u ∈ U , and then the
indistinct entities are the subsets such as the blocks B ∈ π in a partition of U . A "measurement"
is some distinction-making operation that reduces an indistinct state B down to a more distinct
state B′ ⊆ B or, in the nondegenerate case, to a fully distinct singleton {u} for some u ∈ B.

But where do the fully distinct elements {u} come from? Answer:

fully distinct elements ≈ orbits of a symmetry group representation.

Let U be a set and S (U) the group of all permutations of U . Then a set representation of a
group G is an assignment R : G → S (U) where for g ∈ G, g 7−→ Rg ∈ S (U) such that R1 is
the identity on U and for any g, g′ ∈ G, Rg′Rg = Rg′g. Equivalently, a group action is a binary
operation G× U → U such that 1u = u and g′ (gu) = (g′g)u for all u ∈ U .

Defining u ∼ u′ if ∃g ∈ G such that Rg (u) = u′ [or gu = u′ using the group action notation],
we have an equivalence relation on U where the blocks are called the orbits.

How are the ultimate distinct eigen-alternatives, the distinct "eigen-forms" of "substance,"
defined in the set case? Instead of just assuming U as the set of eigen-alternatives, we start with
U as the carrier for a set representation of the group G as a group of symmetries. What are the
smallest subsets (forming the blocks B in a set partition) that still have the symmetries, i.e., that
are invariant in the sense that Rg(B) ⊆ B for all g ∈ G? Those minimal invariant subsets are
the orbits, and all invariant subsets are unions of orbits. Thus the orbits, thought of as points in
the quotient set U/G (set of orbits), are the eigen-alternatives, the "eigen-forms" of "substance,"
defined by the symmetry group G in the set case.

Example 1: Let U = {0, 1, 2, 3, 4, 5} and let G = S2 = {1, σ} (symmetric group on two
elements) where R1 = 1U and Rσ(u) = u+ 3 mod 6.

Action of S2 on U = {0, 1, 2, 3, 4, 5}
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There are 3 orbits: {0, 3} , {1, 4}, and {2, 5}. Those three orbits are the "points" in the quotient
set U/G, i.e., they are the distinct eigen-alternatives defined by the symmetry group’s S2 action on
U .

A vector space representation of a group G on a vector space V is a mapping g 7−→ Rg : V → V
from G to invertible linear transformations on V such that Rg′Rg = Rg′g.

The lifts to the vector space representations of groups are;

• minimal invariant subset = orbits Lifts−→ minimal invariant subspaces = irreducible subspaces,

• representation restricted to orbits Lifts−→ representation restricted to irreducible subspaces
which gives the irreducible representations (the eigen-forms of substance in the vector space
case20), and

• set partition of orbits Lifts−→ vector space partition of irreducible subspaces.

The "irreducible representations" in the set case are just the restrictions of the representation
to the orbits, e.g., R � {0, 3} : S2 → S ({0, 3}), as their carriers. A set representation is said to be
transitive, if for any u, u′ ∈ U , ∃g ∈ G such that Rg (u) = u′. A transitive set representation has
only one orbit, all of U . Any set "irreducible representation" is transitive.

We are accustomed to thinking of some distinction-making operation as reducing a whole parti-
tion to a more refined partition, and thus breaking up a block B into distinguishable non-overlapping
subsets B′, B′′, ... ⊆ B. Now we are working at the more basic level of determining the distinct eigen-
alternatives, i.e., the orbits of a set representation of a symmetry group. Here we might also consider
how distinctions are made to move to a more refined partition of orbits. Since the group operations
identify elements, u ∼ u′ if ∃g ∈ G such that Rg (u) = u′, we would further distinguish elements by
moving to a subgroup. The symmetry operations in the larger group are "broken," so the remaining
group of symmetries is a subgroup.

Example 1 revisited: the group S2 has only one subgroup, the trivial subgroup of the identity
operation, and its orbits are clearly the singletons {u} for u ∈ U . That is the simplest example of
symmetry-breaking that gives a more distinct set of eigen-alternatives.

In any set representation, the maximum distinctions are made by the smallest symmetry sub-
group which is always the identity subgroup, so that is always the waste case that takes us back to
the singleton orbits in U , i.e., the distinct elements of U .

Thus we see that symmetry-breaking is analogous to measurement but at this more fundamental
level where the distinct eigen-forms are determined in the first place by symmetry considerations.

20For a certain group of particle physics, "an elementary particle ‘is’an irreducible unitary representation of the
group."[27, p. 149] In Heisenberg’s philosophical terms, the irreducible representations of certain symmetry groups
of particle physics determine the fundamental eigen-forms that the substance (energy) can take.

The elementary particles are therefore the fundamental forms that the substance energy must take in
order to become matter, and these basic forms must in some way be determined by a fundamental law
expressible in mathematical terms. ... The real conceptual core of the fundamental law must, however, be
formed by the mathematical properties of the symmetry it represents.[16, pp. 16-17]
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11.3 Attributes and observables

An (real-valued) attribute on a set U is a function f : U → R. An attribute induces a set partition{
f−1(r)

}
on U . An attribute f : U → R commutes with a set representation R : G→ S (U) if for

any Rg, the following diagram commutes in the sense that fRg = f :

U
Rg−→ U
↘f ↓f

R
Commuting attribute.

The lifts to vector space representations are immediate:

• a real-valued attribute on a set Lifts−→ an observable represented by a Hermitian operator on a
complex vector space; and

• the commutativity condition on a set-attribute Lifts−→ an observable operatorH (like the Hamil-
tonian) commuting with a symmetry group in the sense that HRg = RgH for all g ∈ G.

The commutativity-condition in the set case means that whenever Rg (u) = u′ then f (u) =
f (u′), i.e., that f is an invariant of the group. Recall that each orbit of a set representation is
transitive so for any u, u′ in the same orbit, ∃Rg such that Rg (u) = u′ so f (u) = f (u′) for any two
u, u′ in the same orbit. In other words:

"Schur’s Lemma" (set version): a commuting attribute restricted to an orbit is constant.
The lift to vector space representations is one version of the usual
Schur’s Lemma (vector space version): An operator H commuting with G restricted to irre-

ducible subspace is a constant operator.
This also means that the inverse-image partition

{
f−1 (r)

}
of a commuting attribute is refined

by the orbit partition. If an orbit B ⊆ f−1 (r), then the "eigenvalue" r of the attribute f is
associated with that orbit. Every commuting attribute f : U → R can be uniquely expressed as a
decomposition:

f =
∑

o∈Orbits roχo,

where ro is the constant value on the orbit o ⊆ U and χo : U → R is the characteristic function of
the orbit o.

There may be other orbits with the same "eigenvalue." Then we would need another commuting
attribute g : U → R so that for each orbit B, there is an "eigenvalue" s of the attribute g such
that B ⊆ g−1 (s). Then the eigen-alternative B may be characterized by the ordered pair |r, s〉 if
B = f−1 (r) ∩ g−1 (s). If not, we continue until we have a Complete Set of Commuting Attributes
(CSCA) whose ordered n-tuples of "eigenvalues" would characterize the eigen-alternatives, the
orbits of the set representation R : G→ S (U).

Obviously, we are just spelling out the set version whose lift is the use of a Complete Set of
Commuting Operators (CSCO) to characterize the eigenstates by kets of ordered n-tuples |λ, µ, ...〉

36



of eigenvalues of the commuting operators.21 But these "eigenstates" are not the singletons {u}
but are the minimal invariant subsets or orbits of the set representation of the symmetry group G.

Example 1 again: Consider the attribute f : U = {0, 1, 2, 3, 4, 5} → R where f (n) = n
mod 3. This attribute commutes with the previous set representation of S2, namely R1 = 1U
and Rσ(u) = u + 3 mod 6, and accordingly by "Schur’s Lemma" (set version), the attribute is
constant on each orbit {0, 3} , {1, 4}, and {2, 5}. In this case, the blocks of the inverse-image par-
tition

{
f−1 (0) , f−1 (1) , f−1 (2)

}
equal the blocks of the orbit partition, so this attribute is the

set version of a "nondegenerate measurement" in that its "eigenvalues" suffi ce to characterize the
eigen-alternatives, i.e., the orbits. By itself, it forms a complete set of attributes.

Example 2: Let U = {0, 1, ..., 11} where S2 = {1, σ} is represented by the operations R1 = 1U
and Rσ (n) = n+ 6 mod (12). Then the orbits are {0, 6} , {1, 7} , {2, 8} , {3, 9} , {4, 10} , and {5, 11}.
Consider the attribute f : U → R where f (n) = n mod (2). This attribute commutes with the
symmetry group and is thus constant on the orbits. But the blocks in the inverse-image partition are
now larger than the orbits, i.e., f−1 (0) = {0, 2, 4, 6, 8, 10} and f−1 (1) = {1, 3, 5, 7, 9, 11} so the orbit
partition strictly refines

{
f−1 (r)

}
. Thus this attribute corresponds to a degenerate measurement

in that the two "eigenvalues" do not suffi ce to characterize the orbits.
Consider the attribute g : U → R where g (n) = n mod (3). This attribute commutes with the

symmetry group and is thus constant on the orbits. The blocks in the inverse-image partition are:
g−1 (0) = {0, 3, 6, 9}, g−1 (1) = {1, 4, 7, 10}, and g−1 (2) = {2, 5, 8, 11}. The blocks in the join of the
two partitions

{
f−1 (r)

}
and

{
g−1 (s)

}
are the non-empty intersections of the blocks:

f−1 (r) g−1 (s) f−1 (r) ∩ g−1 (s) |r, s〉
{0, 2, 4, 6, 8, 10} {0, 3, 6, 9} {0, 6} |0, 0〉
{0, 2, 4, 6, 8, 10} {1, 4, 7, 10} {4, 10} |0, 1〉
{0, 2, 4, 6, 8, 10} {2, 5, 8, 11} {2, 8} |0, 2〉
{1, 3, 5, 7, 9, 11} {0, 3, 6, 9} {3, 9} |1, 0〉
{1, 3, 5, 7, 9, 11} {1, 4, 7, 10} {1, 7} |1, 1〉
{1, 3, 5, 7, 9, 11} {2, 5, 8, 11} {5, 11} |1, 2〉
f and g as a complete set of commuting attributes

Thus f and g form a Complete Set of Commuting Attributes to characterize the eigen-alternatives,
the orbits, by the "kets" of ordered pairs of their "eigenvalues."

Example 3: Let U = R2 as a set and let G be the special orthogonal matrix group SO (2,R)
of matrices of the form; [

cosϕ − sinϕ
sinϕ cosϕ

]
for 0 ≤ ϕ < 2π.

This group is trivially represented by the rotations in U = R2:[
x′

y′

]
=

[
cosϕ − sinϕ
sinϕ cosϕ

] [
x
y

]
.

21For a presentation of group representation theory that uses a CSCO approach to characterizing the irreducible
representations, see [3].
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The orbits are the circular orbits around the origin. The attribute "radius" f : R2 → R where
f (x, y) =

√
x2 + y2 commutes with the representation since:

f (x′, y′) =
√

(x′)2 + (y′)2

=
√

(x cosϕ− y sinϕ)2 + (x sinϕ+ y cosϕ)2

=
√
x2
(
cos2 ϕ+ sin2 ϕ

)
+ y2

(
cos2 ϕ+ sin2 ϕ

)
= f (x, y).

That means that "radius" is an invariant of the rotation symmetry group. The blocks in the set
partition

{
f−1 (r) : 0 ≤ r

}
of R2 coincide with the orbits so the "eigenvalues" of the radius attribute

suffi ce to characterize the orbits.
Example 4: The Cayley set representation of any group G is given by permutations on U = G

itself defined by Rg(g′) = gg′, which is also called the left regular representation. Given any g, g′ ∈ G,
Rg′g−1 (g) = g′ so the Cayley representation is always transitive, i.e., has only one orbit consisting
of all of U = G. Since any commuting attribute f : U = G → R is constant on each orbit, it can
only be a constant function such as χG.

Thus the Cayley set representation is rather simple, but we could break some symmetry by
considering a proper subgroup H ⊆ G. Then using only the Rh for h ∈ H, we have a representation
H → S (G). The orbit-defining equivalence relation is g ∼ g′ if ∃h ∈ H such that hg = g′, i.e., the
orbits are the right cosets of the form Hg.

Summary: lifting group representations

12 Appendix 2: "Unitary evolution" and the two-slit experiment
in "quantum mechanics" on sets

To illustrate a two-slit experiment in "quantum mechanics" on sets, we need to introduce some
"dynamics." In quantum mechanics, the requirement was that the linear transformation had to
preserve the degree of indistinctness 〈ψ|ϕ〉, i.e., that it preserved the inner product. Where two
states are fully distinct if 〈ψ|ϕ〉 = 0 and fully indistinct if 〈ψ|ϕ〉 = 1, it is also suffi cient to just

38



require that full distinctness and indistinctness be preserved since that would imply orthonormal
bases are preserved and that is equivalent to being unitary. In "quantum mechanics" on sets, we
have no inner product but the idea of a linear transformation Zn2 → Zn2 preserving distinctness
would simply mean being non-singular.

Hence our only requirement on the "dynamics" is that the change-of-state matrix is non-singular
(so states are not merged). Consider the dynamics given in terms of the U -basis where: {a} → {a, b};
{b} → {a, b, c}; and {c} → {b, c} in one time period. This is represented by the non-singular one-
period change of state matrix:

A =

1 1 0
1 1 1
0 1 1

.
The seven nonzero vectors in the vector space are divided by this "dynamics" into a 4 -orbit:

{a} → {a, b} → {c} → {b, c} → {a}, a 2-orbit: {b} → {a, b, c} → {b}, and a 1-orbit: {a, c} → {a, c}.
If we take the U -basis vectors as "vertical position" eigenstates, we can device a "quantum

mechanics" version of the "two-slit experiment" which models "all of the mystery of quantum
mechanics" [12, p. 130]. Taking a, b, and c as three vertical positions, we have a vertical diaphragm
with slits at a and c. Then there is a screen or wall to the right of the slits so that a "particle" will
travel from the diaphragm to the screen in one time period according to the A dynamics.

We start with or "prepare" the state of a particle being at the slits in the indefinite position
state {a, c}. Then there are two cases.

First case of distinctions at slits: The first case is where we measure the U -state at the slits
and then let the resultant position eigenstate evolve by the A-dynamics to hit the wall at the right
where the position is measured again. The probability that the particle is at slit 1 or at slit 2 is:

Pr ({a} | {a, c}) = 〈{a}|U{a,c}〉2

‖{a,c}‖2U
= |{a}∩{a,c}|

|{a,c}| = 1
2 ;

Pr ({c} | {a, c}) = 〈{c}|U{a,c}〉2

‖{a,c}‖2U
= |{c}∩{a,c}|

|{a,c}| = 1
2 .

If the particle was at slit 1, i.e., was in eigenstate {a}, then it evolves in one time period by the
A-dynamics to {a, b} where the position measurements yield the probabilities of being at a or at b
as:
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Pr ({a} | {a, b}) =
〈{a} |U {a, b}〉2

‖{a, b}‖2U
=
|{a} ∩ {a, b}|
|{a, b}| =

1

2

Pr ({b} | {a, b}) =
〈{b} |U {a, b}〉2

‖{a, b}‖2U
=
|{b} ∩ {a, b}|
|{a, b}| =

1

2
.

If on the other hand the particle was found in the first measurement to be at slit 2, i.e., was in
eigenstate {c}, then it evolved in one time period by the A-dynamics to {b, c} where the position
measurements yield the probabilities of being at b or at c as:

Pr ({b} | {b, c}) = |{b}∩{b,c}|
|{b,c}| = 1

2 and Pr ({c} | {b, c}) = |{c}∩{b,c}|
|{b,c}| = 1

2 .

Hence we can use the laws of probability theory to compute the probabilities of the particle being
measured at the three positions on the wall at the right if it starts at the slits in the superposition
state {a, c} and the measurements were made at the slits:

Pr({a} at wall | {a, c} at slits) = 1
2
1
2 = 1

4 ;
Pr({b} at wall | {a, c} at slits) = 1

2
1
2 + 1

2
1
2 = 1

2 ;
Pr({c} at wall | {a, c} at slits) = 1

2
1
2 = 1

4 .

Final probability distribution with measurements at slits

Second case of no distinctions at slits: The second case is when no measurements are
made at the slits and then the superposition state {a, c} evolves by the A-dynamics to {a, b} +
〈b, c〉 = {a, c} where the superposition at {b} cancels out. Then the final probabilities will just be
probabilities of finding {a}, {b}, or {c} when the measurement is made only at the wall on the right
is:

Pr({a} at wall | {a, c} at slits) = Pr ({a} | {a, c}) = |{a}∩{a,c}|
|{a,c}| = 1

2 ;

Pr({b} at wall | {a, c} at slits) = Pr ({b} | {a, c}) = |{b}∩{a,c}|
|{a,c}| = 0;

Pr({c} at wall | {a, c} at slits) = Pr ({c} | {a, c}) = |{c}∩{a,c}|
|{a,c}| = 1

2 .
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Final probability distribution with no measurement at slits

Since no "collapse" took place at the slits due to no distinctions being made there, the indistinct
element {a, c} evolved (rather than one or the other of the distinct elements {a} or {c}). The action
of A is the same on {a} and {c} as when they evolve separately since A is a linear operator but
the two results are now added together as part of the evolution. This allows the "interference" of
the two results and thus the cancellation of the {b} term in {a, b}+ 〈b, c〉 = {a, c}. The addition is,
of course, mod 2 (where −1 = +1) so, in "wave language," the two "wave crests" that add at the
location {b} cancel out. When this indistinct element {a, c} "hits the wall" on the right, there is
an equal probability of that distinction yielding either of those eigenstates.

13 Appendix 3: Bell inequality in "quantum mechanics" on sets

A simple version of a Bell inequality can be derived in the case of Z22 with three bases U = {a, b},
U ′ = {a′, b′}, and U ′′ = {a′′, b′′}, and where the kets are:

kets U -basis U ′-basis U ′′-basis

|1〉 {a, b} {a′} {a′′}
|2〉 {b} {b′} {a′′, b′′}
|3〉 {a} {a′, b′} {b′′}
|4〉 ∅ ∅ ∅

Ket table for ℘ (U) ∼= ℘ (U ′) ∼= ℘ (U ′′) ∼= Z22.

Attributes defined on the three universe sets U , U ′, and U ′′, such as say χ{a}, χ{b′}, and χ{a′′},
are incompatible as can be seen in several ways. For instance the set partitions defined on U and
U ′, namely {{a} , {b}} and {{a′} , {b′}}, cannot be obtained as two different ways to partition the
same set since {a} = {a′, b′} and {a′} = {a, b}, i.e., an "eigenstate" in one basis is a superposition
in the other. The same holds in the other pairwise comparison of U and U ′′ and of U ′ and U ′′.

A more technical way to show incompatibility is to exploit the vector space structure of Z22 and
to see if the projection matrices for {a} ∩ () and {b′} ∩ () commute. The basis conversion matrices
between the U -basis and U ′-basis are:

CU←U ′ =

[
1 0
1 1

]
and CU ′←U =

[
1 0
1 1

]
.
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The projection matrix for {a} ∩ () in the U -basis is, of course,
[
1 0
0 0

]
and the projection matrix

for {b′} ∩ () in the U ′-basis is
[
0 0
0 1

]
. Converting the latter to the U -basis to check commutativity

gives:

[{b′} ∩ ()]U = CU←U ′
[
0 0
0 1

]
CU ′←U

=

[
1 0
1 1

] [
0 0
0 1

] [
1 0
1 1

]
=

[
0 0
1 1

]
.

Hence the commutativity check is:

[{a} ∩ ()]U [{b′} ∩ ()]U =

[
1 0
0 0

] [
0 0
1 1

]
=

[
0 0
0 0

]
6=

[{b′} ∩ ()]U [{a} ∩ ()]U =

[
0 0
1 1

] [
1 0
0 0

]
=

[
0 0
1 0

]
so the two operators for the "observables" χ{a} and χ{b′} do not commute. In a similar manner, it
is seen that the three "observables" are mutually incompatible.

Given a ket in Z22 ∼= ℘ (U) ∼= ℘ (U ′) ∼= ℘ (U ′′), and using the usual equiprobability assumption
on sets, the probabilities of getting the different outcomes for the various "observables" in the
different given states are given in the following table.

Given state \ Outcome of test a b a′ b′ a′′ b′′

{a, b} = {a′} = {a′′} 1
2

1
2 1 0 1 0

{b} = {b′} = {a′′, b′′} 0 1 0 1 1
2

1
2

{a} = {a′, b′} = {b′′} 1 0 1
2

1
2 0 1

State-outcome table.

The delift of the tensor product of vector spaces is the Cartesian or direct product of sets, and
the delift of the vectors in the tensor product are the subsets of direct product of sets (as seen in
the above treatment of entanglement in "quantum mechanics" on sets). Thus in the U -basis, the
basis elements are the elements of U ×U and the "vectors" are all the subsets in ℘ (U × U). But we
could obtain the same "space" as ℘ (U ′ × U ′) and ℘ (U ′′ × U ′′), and we can construct a ket table
where each row is a ket expressed in the different bases. And these calculations in terms of sets
could also be carried out in terms of vector spaces over Z2 where the rows of the ket table are the
kets in the tensor product:

Z22 ⊗ Z22 ∼= ℘ (U × U) ∼= ℘ (U ′ × U ′) ∼= ℘ (U ′′ × U ′′).

Since {a} = {a′, b′} = {b′′} and {b} = {b′} = {a′′, b′′}, the subset {a} × {b} = {(a, b)} ⊆ U × U
is expressed in the U ′ × U ′-basis as {a′, b′} × {b′} = {(a′, b′) , (b′, b′)}, and in the U ′′ × U ′′-basis it
is {b′′} × {a′′, b′′} = {(b′′, a′′) , (b′′, b′′)}. Hence one row in the ket table has:

{(a, b)} = {(a′, b′) , (b′, b′)} = {(b′′, a′′) , (b′′, b′′)}.
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Since the full ket table has 16 rows, we will just give a partial table that suffi ces for our calculations.

U × U U ′ × U ′ U ′′ × U ′′

{(a, a)} {(a′, a′) , (a′, b′) , (b′, a′) , (b′, b′)} {(b′′, b′′)}
{(a, b)} {(a′, b′) , (b′, b′)} {(b′′, a′′) , (b′′, b′′)}
{(b, a)} {(b′, a′) , (b′, b′)} {(a′′, b′′) , (b′′, b′′)}
{b, b} {(b′, b′)} {(a′′, a′′) , (a′′, b′′) , (b′′, a′′) , (b′′, b′′)}

{(a, a) , (a, b)} {(a′, a′) , (b′, a′)} {(b′′, a′′)}
{(a, a) , (b, a)} {(a′, a′) , (a′, b′)} {(a′′, b′′)}
{(a, a) , (b, b)} {(a′, a′) , (a′, b′) , (b′, a′)} {(a′′, a′′) , (a′′, b′′) , (b′′, a′′)}
{(a, b) , (b, a)} {(a′, b′) , (b′, a′)} {(a′′, b′′) , (b′′, a′′)}

Partial ket table for ℘ (U × U) ∼= ℘ (U ′ × U ′) ∼= ℘ (U ′′ × U ′′)

As before, we can classify each "vector" or subset as "separated" or "entangled" and we can
furthermore see how that is independent of the basis. For instance {(a, a) , (a, b)} is "separated"
since:

{(a, a) , (a, b)} = {a} × {a, b} = {(a′, a′) , (b′, a′)} = {a′, b′} × {a′} = {(b′′, a′′)} = {b′′} × {a′′}.

An example of an "entangled state" is:

{(a, a) , (b, b)} = {(a′, a′) , (a′, b′) , (b′, a′)} = {(a′′, a′′) , (a′′, b′′) , (b′′, a′′)}.

Taking this "entangled state" as the initial "state," there is a probability distribution on U×U ′×U ′′
where Pr (a, a′, a′′) (for instance) is defined as the probability of getting the result {a} if a U -
measurement is performed on the left-hand system, and if instead a U ′-measurement is performed
on the left-hand system then {a′} is obtained, and if instead a U ′′-measurement is performed on
the left-hand system then {a′′} is obtained. Thus we would have Pr (a, a′, a′′) = 1

2
2
3
2
3 = 2

9 . In this
way the probability distribution Pr (x, y, z) is defined on U × U ′ × U ′′.

A Bell inequality can be obtained this joint probability distribution over the outcomes U×U ′×
U ′′ of measuring these three incompatible attributes [6]. Consider the following marginals:

Pr
(
a, a′

)
= Pr

(
a, a′, a′′

)
+ Pr

(
a, a′, b′′

)
X

Pr
(
b′, b′′

)
= Pr

(
a, b′, b′′

)
X+ Pr

(
b, b′, b′′

)
Pr
(
a, b′′

)
= Pr

(
a, a′, b′′

)
X+ Pr

(
a, b′, b′′

)
X.

The two terms in the last marginal are each contained in one of the two previous marginals (as
indicated by the check marks) and all the probabilities are non-negative, so we have the following
inequality:

Pr (a, a′) + Pr (b′, b′′) ≥ Pr (a, b′′)
Bell inequality.
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All this has to do with measurements on the left-hand system. But there is an alternative
interpretation to the probabilities Pr (x, y), Pr (y, z), and Pr (x, z) if we assume that the outcome
of a measurement on the right-hand system is independent of the outcome of the same measurement
on the left-hand system. Then Pr (a, a′) is the probability of a U -measurement on the left-hand
system giving {a} and then a U ′-measurement on the right-hand system giving {a′}, and so forth.
Under that independence assumption and for this initially prepared "Bell state,"

{(a, a) , (b, b)} = {(a′, a′) , (a′, b′) , (b′, a′)} = {(a′′, a′′) , (a′′, b′′) , (b′′, a′′)},

the probabilities would be the same.22 That is, the probabilities, Pr (a) = 1
2 = Pr (b), Pr (a′) =

2
3 = Pr (a′′), and Pr (b′) = 1

3 = Pr (b′′) are the same regardless of whether we are measuring the
left-hand or right-hand system of that composite state. Hence the above Bell inequality would still
hold. But we can use "quantum mechanics" on sets to compute the probabilities for those different
measurements on the two systems to see if the independence assumption is compatible with "QM"
on sets.

To compute Pr (a, a′), we first measure the left-hand component in the U -basis. Since {(a, a) , (b, b)}
is the given state, and (a, a) and (b, b) are equiprobable, the probability of getting {a} (i.e., the
"eigenvalue" 1 for the "observable χ{a}) is

1
2 . But the right-hand system is then in the state {a}

and the probability of getting {a′} (i.e., "eigenvalue" 0 for the "observable" χ{b′}) is
1
2 (as seen in

the state-outcome table). Thus the probability is Pr (a, a′) = 1
2
1
2 = 1

4 .
To compute Pr (b′, b′′), we first perform a U ′-basis "measurement" on the left-hand component

of the given state {(a, a) , (b, b)} = {(a′, a′) , (a′, b′) , (b′, a′)}, and we see that the probability of
getting {b′} is 1

3 . Then the right-hand system is in the state {a′} and the probability of getting
{b′′} in a U ′′-basis "measurement" of the right-hand system in the state {a′} is 0 (as seen from the
state-outcome table). Hence the probability is Pr (b′, b′′) = 0.

Finally we compute Pr (a, b′′) by first making a U -measurement on the left-hand component of
the given state {(a, a) , (b, b)} and get the result {a} with probability 1

2 . Then the state of the second
system is {a} so a U ′′-measurement will give the {b′′} result with probability 1 so the probability
is Pr (a, b′′) = 1

2 .
Then we plug the probabilities into the Bell inequality:

Pr (a, a′) + Pr (b′, b′′) ≥ Pr (a, b′′)
1
4 + 0 � 1

2
Violation of Bell inequality.

The violation of the Bell inequality shows that the independence assumption about the measurement
outcomes on the left-hand and right-hand systems is incompatible with "QM" on sets so the effects
of the "QM" on sets measurements are "nonlocal."
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